
Systems Biology Markup Language (SBML) Level 2:
Structures and Facilities for Model Definitions

Andrew Finney, Michael Hucka
{afinney,mhucka}@cds.caltech.edu

Systems Biology Workbench Development Group
ERATO Kitano Symbiotic Systems Project
Control and Dynamical Systems, MC 107-81

California Institute of Technology, Pasadena, CA 91125, USA
http://www.sbml.org

Principal Investigators: John Doyle and Hiroaki Kitano

SBML Level 2, Version 1 (Final)

June 28, 2003

Contents
1 Introduction 2
1.1 Scope and Limitations . . . . . . . . . . . . . . 2
1.2 Notational Conventions . . . . . . . . . . . . . 2
2 Overview of SBML 3
3 Preliminary Definitions 4
3.1 Type SBase and the SBML Type Inheritance

Hierarchy . . . . . . . . . . . . . . . . . . . . 4
3.2 Guidelines for the Use of the annotation Field

in SBase . . . . . . . . . . . . . . . . . . . . . 5
3.3 The id and name Fields on SBML Components 6
3.4 Type SId . . . . . . . . . . . . . . . . . . . . . 7
3.5 Component Identifiers and Namespaces in SBML 8
3.6 Mathematical Formulas in SBML Level 2 . . . 9
4 SBML Components 11
4.1 The SBML Container . . . . . . . . . . . . . . 11
4.2 Models . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Function Definitions . . . . . . . . . . . . . . . 13
4.4 Unit Definitions . . . . . . . . . . . . . . . . . 13
4.5 Compartments . . . . . . . . . . . . . . . . . . 16
4.6 Species . . . . . . . . . . . . . . . . . . . . . . 18
4.7 Parameters . . . . . . . . . . . . . . . . . . . . 21
4.8 Rules . . . . . . . . . . . . . . . . . . . . . . . 22
4.9 Reactions . . . . . . . . . . . . . . . . . . . . 25
4.10 Events . . . . . . . . . . . . . . . . . . . . . . 30

5 Example Models Expressed in XML Using SBML 33
5.1 A Simple Example Application of SBML . . . . 33
5.2 Example Involving Units . . . . . . . . . . . . . 34
5.3 Example Involving Assignment Rules . . . . . . 36
5.4 Example Involving Algebraic Rules . . . . . . . 38
5.5 Example Involving Combinations of

boundaryCondition and constant Values on
Species with RateRule structures . . . . . . . 40

5.6 Example of translation from a multi-
compartmental model to ODEs . . . . . . . . . 41

5.7 Example Involving Function Definitions . . . . . 44
5.8 Example Involving delay Functions . . . . . . . 45
5.9 Example Involving Events . . . . . . . . . . . . 46
5.10 Example Involving Two-Dimensional Compart-

ments . . . . . . . . . . . . . . . . . . . . . . 48
6 Discussion 51
6.1 Future Enhancements: SBML Level 3 and Beyond 52
6.2 Relationships to Other Efforts . . . . . . . . . . 53
Acknowledgments 53
Appendix 55
A Summary of Notation 55
B Differences between SBML Level 1 Version 2 and

Level 2 55
C XML Schema for SBML 57
References 66

http://www.sbml.org


1 Introduction

We present the Systems Biology Markup Language (SBML) Level 2, a model representation formalism for
systems biology. SBML is oriented towards describing systems of biochemical reactions of the sort common in
research on a number of topics, including cell signaling pathways, metabolic pathways, biochemical reactions,
gene regulation, and many others. SBML is defined in a neutral fashion with respect to programming
languages and software encoding; however, it is primarily oriented towards allowing models to be encoded
using XML, the eXtensible Markup Language (Bosak and Bray, 1999; Bray et al., 2000). This document
contains many examples of SBML models written in XML, as well as an XML Schema (Biron and Malhotra,
2000; Fallside, 2000; Thompson et al., 2000) that defines SBML Level 2. A downloadable copy of the
XML Schema and other related documents and software are also available from the SBML project web site,
http://www.sbml.org/.

Major releases of SBML are termed levels. SBML Level 2 evolved out of SBML Level 1 (Hucka et al., 2001,
2003). All of the structures of Level 1 can be mapped in a straightforward fashion to Level 2. In addition,
a large subset of the structures in Level 2 can be mapped to Level 1. However, the levels remain distinct; a
valid SBML Level 1 document is not a valid SBML Level 2 document, and likewise, a valid SBML Level 2
document is not a valid SBML Level 1 document. Appendix B lists the differences between Level 1 and
Level 2.

SBML Level 2 was created in collaboration with the authors of the following systems: BASIS (Kirk-
wood et al., 2003), Bio Skektch Pad (Belta et al., 2003), BioSpreadsheet (McCollum and Lancaster, 2003),
BioSpice (Arkin, 2001), CellDesigner (Funahashi and Kitano, 2003), Cellerator (Shapiro et al., 2001, 2003),
COPASI (Mendes, 2000), DBsolve (Goryanin, 2001; Goryanin et al., 1999), E-CELL (Tomita et al., 1999,
2001), ESS (Peterson and Drager, 2003), Gepasi (Mendes, 1997, 2001), Jarnac (Sauro, 2000; Sauro and
Fell, 1991), JDesigner (Sauro, 2001), JigCell (Vass et al., 2003), MCell (Bartol and Stiles, 2002), Net-
Builder (Schilstra and Bolouri, 2002), PathScout (Minch et al., 2003), ProMoT/DIVA (Stelling et al., 2001),
StochSim (Bray et al., 2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al., 2000, 2001).
SBML Level 2 was developed with the help of these packages’ authors, as well as help and collaboration
from the creators of CellML (Hedley et al., 2001) and many other individuals listed in the Acknowledgments
(Section 6.2).

1.1 Scope and Limitations

SBML Level 2 is meant to support basic biochemical network models and the kinds of operations that
are possible in existing analysis/simulation tools. Future software tools will undoubtedly require further
evolution of SBML, and we expect that higher SBML levels will add structures and facilities on top of Level 2
after the simulation community has had time to gain experience with the current language definition. In
Section 6.1, we discuss extensions that will likely be included in SBML Level 3.

The definition of the model description language presented here does not specify how programs should
communicate or read/write SBML. We assume that for a simulation program to communicate a model
encoded in SBML, the program will have to translate its internal data structures to and from SBML, use a
suitable transmission medium and protocol, etc., but these issues are outside of the scope of this document.

1.2 Notational Conventions

We define SBML using a graphical notation based upon UML, the Unified Modeling Language (Eriksson and
Penker, 1998; Oestereich, 1999). This UML-based definition in turn is used to define an XML Schema (Biron
and Malhotra, 2000; Fallside, 2000; Thompson et al., 2000) for SBML. There are three main advantages to
using UML as a basis for defining SBML data structures. First, compared to using other notations or a
programming language, the UML visual representations are generally easier to grasp by readers who are not
computer scientists. Second, the visual notation is implementation-neutral: the defined structures can be
encoded in any concrete implementation language—not just XML, but C, Java and other languages as well.
Third, UML is a de facto industry standard that is documented in many sources. Readers are therefore more
likely to be familiar with it than other notations.

2

http://www.sbml.org/


Our notation and our approach for mapping it to XML Schema is explained in a separate document (Hucka,
2000). Appendix A presents a summary, and examples throughout this document illustrate the approach.
All data types in SBML follow XML Schema datatype definitions and conventions.

We follow certain naming and typographical conventions throughout this document. Specifically, the names
of data structure attributes or fields begin with a lowercase letter, and the names of data structures and
types begin with an uppercase letter. Keywords (names of types, XML elements, etc.) are written in a
typewriter-style font; for example, Compartment is a type name and compartment is a field name. Likewise,
literal XML examples are also written in a typewriter-style font.

2 Overview of SBML

The following is an example of a simple network of biochemical reactions that can be represented in SBML:

S1 k1[S1]/([S1] + k2)−−−−−−−−−−−−−→
S2

S2 k3[S2]−−−→
S3 + S4

Broken down into its constituents, this model contains a number of components: reactant species, product
species, reactions, rate laws, and parameters in the rate laws. To analyze or simulate this network, addi-
tional components must be made explicit, including compartments for the species, and units on the various
quantities. The top level of an SBML model definition simply consists of lists of these components:

beginning of model definition
list of function definitions (optional)
list of unit definitions (optional)
list of compartments (optional)
list of species (optional)
list of parameters (optional)
list of rules (optional)
list of reactions (optional)
list of events (optional)

end of model definition

The meaning of each component is as follows:

Function definition: A named mathematical function that may be used throughout the rest of a model.

Unit definition: A name for a unit used in the expression of quantities in a model.

Compartment : A container of finite size for substances.

Species: A substance or entity that takes part in a reaction. Some example species are ions such as Ca2+

and molecules such as glucose or ATP.

Parameter : A quantity with a symbolic name. SBML Level 2 provides the ability to define parameters
that are global to a model as well as parameters that are local to a single reaction.

Rule: A mathematical expression used in combination with the differential equations constructed based on
the set of reactions in a model; it can be used to establish constraints between variables, define how a
variable can be calculated from other variables, or used to define the rate of change of a variable.

Reaction: A statement describing some transformation, transport or binding process that can change the
amount of one or more species. For example, a reaction may describe how certain entities (reactants) are
transformed into certain other entities (products). Reactions have associated kinetic rate expressions
describing how quickly they take place.

Event : A statement describing an instantaneous, discontinuous change in a set of variables of any type
(species concentration, compartment size or parameter value) when a triggering condition is satisfied.

3



A software package can read an SBML model description and translate it into its own internal format for
model analysis. For example, a package might provide the ability to simulate the model by constructing
differential equations representing the network and then perform numerical time integration on the equations
to explore the model’s dynamic behavior.

SBML allows models of arbitrary complexity to be represented. Each type of component in a model is
described using a specific type of data structure that organizes the relevant information. The data structures
determine how the resulting model is encoded in XML.

In the sections that follow, we describe in detail SBML’s various constructs and their uses. Section 3 first
introduces a few basic structures which are used throughout SBML Level 2, then Section 4 provides details
on each of the main components. Section 5 provides a number of complete examples of models encoded in
XML using SBML Level 2. Section 6 contains a list of anticipated enhancements that will be made in Level 3
and a discussion of other efforts related to SBML. Appendix A summarizes the UML-based notation used in
this document, Appendix B describes the differences between SBML Level 1 Version 2 and SBML Level 2 as
described in this document, and finally, Appendix C provides the complete XML Schema for SBML Level 2.

3 Preliminary Definitions

This section covers certain concepts and constructs that are used repeatedly in the rest of SBML Level 2.

3.1 Type SBase and the SBML Type Inheritance Hierarchy

The base types in SBML (e.g., integer, double, and others) are taken directly from XML Schema (Biron and
Malhotra, 2000; Fallside, 2000; Thompson et al., 2000). SBML defines additional data types and structures
beyond this. Every structure composing an SBML Level 2 model definition has a specific data type that is
derived directly or indirectly from a single abstract type called SBase. This base type is designed to allow
a modeler or a software package to attach arbitrary information to each major structure or list in an SBML
model. The definition of SBase is presented in Figure 1.

SBase

metaid : ID {use="optional"} 
notes : (ANY : {namespace="http://www.w3.org/1999/xhtml"})    {minOccurs="0"} 
annotation : (ANY)   {minOccurs="0"} 

Figure 1: The definition of SBase. Text enclosed in braces next to field types (e.g., {minOccurs="0"}) indicates constraints
on the possible field values. We use the XML Schema language to express constraints because we are primarily interested
in the XML encoding of SBML. The constraint expression use="optional" means that the indicated field is optional and
may be omitted in a particular instance in a model. The constraint expression minOccurs="0" likewise means the indicated
field is optional; this alternate form of expression must be used for those fields that are containers (i.e., fields encoded as
subelements in XML).

SBase contains three fields, all of which are optional: metaid, notes and annotation. These fields are
discussed separately in the following subsections.

3.1.1 The metaid Field

The metaid field is present for supporting metadata annotations using RDF (Resource Description Format;
Lassila and Swick, 1999). It has a data type of ID (the XML identifier type), and serves as anchors for
metadata references. Metadata expressed using RDF can be placed anywhere within an sbml element and
its subelements, except within MathML elements. The metadata elements can include RDF description
elements in which the RDF describes attributes contain the values of the metaid fields of SBML elements
in the model. The form of the RDF element content in SBML should follow the form described in the CellML
Metadata Specification (Cuellar et al., 2002).

4



3.1.2 The notes Field

The field notes in SBase is a container for XHTML content. It is intended to serve as a place for storing
optional information intended to be seen by humans. Typically, the notes field will contain user comments
about the structure in which the notes field is enclosed. Every data object derived directly or indirectly
from type SBase can have a separate value for notes, allowing users considerable freedom when adding
comments to their models. Section 5 provides examples of using notes in different models.

3.1.3 The annotation Field

SBase includes the field called annotation to provide a container for software-generated annotations that
are not intended to be seen by humans. This field is a container for arbitrary data (XML type any). As with
the user-visible notes field, every data object can have its own value for annotation. Section 3.2 provides
guidelines for using this field.

3.1.4 The SBML Type Inheritance Hierarchy

The overall SBML inheritance hierarchy is depicted in Figure 2. In addition to the relationships shown, all
substructures such as trigger on Event and the listOf lists are also derived from SBase. (However,
the notes and annotation elements contained inside SBase are not derived from SBase.)

SBase

Compartment

Unit

Model

Reaction

Species

KineticLaw

Parameter

Rule

UnitDefinition

AlgebraicRule SpeciesReference

ModifierSpeciesReference

FunctionDefinition

SimpleSpeciesReference

Sbml EventAssignment

Event

RateRule

AssignmentRule StoichiometryMath

Figure 2: A UML diagram of the inheritance hierarchy of major data types in SBML. Open arrows indicate inheritance,
pointing from inheritors to their parents (Eriksson and Penker, 1998; Oestereich, 1999). In addition to these types, all
substructures in SBML (including, for example, all the listOf lists) are also derived from SBase. See text for details.

In other type definitions presented below, we follow the UML convention of hiding the attributes derived
from a parent type such as SBase. It should be kept in mind that these attributes are always available.

3.2 Guidelines for the Use of the annotation Field in SBase

The annotation field in the definition of SBase is formally unconstrained in order that software developers
may attach any information they need to the structures in an SBML model. However, it is important that
this facility not be misused. In particular, it is critical that information essential to a model definition is not
stored in annotation. Parameter values, functional dependencies between model structures, etc., should not
be recorded as annotations.

Here are examples of the kinds of data that may be appropriately stored in annotation: (a) information
about the graphical layout of model components; (b) application-specific processing instructions that do not
change the essence of a model; (c) identification information for cross-referencing components in a model
with items in a database.

5



Different applications may use XML Namespaces (Bray et al., 1999) to specify the intended vocabulary
of a particular annotation. Here is an example. Suppose a particular application needs to annotate data
structures in an SBML model definition with screen layout information and a time stamp. The application’s
developers should choose a URI (Universal Resource Identifier ; Harold and Means 2001; W3C 2000a) refer-
ence that uniquely identifies the vocabulary the application will use for such annotations, and a prefix string
for the annotations. For illustration purposes, let us say the URI reference is “http://www.mysim.org/ns”
and the chosen prefix is mysim. An example of an annotation might then be as follows:

...
<annotation xmlns:mysim="http://www.mysim.org/ns">

<mysim:nodecolors mysim:bgcolor="green" mysim:fgcolor="white"/>
<mysim:timestamp>2000-12-18 18:31 PST</mysim:timestamp>

</annotation>
...

The namespace prefix mysim is used to qualify the XML elements mysim:nodecolors and mysim:timestamp;
presumably these symbols have meaning to the application. This example places the XML Namespace
information on annotation itself rather than on a higher-level enclosing construct or the enclosing document
level, but other placements would be valid as well (Bray et al., 1999).

The use of XML Namespaces permits multiple applications to place annotations on XML elements of a model
without risking interference or element name collisions. Annotations stored by different simulation packages
can thus coexist in the same model definition. Although XML Namespace names must be URI references,
an XML Namespace name is not required to be directly usable in the sense of identifying an actual, retrieval
document or resource on the Internet (Bray et al., 1999). “http://www.mysim.org/” is a namespace name
or URI in the example above. The name is simply intended to enable unique identification of constructs, and
using URIs is a common and simple way of creating a unique name string. For the convenience of developers
of simulation and analysis tools, we reserve certain namespace names for use with annotations in SBML.
These reserved names are listed in Table 1.

http://www.sbml.org/2001/ns/basis http://www.sbml.org/2001/ns/jdesigner

http://www.sbml.org/2001/ns/biocharon http://www.sbml.org/2001/ns/jigcell

http://www.sbml.org/2001/ns/bioreactor http://www.sbml.org/2001/ns/jsim

http://www.sbml.org/2001/ns/biosketchpad http://www.sbml.org/2001/ns/libsbml

http://www.sbml.org/2001/ns/biospreadsheet http://www.sbml.org/2001/ns/mathsbml

http://www.sbml.org/2001/ns/biospice http://www.sbml.org/2001/ns/mcell

http://www.sbml.org/2001/ns/celldesigner http://www.sbml.org/2001/ns/monod

http://www.sbml.org/2001/ns/cellerator http://www.sbml.org/2001/ns/netbuilder

http://www.sbml.org/2001/ns/copasi http://www.sbml.org/2001/ns/pathdb

http://www.sbml.org/2001/ns/cytoscape http://www.sbml.org/2001/ns/promot

http://www.sbml.org/2001/ns/dbsolve http://www.sbml.org/2001/ns/sbedit

http://www.sbml.org/2001/ns/ecell http://www.sbml.org/2001/ns/sigpath

http://www.sbml.org/2001/ns/gepasi http://www.sbml.org/2001/ns/stochsim

http://www.sbml.org/2001/ns/isys http://www.sbml.org/2001/ns/vcell

http://www.sbml.org/2001/ns/jarnac http://www.sbml.org/2001/ns/winscamp

Table 1: Reserved XML Namespace names in SBML Level 2.

Note that the namespaces being referred to here are XML Namespaces specifically in the context of the
annotation field on SBase. The namespace issue here is unrelated to the namespaces discussed in Section 3.5
in the context of SId and symbols in SBML.

3.3 The id and name Fields on SBML Components

As will become apparent below, most structures in SBML include two common fields: id and name. The id
field is usually required for most structures and is used to identify a component within the model definition.

6



Other SBML structures can refer to the component using this identifier. Section 3.4 provides a definition of
the data type SId used for the id field, and Section 3.5 describes the scoping and namespace rules for these
identifiers.

The equality of SId values is determined by an exact character sequence match; i.e., comparisons of these
identifiers must be performed in a case-sensitive manner. This applies to all uses of SId including the
identifiers of unit definitions.

In contrast to the id field, the name field is optional and is not intended to be used for cross-referencing
purposes within a model. Its purpose instead is to provide a human-readable label for the component. The
data type of the name field is the type string defined in XML Schema (Biron and Malhotra, 2000; Thompson
et al., 2000). This type includes all Unicode characters (Unicode Consortium, 1996) except for two delimiter
characters, 0xFFFE and 0xFFFF (Biron and Malhotra, 2000). In addition, the following quoting rules
specified by XML for character data (Bray et al., 2000, Section 2.4) must be obeyed:

• The ampersand (&) character must be escaped using the entity &amp;.

• The apostrophe (") and single-quote character (’) must be escaped using the entities &apos; and
&quot;, respectively, when those characters are used to delimit a string attribute value.

Other XML built-in character or entity references, e.g., &lt; and &x1A;, are permitted. SBML imposes no
restrictions as to the content of name fields beyond those restrictions defined by the string type in XML
Schema.

The recommended practice for handling name is as follows. If a software tool has the capability for displaying
the content of name fields, it should display this content to the user as a component’s label instead of the
component’s id field. If the user interface does not have this capability (e.g., because it cannot display or
use special characters in symbol names), or if the name field is missing on a given component, then the user
interface should display the value of the id field instead. (Script language interpreters are especially likely
to display id fields instead of name fields.)

As a consequence of the above, authors of systems that automatically generate the values of id fields should
be aware some systems may display the id’s to the user. Authors therefore may wish to take some care to
have their software create id values that are reasonably easy for humans to type and read.

An additional point worth mentioning is although there are restrictions on the uniqueness of id values (see
Section 3.5 below), there are no restrictions on the uniqueness of name values in a model. This allows a
software package more leeway in assigning component identifiers. For example, a species in an SBML model
must be located in a compartment, which means that if the same species appears in multiple compartments
(e.g., in the context of a transport reaction), they must be given different identifiers. It is currently the case
that users and software differ sharply in philosophy about how to treat this situation: some treat these as
different species, and others treat them as the same species located in different places. Those in the latter
group often want to use the same name but have different id values for the differently-localized “instances” of
the species. The freedom from restrictions on name values enables SBML to accommodate both philosophies.

3.4 Type SId

The type SId is the type of the id field found on the majority of SBML components. SId is a data type
derived from the basic XML type string, but with restrictions about the types of characters permitted and
the sequence in which they may appear. Its definition is shown in Figure 3 on the next page.

The SId is purposefully not derived from the XML ID type. Using XML’s ID would force all SBML identifiers
to exist in a single global namespace, which would affect not only the form of local parameter definitions
but also future extensions for supporting model/submodel composition. Further, the use of the ID type for
SBML identifiers would have limited utility because MathML ci elements are not of the type IDREF (see
Section 3.6). Since the IDREF-ID linkage cannot be exploited in MathML constructs, the utility of the XML
ID type is greatly reduced.

7



letter ::= ’a’..’z’,’A’..’Z’
digit ::= ’0’..’9’
nameChar ::= letter | digit | ’_’
name ::= ( letter | ’_’ ) nameChar*

Figure 3: The definition of the type SId expressed in the variant of BNF used by the XML 1.0 specification (Bray et al.,
2000). The characters ( and ) are used for grouping, and the character * indicates “zero or more times”.

3.5 Component Identifiers and Namespaces in SBML

A biochemical network model can contain a large number of components representing different parts of a
model. This leads to a problem in deciding the scope of an identifer: in what contexts does a given identifier
X represent the same thing? The approaches used in existing simulation packages tend to fall into two
categories which we may call global and local. The global approach places all identifiers into a single global
namespace, so that an identifier X represents the same thing wherever it appears in a given model definition.
The local approach places symbols in different namespaces depending on the context, where the context may
be, for example, individual reaction rate expressions. The latter approach means that a user may use the
same identifer X in different rate expressions and have each instance represent a different quantity.

The fact that different simulation programs may use different rules for identifier resolution poses a problem
for the exchange of models between simulation tools. Without careful consideration, a model written out in
SBML format by one program may be misinterpreted by another program. SBML Level 2 must therefore
include a specific set of rules for treating identifers and namespaces.

The namespace rules in SBML Level 2 are relatively straightforward and are intended to avoid this problem
with a minimum of requirements on the implementation of software tools:

• The identifiers (i.e., the values of the field id) of functions, compartments, species, reactions, events
and model-level parameters reside in the same global namespace. This means, for example, that a
reaction and a species definition cannot both have the same identifier.

• Each reaction definition (see Section 4.9) establishes a private local namespace for local parameter
identifiers. Within the definition of a given reaction, local parameter identifiers introduced in that
reaction override (shadow) identical identifers in the global namespace.

• Unit identifiers (the values of the field id in the UnitDefinition structure) exist in a separate global
namespace distinct from other identifiers.

The set of rules above can enable software packages using either local or global namespaces for parameters
to exchange SBML model definitions. In particular, software environments using local namespaces for pa-
rameters internally should be able to accept SBML model definitions without needing to change component
identifiers. Environments using a global namespace for parameters internally can perform a simple manipu-
lation of the identifiers of local parameter elements within reaction definitions to avoid name collisions. (An
example approach for the latter would be the following: when receiving an SBML-encoded model, prefix
each parameter identifier inside each reaction with a string constructed from the reaction’s identifier; when
writing an SBML-encoded model, strip off the prefix.)

The namespace rules described here will hopefully provide a clean transition path to future levels of SBML,
when submodels are introduced (Section 6.1). Submodels will provide the ability to compose one model
from a collection of other models. This capability will have to be built on top of SBML Level 2’s namespace
organization. A straightforward approach to handling namespaces is to make each submodel’s space be
private. The rules governing namespaces within a submodel can simply be the Level 2 namespace rule
described here, with each submodel having its own (to itself, global) namespace.

8



3.6 Mathematical Formulas in SBML Level 2

Mathematical expressions in SBML Level 2 are represented using MathML 2.0 (W3C, 2000b), the XML
standard for describing mathematics in machine-readable format. It is used in the definitions of functions
(Section 4.3), rules (Section 4.8), reaction kinetics (Section 4.9.7), stoichiometries (Section 4.9.5) and events
(Section 4.10). The KineticLaw, StoichiometryMath, EventAssignment and Rule structures each have a
single MathML math subelement. A function definition has a single lambda subelement. The Event structure
has two math fields, trigger and delay each containing a single MathML math element.

The XML namespace URI for all MathML elements is “http://www.w3.org/1998/Math/MathML”. [See the
W3C document by Bray et al. (1999) for more information about using XML namespaces.] The examples
in Section 5 illustrate the use of this namespace and MathML in SBML.

3.6.1 Subset of MathML Used in SBML Level 2

The subset of MathML elements used in SBML Level 2 is similar to that used by CellML and is itemized
below:

• token: cn, ci, csymbol, sep

• basic content : apply, piecewise, piece, otherwise

• relational operators: eq, neq, gt, lt, geq, leq

• arithmetic operators: plus, minus, times, divide, power, root, abs, exp, ln, log, floor, ceiling,
factorial

• logical operators: and, or, xor, not

• qualifiers: degree, bvar, logbase

• trigonometric operators: sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin,
arccos, arctan, arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth

• constants: true, false, notanumber, pi, infinity, exponentiale

• annotation: semantics, annotation, annotation-xml

The inclusion of logical operators, relational operators, piecewise, piece, and otherwise elements facilitates
the encoding of discontinuous expressions. Elements for representing partial differential calculus are not
included. We anticipate that the requirements for partial differential calculus will be addressed in proposals
for SBML Level 3 geometry representations (see Section 6.1).

The following are the only attributes permitted on MathML elements in SBML:

• style, class and id on any element;

• encoding and definitionURL on csymbol elements; and

• type on cn elements.

Missing values for these attributes are to be treated in the same way as defined by MathML. These restrictions
on attributes are designed to confine the MathML elements to their default semantics and to avoid conflicts
in the interpretation of the type of token elements.

3.6.2 Use of cn Elements in MathML Expressions in SBML

The following are the only permissible values for the type attribute on MathML cn elements: “e-notation”,
“real”, “integer”, and “rational”. The value of the type attribute defaults to “real”.

9



3.6.3 Use of ci Elements in MathML Expressions in SBML

The content of a ci element must obey MathML whitespace rules and contain an identifier that is declared
elsewhere in the model. The set of possible identifiers that can appear in a ci element depends on the
containing structure in which the ci is used:

• If ci appears in the body of a function definition, the referenced identifier must be either (i) one of
the declared arguments to the function, or (ii) the identifier of a previously defined function.

• In all other situations, the referenced identifier must be the identifier of a species, compartment,
parameter or function declared in the model. The following are the only possible interpretations of
using such an identifier in SBML:

– Species identifier : When a species identifier occurs in a ci element, it represents the quantity
(amount of substance or concentration) of that species. The units associated with a species
identifier are the units of the species, defined in Section 4.6.4.

– Compartment identifier : When a compartment identifier occurs in a ci element, it represents the
size of the compartment. The units associated with the size of the compartment are those given
on the Compartment structure that declares the identifier; see Section 4.5.4.

– Parameter identifier : When a parameter identifier occurs in a ci element, it represents the value
assigned to that parameter. The units associated with the parameter value are the units assigned
in its instance of a Parameter structure; see Section 4.7.3.

– Function identifier : When a function identifier occurs in a ci element, it represents a call to that
function. Function references in MathML occur in the context of using MathML’s apply and
often involve supplying arguments to the function; see Section 4.3.

3.6.4 Use of csymbol Elements in MathML Expressions in SBML

SBML Level 2 uses the MathML csymbol element to denote certain built-in mathematical entities without
introducing reserved names into the component identifier namespace. The encoding field of csymbol should
be set to text. The definitionURL should be set to one of the following predefined SBML symbol URLs:

• http://www.sbml.org/sbml/symbols/time. This represents the current simulation time. The units
of the current time entity are determined from the built-in time of Table 3 on page 15.

• http://www.sbml.org/sbml/symbols/delay. This represents a delay function. The delay function
has the form delay(x, d), taking two arguments. Its value is the value of argument x at d time units
before the current time. The units of the d parameter are determined from the built-in time. The
delay function is useful for representing biological processes having a delayed response, but where the
detail of the processes and delay mechanism is not relevant to the operation of a given model.

The following examples demonstrate these concepts. The XML fragment below encodes the formula x + t,
where t is the built-in symbol for time.

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<plus/>
<ci> x </ci>
<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time">

t
</csymbol>

</apply>
</math>

As a further example, the following XML fragment encodes the equation k + delay(x, 0.1) or alternatively
kt + xt−0.1:

10



<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<plus/>
<ci> k </ci>
<apply>

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/delay">
delay

</csymbol>
<ci> x </ci>
<cn> 0.1 </cn>

</apply>
</apply>

</math>

Note that it is not necessary for a parser to access the resource pointed to by the “definitionURL:” in this
context, the URL should be interpreted as a URI. Also, the content of the csymbol element is for rendering
purposes only and can be ignored by the parser.

4 SBML Components

In this section, we define each of the major data structures in SBML. To provide illustrations of their use,
we give partial model definitions in XML. Section 5 provides many full examples of SBML in XML.

4.1 The SBML Container

The outermost portion of an SBML Level 2 model definition consists of a single Sbml structure enclosing a
single Model structure (see next Section). The definition of Sbml is shown in Figure 4.

Sbml

level : positiveInteger { use="required" fixed = "2"} 
version : positiveInteger { use="required" fixed = "1"}

Figure 4: The definition of Sbml for SBML Level 2 Version 1. Following UML notation, additional fields that are inherited
from a base class, in this case SBase, are not shown.

The XML namespace URI for SBML Level 2 is “http://www.sbml.org/sbml/level2”. All SBML Level 2
elements should be encoded using this URI by assigning this URI to either the default namespace or a
tag prefix. The character encoding for SBML is UTF-8. SBML documents should include the encoding
attribute with the value UTF-8 in the XML prologue.

In the transformation of UML to XML used in this document, the Sbml structure is turned into an element
named sbml. The element has two required attributes: level and version. For SBML Level 2 Version 1,
these attributes must be set to “2” and “1”, respectively. (The version attribute is present in case SBML
Level 2 must be revised in the future to correct errors.)

The following is an abbreviated example of the outermost content of an SBML model definition in XML:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

...
</sbml>

4.2 Models

The Model structure is the highest-level construct in an SBML data stream or document. Its definition is
shown in Figure 5 on the next page. Only one component of type Model is allowed per instance of an SBML
document or data stream, although it does not necessarily need to represent a single biological entity.

11



id : SId {use="optional"} 
name : string {use="optional"} 
functionDefinition : FunctionDefinition[0..*] 
unitDefinition : UnitDefinition[0..*] 
compartment : Compartment[0..*] 
species : Species[0..*] 
parameter : Parameter[0..*] 
rule : Rule[0..*] 
reaction : Reaction[0..*] 
event : Event[0..*]

Model

Figure 5: The definition of Model. Following UML notation, additional fields that are inherited from a base class, in this
case SBase, are not shown.

Model serves as a container for FunctionDefinition, UnitDefinition, Compartment, Species, Parameter,
Rule, Reaction and Event components. All of these components are optional; that is, the lists in each of the
respective fields are permitted to have zero length. (However, there are dependencies between components,
such that defining some requires defining others. For example, as explained in other sections below, defining
a species requires defining a compartment, and defining a reaction requires defining a species.)

The Model structure has an optional field, id, used to give the model an identifier. The identifier must be a
text string conforming to the syntax permitted by the SId data type described in Section 3.4. Model also has
an optional name field, of type string. The name and id fields should be used as described in Section 3.3.

In the XML encoding of an SBML model, the lists of species, compartments, unit definitions, parameters,
reactions, function definitions, rules and events are translated into lists of XML elements enclosed within
elements of the form listOf s, where the blank is replaced by the name of the component type (e.g.,
“Reaction”). The resulting XML data object has the form illustrated by the following skeletal model:

<model id="My_Model">
<listOfFunctionDefinitions>

...
</listOfFunctionDefintions>
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartments>

...
</listOfCompartments>
<listOfSpecies>

...
</listOfSpecies>
<listOfParameters>

...
</listOfParameters>
<listOfRules>

...
</listOfRules>
<listOfReactions>

...
</listOfReactions>
<listOfEvents>

...
</listOfEvents>

</model>

Readers may wonder about the motivations for the listOf s notation. A simpler approach to creating
the lists of components would be to place them all directly at the top level under <model> ... </model>.
We chose instead to group them within XML elements named after listOf s, because we believe this
helps organize the components and makes visual reading of model definitions easier. These listOf s
elements are derived from SBase which enables each list to contain its own metaid, notes and annotation
fields. Further details of how listOf s elements implement UML lists is described in Appendix A.

12



4.3 Function Definitions

The FunctionDefinition structure associates an identifier with a function definition. The identifier can
then be used in any subsequent MathML apply elements. FunctionDefinition is shown in Figure 6.

id : SId 
name : string {use="optional"} 
math : (lambda:Lambda)    {namespace="http://www.w3.org/1998/Math/MathML" } 

FunctionDefinition

Figure 6: The definition of FunctionDefinition. Following UML notation, additional fields that are inherited from a
base class, in this case SBase, are not shown.

The FunctionDefinition structure has three fields: id, name and math. Their purposes are explained in
the following subsections.

4.3.1 The id and name Fields

The id and name fields have types SId and string, respectively, and operate in the manner described in
Section 3.3. MathML ci elements can refer to the function defined by a FunctionDefinition using the
value of its id field.

4.3.2 The math Field

The math field is a container for MathML content that defines the function. The content of this field
can only be a MathML lambda element. This is the only place in SBML where a lambda element can be
used. The function is only available for use in other MathML elements that follow the FunctionDefinition
structure in an SBML model. (These restrictions prevent recursive and mutually-recursive functions from
being expressed.) The lambda element can contain any of the elements in the MathML subset listed in
Section 3.6.1 but not any further lamdba elements.

The following abbreviated SBML example shows a FunctionDefinition structure defining pow3(x) as
representing x3:

<model>
...
<functionDefinition id="pow3">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>

<bvar><ci> x </ci></bvar>
<apply>

<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</math>
</functionDefinition>
...

</model>

4.4 Unit Definitions

Units may be supplied in a number of contexts in an SBML model. The units of the following mathematical
entities can be specified explicitly: constants, initial conditions, symbols in formulae and the results of
formulae. Rather than having to give a complete unit definition on every structure, SBML provides a
facility for defining identified units which can be reused throughout a model. In addition, by default, SBML
mathematical entities have units composed from built-in units in a consistent fashion (see Sections 4.4.3,

13



4.5.4, 4.6.4 and 4.9.7). By redefining the built-in units it is possible to change the units used throughout a
model in a simple and consistent manner.

The SBML UnitDefinition and Unit structures enable combinations of units to be given abbreviated
names, and enable built-in units to be redefined. The definitions of UnitDefinition and Unit are shown in
Figure 7.

kind : UnitKind 
exponent : integer    {use="optional" default="1"} 
scale : integer    {use="optional" default="0"} 
multiplier : double {use=optional default="1"} 
offset : double {use=optional default="0"} 

UnitDefinition Unit

id : SId 
name : string  { use="optional" } 
unit : Unit[1..*]

Figure 7: The definition of UnitDefinition and Unit. Following UML notation, additional fields that are inherited from
a base class, in this case SBase, are not shown.

4.4.1 The UnitDefinition Structure

An instance of a UnitDefinition consists of an id field of type SId, an optional string field name and a list
of structures of type Unit. As mentioned in Section 3.5, unit identifiers defined by the id field are considered
to be in a separate global namespace distinct from the namespace of other identifiers in a model; thus, unit
identifiers cannot collide with the identifiers of species, compartments, reactions, etc.

The approach to defining units in SBML is compositional; for example, meter second−2 is constructed by
combining, within the same UnitDefinition Unit list, a Unit structure representing meter with a Unit
structure representing second−2. The Unit structure is described in the next subsection.

4.4.2 The Unit Structure

The Unit data structure has one required field, kind, whose value must be taken from UnitKind, an enu-
meration of base units. The possible values of UnitKind are given in Table 2.

ampere farad joule lux radian volt
becquerel gram katal metre second watt
candela gray kelvin mole siemens weber
Celsius henry kilogram newton sievert
coulomb hertz litre ohm steradian
dimensionless item lumen pascal tesla

Table 2: The possible values of kind in a UnitKind structure. All are names of base or derived SI units (Bureau
International des Poids et Mesures, 2000), except for “dimensionless” and “item”, which are SBML additions important
for handling certain common situations. “Dimensionless” is intended for cases where a quantity does not have units, and
“item” for expressing such things as “N items” (e.g., “100 molecules”). Also, note that the gram and litre are not strictly
part of SI; however, they are so commonly used in SBML’s areas of application that they are included as predefined unit
names. (The standard SI unit of mass is in fact the kilogram, and volume is defined in terms of cubic meters.)

Note that the set of acceptable values for the field kind does not include units defined by UnitDefinition
structures. This means that the units definition feature in SBML is not hierarchial—user-defined units
cannot be built on top of other user-defined units, only on top of base units. (SBML differs from CellML in
this respect; CellML allows the construction of hierarchial unit definitions.)

A Unit structure represents a (possibly transformed) reference to a base unit chosen from UnitKind. The
formula for a single transformation represented by a Unit structure is as follows (where u is the original base
unit and unew is the new unit):

unew = (multiplier× 10scale × uexponent) + offset

14



The optional exponent field on Unit represents an exponent on the unit. Its default value is “1” (one). For
the example mentioned at the beginning of this section, second−2 would be obtained by using kind="second"
and exponent="-2". A Unit structure also has an optional scale field; its value must be an integer exponent
for a power of ten multiplier used to set the scale of the unit. For example, a unit having a kind value of
“gram” and a scale value of “-3” signifies 10−3 ∗ gram, or milligrams. The default value of scale is “0”
(zero), because 100 = 1.

The optional multiplier field can be used to multiply the kind unit by a real-numbered factor; this enables
the definition of units that are not power-of-ten multiples of SI units. For instance, a multiplier of 0.3048
could be used to define “foot” as a measure of length in terms of a metre. The multiplier field has a
default value of “1” (one). Finally, the offset field is used to represent the addition of a constant in
the transformation of the kind unit. For example, an offset value of “32.0” would be needed to define
Fahrenheit in terms of degrees Celsius. The offset field has a default value of “0” (zero).

The composition of n Unit structures within a UnitDefinition to create more complex units involves a
linear product according to the following formula:

unew = m1 × . . .×mn × 10s1 × . . .× 10sn × ue1 × . . .× uen

The following example illustrates the definition of an abbreviation named “mmls” for the units mmol l−1 s−1:

<listOfUnitDefinitions>
<unitDefinition id="mmls">

<listOfUnits>
<unit kind="mole" scale="-3"/>
<unit kind="litre" exponent="-1"/>
<unit kind="second" exponent="-1"/>

</listOfUnits>
</unitDefinition>

</listOfUnitDefinitions>

The following example defines Fahrenheit:

<unitDefinition id="Fahrenheit">
<listOfUnits>

<unit kind="Celsius" multiplier="1.8" offset="32"/>
</listOfUnits>

</unitDefinition>

4.4.3 Built-in Units

There are five special unit names in SBML, listed in Table 3, corresponding to the five types of quantities
or built-in units that play roles in biochemical reactions: amount of substance, volume, area, length and
time. All SBML mathematical entities apart from parameters have default units. These default units are
composed from the set of built-in units. Further SBML defines defaults for the built-in units, listed in the
third column of Table 3, all with default scale and offset values of zero and a default multiplier value
of one.

Name Possible Scalable Units Default Units

substance mole, item mole
volume litre, cubic metre litre
area square metre square metre
length metre metre
time second second

Table 3: SBML’s built-in units.

A field that defines the units for a mathematical entity (e.g., the field units on Parameter) can refer to a
named unit chosen from among the following:

15



• The predefined units from Table 2 on page 14,

• New units defined in unit definitions, and

• The five predefined units “substance”, “volume”, “area”, “length”, and “time” from Table 3.

Within certain limits, a model may change the built-in units by reassigning the keywords “substance”,
“length”, “area”, “time”, and “volume” in a UnitDefinition. The second column in Table 3 lists the set
of units that should be used in redefining a given built-in unit.

The following example illustrates how to change the built-in units of volume to be milliliters. If this definition
appeared in a model, the units of volume on all components that did not explicitly specify different units
would be changed to milliliters.

<model>
...
<listOfUnitDefinitions>

<unitDefinition id="volume">
<listOfUnits>

<unit kind="liters" scale="-3"/>
</listOfUnits>

</unitDefinition>
</listOfUnitDefinitions>
...

</model>

Software developers are asked to pay special attention to the units used in an SBML model. Different
users and developers sometimes make different assumptions about units, and these assumptions may not
correspond to what is defined in SBML. Sections 3.6.3, 4.6.4 and 4.9.7 have particularly important notes
about the usage of units in SBML.

4.5 Compartments

A compartment in SBML represents a bounded space in which species are located. Compartments do not
necessarily have to correspond to actual structures inside or outside of a cell, although models are often
designed that way. The definition of Compartment is shown in Figure 8.

id : SId 
name : string {use="optional"} 
spatialDimensions : integer { maxInclusive="3" minInclusive="0" use="optional" default="3"} 
size : double   {use="optional"} 
units : SId   {use="optional"} 
outside : SId   {use="optional"} 
constant : boolean {use="optional" default="true"} 

Compartment

Figure 8: The definition of Compartment. Following UML notation, additional fields that are inherited from a base class,
in this case SBase, are not shown.

It is worth pointing out that, although compartments are optional in the overall definition of Model (see
Section 4.2), every species in an SBML model must be located in a compartment. This in turn means that
if a model declares any species, the model must also declare at least one compartment.

4.5.1 The id and name Fields

Compartment has one required field, id, of type SId, to give the compartment a unique identifier by which
other parts of an SBML model definition can refer to it. A compartment can also have an optional name field
of type string. Identifiers and names should be used according to the guidelines described in Section 3.3.

16



4.5.2 The spatialDimensions Field

A Compartment structure has an optional field spatialDimensions, whose value must be a positive inte-
ger indicating the number of spatial dimensions possessed by the compartment. The maximum value of
spatialDimensions is “3”, meaning a three-dimensional structure (a volume). Other permissible values are
“2” (for a two-dimensional area), “1” (for a one-dimensional curve), and “0” (for a point). The default value
is “3”.

4.5.3 The size Field

Each compartment has an optional floating-point field named size, representing the total size of the com-
partment. The size field enables concentrations of species to be calculated in the absence of geometry
information. Note in particular that in SBML Level 2, a missing size value does not imply that the com-
partment size is 1. (This is unlike the definition of compartment volume in SBML Level 1.) The size field
must not be present if the spatialDimensions field is has a value of “0”. When the spatialDimensions
field does not have a value of “0”, a missing value for size for a given compartment signifies that the value is
either unknown, is determined by an assignment rule, not required for analysis or available from an external
data source.

4.5.4 The units Field

The units associated with the compartment’s size value may be explicitly set using the optional field units.
The value chosen for this field must be either one of the base units from Table 2 on page 14, or the built-in
units “volume”, “area”, “length” or “dimensionless”, or a new unit defined by a unit definition in the
enclosing model. The type of units assigned to the units field must also agree with the number of spatial
dimensions of the compartment; that is, they must be units of volume if the value of spatialDimensions is
“3”; they must be units of area if the value of spatialDimensions is “2”; they must be units of length if the
value of spatialDimensions is “1”; and they must be “dimensionless” if the value of spatialDimensions
is “0”. The default units depends on the value of the compartment’s spatialDimensions field according to
the following rule: for spatial dimensions of 3, 2, 1 or 0, the compartment has the default units of volume,
area, length and dimensionless, respectively. (See Table 3 on page 15 and Table 2 on page 14.)

The units of the compartment size, as defined by the units field, are used in the following ways:

• The value of the units field is used as the units of the size field of the compartment structure (see
Section 4.5.3).

• The value of the units field is used as the units of the compartment identifier when it appears as a
numerical quantity in a mathematical formula expressed in MathML (discussed in Section 3.6.3).

• The value of the units field is used as the units of the math field of an AssignmentRule structure
determining the compartment’s size (see Section 4.8.2).

• In a RateRule structure that sets the rate of change of the compartment’s size (Section 4.8.3), the
units on the rule’s math field are those in the compartment’s units field divided by the default time
units. (In other words, the units for the rate of change of compartment size are compartment size/time
units.)

4.5.5 The constant Field

A Compartment also has an optional boolean field called constant that indicates whether the compartment’s
size stays constant or can vary during a simulation. A value of “false” indicates the compartment’s size can
be determined by rules (see Section 4.8), and the value of the size field should be taken as being the initial
size of the compartment. The default value for the constant field is “true” because in the most common
modeling scenarios at the time of this writing, compartment sizes remain constant. The constant field must
default to or be set to “true” if the spatialDimensions field is 0.

17



4.5.6 The outside Field

The optional field outside of type SId can be used to express containment relationships between compart-
ments. If present, the value of outside for a given compartment must be the name of another compartment
enclosing it, or in other words, the compartment that is “outside” of it. This enables the representation of
simple topological relationships between compartments, for those simulation systems that can make use of
the information (e.g., for drawing simple diagrams of compartments).

Although containment relationships are partly taken into account by the compartmental localization of
reactants and products, it is not always possible to determine purely from the reaction equations whether
one compartment is meant to be located within another. In the absence of a value for outside, compartment
definitions in SBML Level 2 do not have any implied spatial relationships between each other. For many
modeling applications, the transfer of substances described by the reactions in a model sufficiently express
the relationships between the compartments. (As discussed in Section 6.1, we expect that SBML Level 3
will introduce the ability to define geometries and spatial qualities.)

4.5.7 Examples

The following example illustrates two compartments in an abbreviated SBML example of a model definition:

<model>
...
<listOfCompartments>

<compartment id="cytosol" size="2.5"/>
<compartment id="mitochondria" size="0.3"/>

</listOfCompartments>
...

</model>

The following is an example of using outside to model a cell membrane. To express that a compartment
named B has a membrane that is modeled as another compartment M, which in turn is located within
another compartment A, one would write:

<model>
...
<listOfCompartments>

<compartment id="A"/>
<compartment id="M" spatialDimensions="2" outside="A"/>
<compartment id="B" outside="M"/>

</listOfCompartments>
...

</model>

4.6 Species

The term species refers to chemical entities that take part in reactions. These include simple ions (e.g.,
protons, calcium), simple molecules (e.g., glucose, ATP), large molecules (e.g., RNA, polysaccharides, and
proteins), and others. The Species data structure is intended to represent these entities. Its definition is
shown in Figure 9 on the following page.

4.6.1 The id and name Fields

As with other major structures in SBML, Species has a mandatory field, id, used to give the species an
identifier. The identifier must be a text string conforming to the syntax permitted by the SId data type
described in Section 3.4. Species also has an optional name field, of type string. The name and id fields
should be used as described in Section 3.3.

18



id : SId 
name : string   {use="optional"} 
compartment : SId 
initialAmount : double  {use="optional"} 
initialConcentration: double  {use="optional"} 
substanceUnits : SId   {use="optional"} 
spatialSizeUnits : Sid {use="optional"} 
hasOnlySubstanceUnits : boolean { use="optional" default="false"} 
boundaryCondition : boolean   {use="optional" default="false"} 
charge : integer   {use="optional"} 
constant : boolean   {use="optional" default="false"}

Species

Figure 9: The definition of Species. Following UML notation, additional fields that are inherited from a base class, in
this case SBase, are not shown.

4.6.2 The compartment Field

The required field compartment, also of type SId, is used to identify the compartment in which the species
is located. The field’s value must be the identifier of an existing Compartment structure. It is important to
note that there is no default value for the compartment field on Species; every species in an SBML model
must be assigned a compartment, and consequently, a model must define at least one compartment if that
model contains any species.

4.6.3 The initialAmount and initialConcentration Fields

The optional fields initialAmount and initialConcentration, both having a data type of double, are
used to set the initial quantity of the species in the named compartment. These fields are mutually exclusive;
i.e., only one can have a value on any given instance of a Species structure. Also, initialConcentration
must not have a value if the species’ compartment has a spatialDimensions value of “0” or if the value of
the species’ hasOnlySubstanceUnits field is “true”. Missing initialAmount or initialConcentration
values implies that their values are either unknown, set by an assignment rule, not required for analysis or
available from an external data source.

The units of the value in the initialAmount field is that given by the substanceUnits field of the species
structure. The units of the value in the initialConcentration field are the units of the species as described
in the next subsection.

4.6.4 The substanceUnits, spatialSizeUnits and hasOnlySubstanceUnits Fields

The units associated with a species’ quantity, referred to as the units of the species, are determined via the
optional fields substanceUnits, spatialSizeUnits and hasOnlySubstanceUnits.

hasOnlySubstanceUnits is a boolean field which defaults to “false”. The units of the species are of
the form substance/size units (i.e., concentration units, using a broad definition of concentration) if the
compartment’s spatialDimensions is non-zero and hasOnlySubstanceUnits has the value “false”. The
units of the species are of the form substance if spatialDimensions is zero or hasOnlySubstanceUnits has
the value “true”. The units of substance are those defined in the substanceUnits, and the size units are
those given in the spatialSizeUnits field.

For both substanceUnits and spatialSizeUnits, the value chosen must be either a base unit from Table 2
on page 14, a built-in unit from Table 3 on page 15, or a new unit defined by a unit definition in the enclosing
model. The chosen units for substanceUnits must be a variant of mole or item units. The substanceUnits
field defaults to the the built-in unit “substance” shown in Table 3 on page 15.

The type of units assigned to the spatialSizeUnits field must agree with the number of spatial dimen-
sions of the species’ compartment. Specifically, they must be units of volume if the value of the com-

19



partment’s spatialDimensions is “3”; they must be units of area if the value of spatialDimensions is
“2”; and they must be units of length if the value of spatialDimensions is “1”. The spatialSizeUnits
must not have a value if spatialDimensions on the compartment has a value of “0”, or if the species’
hasOnlySubstanceUnits field has a value of “true”. The default value of the spatialSizeUnits is the
value of the units field of the species’ compartment.

The units of the species are used in the following ways:

• The species initialConcentration field has these units (see Section 4.6.3).

• The species identifier has these units when it appears as a numerical quantity in a mathematical formula
expressed in MathML (discussed in Section 3.6.3).

• The math field of an AssignmentRule structure determining the species’ quantity (see Section 4.8.2)
has these units.

• In RateRule structures that set the rate of change of the species’ quantity (Section 4.8.3), the units
on the rule’s math field are the units of the species divided by the built-in time units.

4.6.5 The constant and boundaryCondition Fields

The Species structure has an optional boolean field named constant used to indicate whether the con-
centration of that species can vary during a simulation. The default value is “false”, indicating that the
species’ concentration can be determined by reactions and rules.

Another optional field defined for Species is boundaryCondition. By default, when a species is a product
or reactant of one or more reactions, its concentration is determined by those reactions. In SBML, it is
possible to indicate that a given species’ concentration is not determined by the set of reactions even when
that species occurs as a product or reactant; i.e., the species is on the boundary of the reaction system but
is a component of the rest of the model. The boolean field boundaryCondition can be used to indicate
this. The value of the field defaults to “false”, indicating the species is part of the reaction system.
Table 4 shows how to interpret the combined values of the boundaryCondition and constant fields. In
practice, a boundaryCondition value of “true” means a differential equation derived from the reaction
definitions should not be generated for the species. The example model in section 5.5 contains all four
possible combinations of the boundaryCondition and constant fields on species elements. Section 5.6
contains a translation into ODEs of a model which uses boundaryCondition and constant fields.

constant boundaryCondition can have can be concentration
value value assignment reactant or is changed by

or rate rule product

true true no yes never changes
false true yes yes rule
true false no no never changes
false false yes yes reactions or rule but not both

Table 4: How to interpret the values of the constant and boundaryCondition fields of the Species structure.

4.6.6 The charge Field

The optional field charge takes an integer indicating the charge on the species (in terms of electrons, not
the SI unit coulombs). This may be useful when the species is a charged ion such as calcium (Ca2+).

4.6.7 Example

The following example shows two species definitions within an abbreviated SBML model definition. The
example shows that species are listed under the heading listOfSpecies in the model:

20



<model>
...
<listOfSpecies>

<species id="Glucose" compartment="cell" initialConcentration="4"/>
<species id="Glucose_6_P" compartment="cell" initialConcentration="0.75"/>

</listOfSpecies>
...

</model>

4.7 Parameters

A Parameter structure is used to declare a variable for use in mathematical formulae in an SBML model
definition. By default, parameters have constant value for the duration of a simulation and for this reason
are called “parameters” instead of variables in SBML. The definition of Parameter is shown in Figure 10.

id : SId 
name : string  {use="optional"} 
value : double {use="optional"} 
units : SId  {use="optional"} 
constant : boolean {use="optional" default="true"}

Parameter

Figure 10: The definition of Parameter. Following UML notation, additional fields that are inherited from a base class,
in this case SBase, are not shown.

4.7.1 The id and name Fields

Parameter has one required field, id, of type SId, to give the parameter a unique identifier by which other
parts of an SBML model definition can refer to it. A parameter can also have an optional name field of type
string. Identifiers and names should be used according to the guidelines described in Section 3.3.

4.7.2 The value Field

The optional field value determines the value (of type double) assigned to the identifer. A missing value
implies that the value is either unknown, determined by an assignment rule, not required for analysis or
available from an external data source. If the parameter is not constant then the value field contains the
initial value.

4.7.3 The units Field

The units associated with the value of the parameter are specified by the field units. These units are used
when the parameter identifier appears in MathML expressions and in AssignmentRule structures setting
the value of the parameter. A RateRule structure that may determine the value of the parameter has units
parameter units/time, where parameter units are the units assigned to the parameter and time is the built-in
time units. The value assigned to the parameter’s units field must be chosen from one of the following
possibilities: one of the base unit names from Table 2 on page 14; one of the built-in unit names appearing
in first column of Table 3 on page 15; or the name of a new unit defined in the list of unit definitions in the
enclosing Model structure. There are no constraints on which units can be chosen from these sets. There
are no default units for parameters.

4.7.4 The constant Field

The Parameter structure has an optional boolean field named constant which indicates whether the param-
eter’s value can vary during a simulation. The field’s default value is “true”; a value of “false” indicates
the parameter’s value can be changed by rules (see Section 4.8) and the value is actually intended to be the
initial value of the parameter.

21



4.7.5 Local and Global Parameters

Parameters can be defined in two places in SBML: in lists of parameters defined at the top level in a Model
structure and within individual reaction definitions (as described in Section 4.9). Parameters defined at
the top level are global to the whole model; parameters that are defined within a reaction are local to the
particular reaction and (within that reaction) override any global parameters having the same names (See
Section 3.5 for further details). Parameters local to a reaction cannot be changed by rules and therefore
are implicitly always constant; thus, parameter definitions within Reaction structures should not have their
constant field set.

4.7.6 Example

The following is an example of parameters defined at the Model level:

<model>
...
<listOfParameters>

<parameter id="tau1" value="2.3" units="second"/>
<parameter id="Km1" value="10.7" units="moleperliter"/>

</listOfParameters>
...

</model>

4.8 Rules

Rules provide a way to create constraints on variables for cases in which the constraints cannot be expressed
using reactions (Section 4.9) nor the assignment of an initial value to a component in a model. There are two
orthogonal dimensions by which rules can be described. First, there are three different possible functional
forms, corresponding to the following three general cases (where x is a variable, f is some arbitrary function,
V is a vector of variables that does not include x, and W is a vector of variables that may include x):

Algebraic left-hand side is zero: 0 = f(W )
Assignment left-hand side is a scalar: x = f(V )

Rate left-hand side is a rate-of-change: dx/dt = f(W )

The second dimension concerns the role of variable x in the equations above: x can be the identifier of a
compartment (to set its size), a species (to set its concentration), or a parameter (to set its value).

In their general form given above, there is little to distinguish between assignment and algebraic rules. They
are treated as separate cases for the following reasons:

• Assignment rules can simply be evaluated to calculate intermediate values for use in numerical methods;

• Some simulators do not contain numerical solvers capable of solving unconstrained algebraic equations;

• Those simulators that can solve these algebraic equations make a distinction between the different
categories listed above; and

• Some specialized numerical analyses of models may only be applicable to models that do not contain
algebraic rules.

The approach taken to covering these cases in SBML is to define an abstract Rule structure containing only
one field, math, to hold the right-hand side expression, then to derive subtypes of Rule that add fields to
distinguish the cases of algebraic, assignment and rate rules. Figure 11 on the next page gives the defini-
tions of Rule and the subtypes derived from it. The figure shows there are three subtypes, AlgebraicRule,
AssignmentRule and RateRule derived directly from Rule. These correspond to the cases Algebraic, As-
signment and Rate described above respectively.

22



Rule

math : Math {namespace="http://www.w3.org/1998/Math/MathML" } 

AlgebraicRule

variable : SId

AssignmentRule

variable : SId

RateRule

Figure 11: The definition of Rule and derived types. Following UML notation fields that are inherited from a base class
are not shown.

4.8.1 AlgebraicRule

The rule type AlgebraicRule is used to express equations that are neither assignments of model variables
nor rates of change. AlgebraicRule does not add any fields to the basic Rule; its role is simply to distinguish
this case from the other cases. An example of the use of AlgebraicRule structures is given in Section 5.4.

4.8.2 AssignmentRule

The rule type AssignmentRule is used to express equations that set the values of variables. The left-hand
side (the variable field) of an assignment rule can refer to the identifier of a species, compartment, or
parameter. Two or more RateRule or AssignmentRule structures cannot have the same left-hand side or
variable field value in an SBML model definition. In all cases, as would be expected, the units of the
formula representing the right hand side, the math field, are identical to the units associated with the left
hand side, the variable field, when that variable appears in other formulae.

The effects of an AssignmentRule structure are in general terms the same, but differ in the precise details
depending on the type of variable being set:

• In the case of a species, an AssignmentRule sets the referenced species’ quantity (concentration or
amount of substance) to the value determined by the formula in math. The units of the formula are
the units of the species as defined in Section 4.6.4.

Restrictions: In a given SBML Level 2 model, there cannot be both a AssignmentRule variable field
and a SpeciesReference species field having the same value. (See Section 4.9 for the definition of
SpeciesReference.) This means an assignment rule cannot be defined for a species that is created or
destroyed in a reaction. The only exception is when the given species is a boundary condition; i.e., on
the Species structure the boundaryCondition field is set to “true”.

• In the case of a compartment, an AssignmentRule sets the referenced compartment’s size to the size
determined by the formula in math. The overall units of the formula are the units specified for the size
of the compartment identified by the value of the AssignmentRule’s variable field. (See Section 4.5.4
for an explanation of how the units of the compartment’s size are determined.)

• In the case of a parameter, an AssignmentRule sets the referenced parameter’s value to that determined
by the formula in math. The overall units of the formula are the units defined for the parameter
identified by the value of the AssignmentRule’s variable field. (See Section 4.7.3 for an explanation
of how the units of the parameter are determined.)

4.8.3 RateRule

The rule type RateRule is used to express equations that determine the rates of change of variables. The
left-hand side (the variable of a rate rule) can refer to the identifier of a species, compartment, or parameter.
Two or more RateRule or AssignmentRule structures cannot have the same left-hand side or variable field
value in an SBML model definition. In all cases, as would be expected, the units of the formula representing
the right hand side, in the math field, are of the form x/time where x are the same units as associated with
the symbol in the variable field, when that variable appears in other formulae. time is a built-in unit
(see Section 4.4). The effects of a RateRule are in general terms the same, but differ in the precise details

23



depending on which variable is being set:

• In the case of a species, a RateRule sets the rate of change of the species’ quantity to the value
determined by the formula in math. The overall units of the formula must be species quantity/time,
where the time units are the built-in units of time described in Section 4.4 and the species quantity
units are the units of the species as defined in Section 4.6.4.
Restrictions: In a given model, there cannot be both a SpeciesReference species field and a
RateRule variable field having the same value. (See Section 4.9 for the definition of SpeciesReference.)
This means an assignment rule cannot be defined for a species that is created or destroyed in a reaction.
The only exception is when the given species is a boundary condition; i.e., on the Species structure
that defines the species the boundaryCondition field is set to “true”.

• In the case of a compartment, a RateRule sets the rate of change of the compartment’s size to the
value determined by the formula in math. The overall units of the formula are size/time, where the
time units are the built-in units of time described in Section 4.4 and the size units are the units of size
on the compartment identified by the value of the RateRule’s variable field. (See Section 4.5.4 for
an explanation of how the units of the compartment’s size are determined.)

• In the case of a parameter, a RateRule sets the rate of change of the parameter’s value to that
determined by the formula in math. The overall units of the formula are of the form x/time where
x are the units defined for the parameter identified by the value of the AssignmentRule’s variable
field and the time units are the built-in units of time described in Section 4.4. (See Section 4.7.3 for
an explanation of how the units of the parameter are determined.)

4.8.4 Constraints on rules

SBML specifically does not stipulate the form of the algorithms that can be applied to rules and reactions.
For example, SBML does not specify when or how often rules should be evaluated. The constraints described
by rules and kinetic rate laws are meant to apply collectively to the set of variable values for a specific instant
in time.

The ordering of assignment rules is significant: they are always evaluated in the order given in SBML.

No more than one assignment or rate rule can be defined for a given identifier. No assignment or rate rule
can be defined for an identifier whose corresponding structure has the field constant set to true.

An assignment rule for a given identifier overrides the initial value assigned to that identifier; i.e., the initial
value should be ignored. This does not mean that a structure declaring an identifier can be omitted if there
is an assignment rule for that identifier. For example, there must be a Parameter structure for a given
parameter if there is a rule for that parameter.

The math field of an assignment rule structure can contain any identifier in a MathML ci element except for
the following: (a) identifiers for which there exists a subsequent assignment rule, and (b) the identifier for
which the rule is defined. These constraints are designed to eliminate algebraic loops among the scalar rules;
eliminating algebraic loops ensures that assignment rules can be evaluated any number of times without the
result of those evaluations changing. As an example, consider the following equations, in the order shown:

x = x + 1, y = z + 200, z = y + 100

If this set of equations were interpreted as a set of assignment rules, it would be invalid because the rule for
x refers to x and the rule for y refers to z before z is defined.

4.8.5 Example of Rule Use

This section contains an example set of rules. Consider the following set of equations:

k =
k3

k2
, s2 =

k x

1 + k2
, A = 0.10 x

This can be encoded by the following scalar rule set (where the definitions of x, s, k, k2, k3 and A are
assumed to be located elsewhere in the model and not shown in this abbreviated example):

24



<model>
...
<listOfRules>

<assignmentRule variable="k">
<notes>

<xhtml:p>
k = k3/k2

</xhtml:p>
</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<ci> k3 </ci>
<ci> k2 </ci>

</apply>
</math>

</assignmentRule>
<assignmentRule variable="s2">

<notes>
<xhtml:p>

s2 = (k * x)/(1 + k2)
</xhtml:p>

</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<apply>

<times/>
<ci> k </ci>
<ci> x </ci>

</apply>
<apply>

<plus/>
<cn> 1 </cn>
<ci> k2 </ci>

</apply>
</apply>

</math>
</assignmentRule>
<assignmentRule variable="A">

<notes>
<xhtml:p>

A = 0.10 * x
</xhtml:p>

</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<cn> 0.10 </cn>
<ci> x </ci>

</apply>
</math>

</assignmentRule>
</listOfRules>
...

</model>

4.9 Reactions

A reaction represents any transformation, transport or binding process, typically a chemical reaction, that
can change the amount of one or more species. In SBML, a reaction is defined primarily in terms of the
participating reactants and products (and their corresponding stoichiometries), along with optional modifier
species, an optional kinetic law describing the rate at which the reaction takes place, and optional parameters
entering into the kinetic law. These various parts of a reaction are recorded in the SBML Reaction type
defined in Figure 12 on the following page.

25



stoichiometry : double { use="optional" default="1" } 
stoichiometryMath : StoichiometryMath { use="optional" }

SpeciesReference

species : SId

SimpleSpeciesReference

ModifierSpeciesReference

math : Math    {namespace="http://www.w3.org/1998/Math/MathML" } 
parameter : Parameter[0..*] 
timeUnits : SId   {use="optional"} 
substanceUnits : SId   {use="optional"} 

KineticLaw

id : SId 
name : string    {use="optional"} 
reactant : SpeciesReference[0..*] 
product : SpeciesReference[0..*] 
modifier : ModifierSpeciesReference[0..*] 
kineticLaw : KineticLaw   {minOccurs="0"} 
reversible : boolean  {use="optional" default="true"} 
fast : boolean   {use="optional"}

Reaction

math : Math {namespace="http://www.w3.org/1998/Math/MathML" }

StoichiometryMath

Figure 12: The definitions of Reaction, KineticLaw, SpeciesReference and ModiferSpeciesReference. Following
UML notation fields that are inherited from a base class are not shown.

4.9.1 The id and name Fields

As with most other main structures in SBML, the Reaction data structure includes a required id and an
optional name. These must be used according to the guidelines described in Section 3.3.

4.9.2 The reactant, product and modifier Fields

The reactant species, product species and modifier species in a reaction are described using the fields
reactant, product and modifiers, respectively. These fields are optional lists of SpeciesReference and
ModifierSpeciesReference structures, as shown in Figure 12. They are described in more detail in Sec-
tions 4.9.5 and 4.9.6 below. The abstract type SimpleSpeciesReference is shown simply to demonstrate the
common field, species, of the SpeciesReference and ModifierSpeciesReference structures. In future
levels of SBML it is anticipated that SimpleSpeciesReference will have additional fields.

4.9.3 The reversible Field

The optional boolean field reversible indicates whether the reaction is reversible. The field is optional,
and if left unspecified in a model, it defaults to a value of “true”. Although the reversibility of a reaction is
determined by its rate law, the need to allow rate expressions in SBML to be optional leads to the need for a

26



flag indicating reversibility. Information about reversibility in the absence of a KineticLaw in a Reaction is
useful in certain kinds of structural analyses such as elementary mode analysis. It is true that the presence of
this information in two places (i.e., the rate expression and the flag reversible) leaves open the possibility
of a model containing contradictory information, but the creation of such a model would indicate an error
on the part of the software generating it. Software developers must take care to guard against logical
contradictions in the definitions of reactions.

4.9.4 The fast Field

The optional boolean field fast is another boolean field in the Reaction data structure; a value of “true”
signifies that the given reaction is a “fast” one compared to others in the system being modeled. This may be
relevant when computing equilibrium concentrations of rapidly equilibrating reactions. Simulation/analysis
packages may chose to use this information to reduce the number of ODEs required and thereby optimize such
computations. (A simulator/analysis package that has no facilities for dealing with fast reactions can ignore
this field. In theory, if the choice of which reactions are fast is correctly made, then a simulation performed
with them should give the same results as a simulation performed without fast reactions. However, currently
there appears to be no single unambiguous method for designating which reactions should be considered
fast, and some users may designate a reaction as fast when in fact it is not.) The fast field does not have a
default value: a missing value indicates the modeller does not know or wish to specify the rate of the reaction
relative to other reactions in the model.

4.9.5 SpeciesReference

Every species that enters into a given reaction must appear in that reaction’s lists of reactants, products or
modifiers. In an SBML model, all species that participate in any reaction are listed in the listOfSpecies
field of the top-level Model data structure (see Section 4.2). Lists of products, reactants and modifiers in
Reaction structures do not introduce new species, but rather, they refer back to those listed in the model’s
listOfSpecies. For reactants and products, the connection is made using the SpeciesReference data
structure defined in Figure 12 on the preceding page.

In SpeciesReference, the field species of type SId must refer to the name of an existing species defined in
the enclosing Model structure. The stoichiometry for the product or reactant can be specified using either the
stoichiometry or stoichiometryMath fields of the SpeciesReference structure. The stoichiometry field
is of type double and should contain values greater than 0. The stoichiometryMath field is implemented as
an element containing a MathML math expression in dimensionless units. Only one of the stoichiometry
and stoichiometryMath fields should be used on a given SpeciesReference structure. When neither field
is present then the stoichiometry associated with the SpeciesReference structure is “1”.

When generating SBML Level 2, it is recommended for maximal interoperability that the stoichiometry
field be used in preference to the stoichiometryMath field and that the stoichiometry field contains integer
values. Parsing software should expect and handle appropriately all possible values of the stoichiometry
and stoichiometryMath fields including, for example, non-integer values for stoichiometry.

The following is a simple example of a species reference for species “X0”, with stoichiometry 2, in a list of
reactants within a reaction named “J1”:

<model>
...
<listOfReactions>

<reaction id="J1">
<listOfReactants>

<speciesReference species="X0" stoichiometry="2">
</listOfReactants>
...

</reaction>
...

</listOfReactions>
...

</model>

27



The following is a more complex example of a species reference for species “X0”, with a stoichiometry
expression consisting of the parameter x:

<model>
...
<listOfReactions>

<reaction id="J1">
<listOfReactants>

<speciesReference species="X0">
<stoichiometryMath>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci>x</ci>

</math>
</stoichiometryMath>

</speciesReference>
</listOfReactants>
...

</reaction>
...

</listOfReactions>
...

</model>

A reaction can contain an empty list of reactants or an empty list of products but must have at least one
reactant or product. Also note that whether a given species is allowed to appear as a reactant or product
is dictated by certain flags on the structure describing the species in the Model; see Table 4 on page 20 for
more information.

A species can occur more than once in the lists of reactants and products of a given reaction. Such a Reaction
structure represents the combined effect of all the SpeciesReference structures that are contained in it.
The effective stoichiometry for a species in a reaction is the sum of the stoichiometry values given on the
SpeciesReference structures in the list of products minus the sum of stoichiometry values given on the
SpeciesReference structures in the list of reactants. A positive value indicates the species is effectively a
product and a negative value indicates the species is effectively a reactant. SBML places no restrictions on
the effective stoichiometry of a species in a reaction, for example, it can be zero. In the following SBML
fragment, the two reactions have the same effective stoichiometry for all their species:

<reaction id="x">
<listOfReactants>

<speciesReference species="a"/>
<speciesReference species="a"/>
<speciesReference species="b"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="c"/>
<speciesReference species="b"/>

</listProducts>
</reaction>
<reaction id="y">

<listOfReactants>
<speciesReference species="a" stoichiometry="2"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="c"/>
</listProducts>

</reaction>

4.9.6 ModifierSpeciesReference

In some cases, a species may act as a catalyst or inhibitor of a reaction and would not appear in the list of
reactants or products because it is neither created nor destroyed in that reaction. In these cases, the species
is known as a modifier. (That same species may still be a reactant or product of another reaction.)

The Reaction structure provides a way to express which species act as modifiers in a given reaction. This is
the purpose of the modifier field in Reaction; this field is a list of ModifierSpeciesReference structures

28



defined in Figure 12 on page 26. The ModifierSpeciesReference structure has only one field, species, of
type SId; its value must be the identifier of a species defined in the enclosing Model.

4.9.7 KineticLaw

A kineticLaw structure, enclosed in a Reaction structure, describes the rate at which the reaction takes
place. The inclusion of a KineticLaw structure in an instance of a Reaction component is optional; however,
in general there is no useful default that can be substituted in place of a missing rate law definition in a
reaction. As shown in Figure 12 on page 26, the KineticLaw structure has a field called math; this is a
MathML expression defining the rate of the reaction.

It is important to make clear at the outset that a “kinetic law” in SBML is not equivalent to a traditional
rate law. The reason is that SBML must support multi-compartment models, and the units used in textbook
rate laws as well as some conventional single-compartment modeling packages are problematic when used
for defining reactions between multiple compartments. Rate expressions in SBML are expressed in terms of
substance/time, rather than the more typical concentration/time. Converting between these two conventions
is a simple matter of dividing the substance/time expression by the size of the compartment where a given
species is located. To put this in slightly more precise terms, suppose there are two species S and P in a
reaction S → P , where S is located in a compartment A having volume VA, P is located in a compartment B
having volume VB , and the kinetic law expression gives the rate of the reaction as being R. Then the rate of
change in the concentration of S is given by d[S]A/dt = −R/VA and the rate of change in the concentration
of P is d[P ]B/dt = R/VB . The translation of a complete multi-compartmental model into ODEs is given in
Section 5.6.

The expression in math may refer to species identifiers; in that case, as discussed in Section 3.6.3, the units
of each species reference are those of concentration. The only species identifiers that can be used in math
are those listed in the reactant, product and modifier fields of the Reaction structure.

As was previously stated, the overall rate expression in the math field must have the units of substance/time.
The optional fields substanceUnits and timeUnits determine the units of substance and time for the
reaction respectively. The values of these fields must be chosen from one of the following possibilities: one of
the base unit names from Table 2 on page 14; one of the built-in unit names appearing in the first column of
Table 3 on page 15); or the name of a new unit defined in the list of unit definitions in the enclosing Model
structure. In the case of substanceUnits, the value chosen must be a scaled and/or multiplied variant of
moles or item. In the case of timeUnits, the value chosen must be a scaled and/or multiplied variant of
seconds. If these fields are not set in a given KineticLaw instance, the units are taken from the defaults
defined by the built-in “substance” and “time” of Table 3 on page 15.

An instance of a KineticLaw type structure can contain zero or more parameter structures (Section 4.7)
which define symbols that can be used in the math field. As discussed in Section 3.5, reactions introduce local
namespaces for parameter identifiers. Within a KineticLaw structure inside a reaction definition, a local
parameter whose identifier is identical to a global parameter defined in the enclosing Model-type structure
takes precedence over that global parameter.

The following is an example of a Reaction structure that defines a reaction named J1, in which X0 → S1

at a rate given by kX0S2, where S2 is a catalyst and k is a parameter. It demonstrates the use of species
references and the KineticLaw structure. The units on the species here are the defaults of substance/volume
(see Section 4.6), and so the units of the parameter k are set appropriately to make the rate expression have
final units of substance/time.

<model>
...
<listOfUnitDefinitions>

<unitDefinition id="vol_per_concent_per_time">
<listOfUnits>

<unit kind="litre" exponent="2"/>
<unit kind="mole" exponent="-1"/>
<unit kind="second" exponent="-1"/>

</listOfUnits>

29



</unitDefinition>
</listOfUnitDefinitions>
...
<listOfSpecies>

<species id="S1" compartment="c1" initialConcentration="2.0"/>
<species id="S2" compartment="c1" initialConcentration="0.5"/>
<species id="X0" compartment="c1" initialConcentration="1.0"/>

</listOfSpecies>
...

<listOfReactions>
<reaction id="J1">

<listOfReactants>
<speciesReference species="X0"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="S1"/>
</listOfProducts>
<listOfModifiers>

<modifierSpeciesReference species="S2"/>
</listOfModifiers>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k </ci>
<ci> S2 </ci>
<ci> X0 </ci>

</apply>
</math>
<listOfParameters>

<parameter id="k" value="0.1" units="vol_per_concent_per_time"/>
</listOfParameters>

</kineticLaw>
</reaction>

</listOfReactions>
...

</model>

4.10 Events

Model has an optional list of Event structures that describe the time and form of explicit instantaneous
discontinuous state changes in the model. For example, an event may describe that one species concentration
is halved when another species concentration exceeds a given threshold value.

An Event structure defines when the event can occur, the variables that are affected by the event, and how
the variables are affected. The effect of the event can optionally be delayed after the occurrence of the
condition which invokes it. The operation of an Event structure is divided into two phases (even when the
event is not delayed): one when the event is fired and the other when the event is executed. The Event type
is defined in Figure 13 on the next page. Both Event and EventAssignment are derived from SBase (see
Section 3.1). An example of a model which uses events is given below.

4.10.1 The id and name Fields

These optional fields are available to support external references to event structures. These fields operate in
the manner described in Section 3.3 except that the id field is optional.

4.10.2 The trigger Field

The trigger field defines when the Event structure has an effect on the model. The trigger field contains
a MathML boolean expression. The exact instant that the expression evaluates to true is the time point
when the Event is fired. The event only fires when the trigger makes the transition from false to true. The
event will fire at any further time points when the trigger make this transition.

30



id  : SId { use="optional" } 
name : string { use="optional" } 
trigger : (math : Math {namespace="http://www.w3.org/1998/Math/MathML"}) 
delay : (math : Math {namespace="http://www.w3.org/1998/Math/MathML"}) 
timeUnits : SId { use="optional" } 
eventAssignment : EventAssignment[1..*]

Event

variable : SId 
math : Math {namespace="http://www.w3.org/1998/Math/MathML"} 

EventAssignment

Figure 13: The definitions of Event and EventAssignment. Following UML notation, additional fields that are inherited
from a base class, in this case SBase, are not shown.

4.10.3 The delay Field

The optional delay field defines the length of time after the event has fired that the event is executed. The
delay field is another MathML expression. This expression should be evaluated when the rule is fired. The
default value for the delay field is 0. The value of the delay field should always be positive. The units of
the delay field are those given on the timeUnits field.

4.10.4 The timeUnits Field

The optional field timeUnits determines the units of time that apply to the delay field. The value of the
timeUnits field must be either “second” from Table 2 on page 14, “time” from Table 3 on page 15, or a
new unit defined by a unit definition in the enclosing model which must be a variant of “second” units. The
default value of the timeUnits field is “time”.

4.10.5 The eventAssignment Field

The eventAssignment field consists of a non-empty list of EventAssignment structures. This field is im-
plemented as a listOfEventAssignments element containing one or more eventAssignment elements. The
EventAssignment structures represent variable assignments that have effect when the event is executed. The
Assignment structure is shown in Figure 13. The variable field is of type SId and contains the identifier
of a variable i.e. a compartment, species or parameter. The structures referenced by the variable field
must have their constant fields set to “false”. The math field contains a MathML expression that defines
the new value of the variable. This expression is evaluated when the Event is fired but the variable only
acquires the result or new value when the Event is executed. The order of the EventAssignment structures
is not significant (unlike assignment rules); the effect of one assignment cannot affect the result of another
assignment. The identifiers occurring in the MathML ci fields of the EventAssignment structures represent
the value of the identifier at the point when the Event is fired.

In all cases, as would be expected, the units of the formula are identical to the units associated with the
variable field, when that variable appears in other formulae. However, the precise details, which are
identical to those of AssignmentRule structures, depend on the variable that is being set:

• In the case of a species, an EventAssignment sets the referenced species’ quantity (concentration or
amount of substance) to the value determined by the formula in math. The units of the formula are
the units of the species as defined in Section 4.6.4.

• In the case of a compartment, an EventAssignment sets the referenced compartment’s size to the
size determined by the formula in math. The overall units of the formula are the units specified for
the size of the compartment identified by the value of the EventAssignment’s variable field. (See
Section 4.5.4 for an explanation of how the units of the compartment’s size are determined.)

31



• In the case of a parameter, an EventAssignment sets the referenced parameter’s value to that deter-
mined by the formula in math. The overall units of the formula are the units defined for the parameter
identified by the value of the EventAssignment’s variable field. (See Section 4.7.3 for an explanation
of how the units of the parameter are determined.)

4.10.6 Example Event structure

A example of an Event structure follows. This structure makes the assignment k2 = 0 at the point when
P1 ≤ t:

<event>
<trigger>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<leq/>
<ci> P1 </ci>
<ci> t </ci>

</apply>
</math>

</trigger>
<listOfEventAssignments>

<eventAssignment variable="k2">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<cn> 0 </cn>
</math>

</eventAssignment>
<listOfEventAssignments>

</event>

A complete example of a model using events is given in Section 5.9.

4.10.7 Detailed semantics of events

The description of events above describes the action of events in isolation from each other. This section
describes how events interact. Events whose trigger expression is true at the start of a simulation do not
fire at the start of the simulation. Events fire only when the trigger becomes true, i.e. the trigger expression
transitions from false to true. It is possible for events to fire other events, i.e. an event assignment can cause
an event to fire, therefore it is possible for model to be entirely encoded in Event structures.

It is entirely possible for two events to be executed simultaneously in simulated time. It is assumed that,
although the precise time at which these events are executed is not resolved beyond the given point in
simulated time, the order in which the events occur is resolved. This order can be significant in determining
the overall outcome of a given simulation. SBML Level 2 does not define the algorithm for determining
this order (the tie-breaking algorithm). As a result, the results of simulations involving events may vary
when simultaneous events occur during simulation. It is anticipated that future versions or levels of SBML
will define a specific set of tie-breaking algorithms and a mechanism for models to indicate which algorithm
should be applied during simulation.

Despite the absence of a specific tie-breaking algorithm, SBML event simulation is constrained as follows.
When an event X fires another event Y and event Y has zero delay then event Y is added to the existing
set of simultaneous events that are pending execution. Events such as Y do not have a special priority or
ordering within the tie-breaking algorithm. Events X and Y form a cascade of events at the same point in
simulation time. All events in a model are open to being in a cascade. The position of an event in the event
list does not affect whether it can be in the cascade: Y can be triggered whether it is before or after X in the
list of events. A cascade of events can be infinite (never terminate). When this occurs a simulator should
indicate this has occurred, i.e. it is incorrect for the simulator to arbitrarily break the cascade and continue
the simulation without at least indicating the infinite cascade occurred. A variable can change more than
once when processing simultaneous events at simulation time t. The model behavior (output) for such a
variable is the value of the variable at the end of processing all the simultaneous events at time t.

32



5 Example Models Expressed in XML Using SBML

In this section, we present several examples of complete models encoded in XML using SBML Level 2.

5.1 A Simple Example Application of SBML

Consider the following hypothetical branched system:

X0 S1
X1

X2

k1X0
k2S1

k3S1

The following is an XML document encoding the model shown above:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model id="Branch">
<notes>

<body xmlns="http://www.w3.org/1999/xhtml">
<p>Simple branch system.</p>
<p>The reaction looks like this:</p>
<p>reaction-1: X0 -> S1; k1*X0;</p>
<p>reaction-2: S1 -> X1; k2*S1;</p>
<p>reaction-3: S1 -> X2; k3*S1;</p>

</body>
</notes>
<listOfCompartments>

<compartment id="compartmentOne" size="1"/>
</listOfCompartments>
<listOfSpecies>

<species id="S1" initialConcentration="0" compartment="compartmentOne"
boundaryCondition="false"/>

<species id="X0" initialConcentration="0" compartment="compartmentOne"
boundaryCondition="true"/>

<species id="X1" initialConcentration="0" compartment="compartmentOne"
boundaryCondition="true"/>

<species id="X2" initialConcentration="0" compartment="compartmentOne"
boundaryCondition="true"/>

</listOfSpecies>
<listOfReactions>

<reaction id="reaction_1" reversible="false">
<listOfReactants>

<speciesReference species="X0"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="S1"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k1 </ci>
<ci> X0 </ci>

</apply>
</math>
<listOfParameters>

<parameter id="k1" value="0"/>
</listOfParameters>

</kineticLaw>
</reaction>
<reaction id="reaction_2" reversible="false">

<listOfReactants>
<speciesReference species="S1"/>

</listOfReactants>
<listOfProducts>

33



<speciesReference species="X1"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k2 </ci>
<ci> S1 </ci>

</apply>
</math>
<listOfParameters>

<parameter id="k2" value="0"/>
</listOfParameters>

</kineticLaw>
</reaction>
<reaction id="reaction_3" reversible="false">

<listOfReactants>
<speciesReference species="S1"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="X2"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k3 </ci>
<ci> S1 </ci>

</apply>
</math>
<listOfParameters>

<parameter id="k3" value="0"/>
</listOfParameters>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

In this example, the model has the identifier “Branch”. The model contains one compartment, four species,
and three reactions. The elements in the <listOfReactants> and <listOfProducts> in each reaction refer
to the names of elements listed in the <listOfSpecies>. The correspondences between the various elements
is explicitly stated by the <speciesReference> elements.

The model also includes a <notes> annotation that summarizes the model in text form, with formatting
encoded in XHTML. This may be useful for a software package that is able to read such annotations and,
for example, render them in HTML in a graphical user interface.

5.2 Example Involving Units

The following model uses the units features of SBML Level 2. In this model, the default value of substance
is changed in the list of unit definitions to be mole units with a scale factor of -3, or millimoles. This sets
the default substance units in the model; components can override this scale locally. The size and time
built-ins are left to their defaults, ensuring size is in liters and time is in seconds. The result is that, in this
model, kinetic law formulas define rates in millimoles per second and the species symbols in them represent
concentration values in millimoles per liter. All the species elements set the initial amount of every given
species to 1 millimole. The parameters Vm and Km are defined to be in millimoles per liter per second, and
milliMolar, respectively.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"

xmlns:html="http://www.w3.org/1999/xhtml">
<model>

<listOfUnitDefinitions>
<unitDefinition id="substance">

34



<listOfUnits>
<unit kind="mole" scale="-3"/>

</listOfUnits>
</unitDefinition>
<unitDefinition id="mmls">

<listOfUnits>
<unit kind="mole" scale="-3"/>
<unit kind="litre" exponent="-1"/>
<unit kind="second" exponent="-1"/>

</listOfUnits>
</unitDefinition>
<unitDefinition id="mm">

<listOfUnits>
<unit kind="mole" scale="-3"/>

</listOfUnits>
</unitDefinition>

</listOfUnitDefinitions>
<listOfCompartments>

<compartment id="cell"/>
</listOfCompartments>
<listOfSpecies>

<species id="x0" compartment="cell" initialConcentration="1"/>
<species id="x1" compartment="cell" initialConcentration="1"/>
<species id="s1" compartment="cell" initialConcentration="1"/>
<species id="s2" compartment="cell" initialConcentration="1"/>

</listOfSpecies>
<listOfParameters>

<parameter id="vm" value="2" units="mmls"/>
<parameter id="km" value="2" units="mm"/>

</listOfParameters>
<listOfReactions>

<reaction id="v1">
<listOfReactants>

<speciesReference species="x0"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="s1"/>
</listOfProducts>
<kineticLaw>

<notes>
<html:p>((vm * s1)/(km + s1))*cell</html:p>

</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<apply>

<divide/>
<apply>

<times/>
<ci> vm </ci>
<ci> s1 </ci>

</apply>
<apply>

<plus/>
<ci> km </ci>
<ci> s1 </ci>

</apply>
</apply>
<ci> cell </ci>

</apply>
</math>

</kineticLaw>
</reaction>
<reaction id="v2">

<listOfReactants>
<speciesReference species="s1"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="s2"/>

35



</listOfProducts>
<kineticLaw>

<notes>
<html:p>((vm * s2)/(km + s2))*cell</html:p>

</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<apply>

<divide/>
<apply>

<times/>
<ci> vm </ci>
<ci> s2 </ci>

</apply>
<apply>

<plus/>
<ci> km </ci>
<ci> s2 </ci>

</apply>
</apply>
<ci> cell </ci>

</apply>
</math>

</kineticLaw>
</reaction>
<reaction id="v3">

<listOfReactants>
<speciesReference species="s2"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="x1"/>
</listOfProducts>
<kineticLaw>

<notes>
<html:p>((vm * x1)/(km + x1))*cell</html:p>

</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<apply>

<divide/>
<apply>

<times/>
<ci> vm </ci>
<ci> x1 </ci>

</apply>
<apply>

<plus/>
<ci> km </ci>
<ci> x1 </ci>

</apply>
</apply>
<ci> cell </ci>

</apply>
</math>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

5.3 Example Involving Assignment Rules

This section contains a model that simulates a system containing a fast reaction. This model uses rules to
express the mathematics of the fast reaction explicitly rather than using the implicit fast field on a reaction
element.

36



The system modeled is
X0 k1X0−−−→ S1

S1 kfS1 − krS2−−−−−−−−→
S2

S2 k2S2−−→ X1

k1 = 0.1, k2 = 0.15, kf = Keq10000, kr = 10000, Keq = 2.5.

This can be approximated with the following system:

X0 k1X0−−−→ T

T k2S2−−→ X1

S1 =
T

1 + Keq
, S2 = KeqS1

The following example SBML model encodes the approximate form.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"

xmlns:math="http://www.w3.org/1998/Math/MathML">
<model>

<listOfCompartments>
<compartment id="cell"/>

</listOfCompartments>
<listOfSpecies>

<species id="X0" compartment="cell" initialConcentration="1"/>
<species id="X1" compartment="cell" initialConcentration="0"/>
<species id="T" compartment="cell" initialConcentration="0"/>
<species id="S1" compartment="cell" initialConcentration="0"/>
<species id="S2" compartment="cell" initialConcentration="0"/>

</listOfSpecies>
<listOfParameters>

<parameter id="Keq" value="2.5"/>
</listOfParameters>
<listOfRules>

<assignmentRule variable="S1">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<ci> T </ci>
<apply>

<plus/>
<cn> 1 </cn>
<ci> Keq </ci>

</apply>
</apply>

</math>
</assignmentRule>
<assignmentRule variable="S2">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> Keq </ci>
<ci> S1 </ci>

</apply>
</math>

</assignmentRule>
</listOfRules>
<listOfReactions>

<reaction id="in">

37



<listOfReactants>
<speciesReference species="X0"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="T"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k1 </ci>
<ci> X0 </ci>

</apply>
</math>
<listOfParameters>

<parameter id="k1" value="0.1"/>
</listOfParameters>

</kineticLaw>
</reaction>
<reaction id="out">

<listOfReactants>
<speciesReference species="T"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="X1"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k2 </ci>
<ci> S2 </ci>

</apply>
</math>
<listOfParameters>

<parameter id="k2" value="0.15"/>
</listOfParameters>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

5.4 Example Involving Algebraic Rules

This section contains an example model that contains an AlgebraicRule structure. The model contains a
different formulation of the fast reaction described in Section 5.3.

The system described in Section 5.3 can be approximated with the following system:

X0 k1X0−−−→ T

T k2S1−−→ X1

S2 = KeqS1

with the constraint:
S1 + S2 − T = 0

The following example SBML model encodes this approximate form.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model>

38



<listOfCompartments>
<compartment id="cell"/>

</listOfCompartments>
<listOfSpecies>

<species id="X0" compartment="cell" initialConcentration="1"/>
<species id="X1" compartment="cell" initialConcentration="0"/>
<species id="T" compartment="cell" initialConcentration="0"/>
<species id="S1" compartment="cell" initialConcentration="0"/>
<species id="S2" compartment="cell" initialConcentration="0"/>

</listOfSpecies>
<listOfParameters>

<parameter id="Keq" value="2.5"/>
</listOfParameters>
<listOfRules>

<assignmentRule variable="S2">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<ci> Keq </ci>
<ci> S1 </ci>

</apply>
</math>

</assignmentRule>
<algebraicRule>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<minus/>
<apply>

<plus/>
<ci> S2 </ci>
<ci> S1 </ci>

</apply>
<ci> T </ci>

</apply>
</math>

</algebraicRule>
</listOfRules>
<listOfReactions>

<reaction id="in">
<listOfReactants>

<speciesReference species="X0"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="T"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k1 </ci>
<ci> X0 </ci>

</apply>
</math>
<listOfParameters>

<parameter id="k1" value="0.1"/>
</listOfParameters>

</kineticLaw>
</reaction>
<reaction id="out">

<listOfReactants>
<speciesReference species="T"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="X1"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>

39



<ci> k2 </ci>
<ci> S2 </ci>

</apply>
</math>
<listOfParameters>

<parameter id="k2" value="0.15"/>
</listOfParameters>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

5.5 Example Involving Combinations of boundaryCondition and constant Values on
Species with RateRule structures

This section contains a model that includes four species each with a different combination of values of for
the boundaryCondition and constant fields.

Consider the following hypothetical system:

S1 + S2 k1S1S2S3−−−−−−→ S4

S3 is a catalyst that catalyzes the conversion S1 and S2 into S4. S1 and S2 are on the boundary of the
system (S1 and S2 are reactants but their values are not determined by a kinetic law). The value of S1 is
determined over time by the rate rule:

dS1

dt
= k2

Constant values are:
S2 = 1

S3 = 2

k1 = 0.5

k2 = 0.1

and initial values are:
S1 = 0

S4 = 0

The value of S1 varies over time so in SBML S1 has a constant field with a default value of “false”. The
values of S2 and S3 are fixed so in SBML they have a constant field values of “true”. S3 only occurs as
a modifier so the value of its boundaryCondition field can default to false. S4 is a product whose value is
determined by a kinetic law and therefore in the SBML representation has false values, the default values,
for both boundaryCondition and constant fields.

The following is the XML document that encodes the model shown above:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model id="BoundaryCondExampleModel">
<listOfCompartments>

<compartment id="compartmentOne" size="1"/>
</listOfCompartments>
<listOfSpecies>

40



<species id="S1" initialConcentration="0" compartment="compartmentOne"
boundaryCondition="true" />

<species id="S2" initialConcentration="1" compartment="compartmentOne"
boundaryCondition="true" constant="true" />

<species id="S3" initialConcentration="3" compartment="compartmentOne"
constant="true"/>

<species id="S4" initialConcentration="0" compartment="compartmentOne"/>
</listOfSpecies>
<listOfParameters>

<parameter id="k1" value="0.5"/>
<parameter id="k2" value="0.1"/>

</listOfParameters>
<listOfRules>

<rateRule variable="S1">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<ci> k2 </ci>

</apply>
</math>

</rateRule>
</listOfRules>
<listOfReactions>

<reaction id="reaction_1" reversible="false">
<listOfReactants>

<speciesReference species="S1"/>
<speciesReference species="S2"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="S4"/>
</listOfProducts>
<listOfModifiers>

<modifierSpeciesReference species="S3"/>
</listOfModifiers>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k1 </ci>
<ci> S1 </ci>
<ci> S2 </ci>
<ci> S3 </ci>

</apply>
</math>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

5.6 Example of translation from a multi-compartmental model to ODEs

This section contains a model with 2 compartments, 4 reactions and 2 rate rules. The model is followed by
its complete translation into ordinary differential equations. The model is shown in figure 14.

X0 S1 S2 S3 X4

K0.X0 K1S1 K2.S2 K3.S3

V0 V1

Figure 14: A example multi-compartmental model.

41



Reaction equations are in substance per time units. Species variables are in concentrations. Species X0 and
X4 are boundary conditions. The volume of compartment V1 and the concentration of X0 vary according to
rules.

The SBML for this model is the following:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model id="ODEExampleModel">
<listOfCompartments>

<compartment id="V0" size="10"/>
<compartment id="V1" size="1" constant="false"/>

</listOfCompartments>
<listOfSpecies>

<species id="X0" initialConcentration="0" compartment="V0"
boundaryCondition="true" />

<species id="S1" initialConcentration="0" compartment="V0"/>
<species id="S2" initialConcentration="0" compartment="V0"/>
<species id="S3" initialConcentration="0" compartment="V1"/>
<species id="X4" initialConcentration="0" compartment="V1"

boundaryCondition="true" constant="true"/>
</listOfSpecies>
<listOfParameters>

<parameter id="K0" value="0.1"/>
<parameter id="K1" value="0.5"/>
<parameter id="K2" value="0.1"/>
<parameter id="K3" value="0.5"/>
<parameter id="Kv" value="0.5"/>
<parameter id="Kin" value="0.1"/>

</listOfParameters>
<listOfRules>

<rateRule variable="X0">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<ci> Kin </ci>

</apply>
</math>

</rateRule>
<rateRule variable="V1">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<ci> Kv </ci>
</apply>

</math>
</rateRule>

</listOfRules>
<listOfReactions>

<reaction id="reaction_1" reversible="false">
<listOfReactants>

<speciesReference species="X0"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="S1"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> K0 </ci>
<ci> X0 </ci>

</apply>
</math>

</kineticLaw>
</reaction>
<reaction id="reaction_2" reversible="false">

<listOfReactants>
<speciesReference species="S1"/>

</listOfReactants>
<listOfProducts>

42



<speciesReference species="S2"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> K1 </ci>
<ci> S1 </ci>

</apply>
</math>

</kineticLaw>
</reaction>
<reaction id="reaction_3" reversible="false">

<listOfReactants>
<speciesReference species="S2"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="S3"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> K2 </ci>
<ci> S2 </ci>

</apply>
</math>

</kineticLaw>
</reaction>
<reaction id="reaction_4" reversible="false">

<listOfReactants>
<speciesReference species="S3"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="X4"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> K3 </ci>
<ci> S3 </ci>

</apply>
</math>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

The ODE translation of this model is as follows assuming all species variables contain the species concen-
tration:

Parameters and Constants:

43



X4 = 0

V0 = 10

K0 = 0.1

K1 = 0.5

K2 = 0.1

K3 = 0.5

Kin = 0.1

Kv = 0.5

Initial Conditions of Variables:

V1 = 1

X0 = S1 = S2 = S3 = 0

Differential Equations:

dV1

dt
= Kv rule

dX0

dt
= Kin rule

dS1

dt
=

K0X0 −K1S1

V0
reactions 1 and 2

dS2

dt
=

K1S1 −K2S2

V0
reactions 2 and 3

dS3

dt
=

K2S2 −K3S3

V1
reactions 3 and 4

5.7 Example Involving Function Definitions

This section contains a model that uses the function definition feature of SBML. Consider the following
hypothetical system:

S1 f(S1)−−−→
S2

where
f(x) = x ∗ 2

The following is the XML document that encodes the model shown above:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model id="Example">
<listOfFunctionDefinitions>

<functionDefinition id="f">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<lambda>
<bvar><ci> x </ci></bvar>

44



<apply>
<times/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
</lambda>

</math>
</functionDefinition>

</listOfFunctionDefinitions>
<listOfCompartments>

<compartment id="compartmentOne" size="1"/>
</listOfCompartments>
<listOfSpecies>

<species id="S1" initialConcentration="0" compartment="compartmentOne"/>
<species id="S2" initialConcentration="0" compartment="compartmentOne"/>

</listOfSpecies>
<listOfReactions>

<reaction id="reaction_1" reversible="false">
<listOfReactants>

<speciesReference species="S1"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="S2"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<ci> f </ci>
<ci> S1 </ci>

</apply>
</math>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

5.8 Example Involving delay Functions

The following is a simple model illustrating the use of delay to represent a gene that suppresses its own
expression. The model can be expressed in a single rule:

dP

dt
=

1
1 + m(Pdelayed)q

− P

τ

where
Pdelayed is delay(P,∆t) or P at t−∆t

P is protein concentration
τ is the response time
m is a multiplier or equilibrium constant
q is the Hill coefficient

The SBML form of this model is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model>
<listOfCompartments>

<compartment id="cell" size="1"/>
</listOfCompartments>
<listOfSpecies>

<species id="P" compartment="cell" initialConcentration="0"/>
</listOfSpecies>
<listOfParameters>

45



<parameter id="tau" value="1"/>
<parameter id="m" value="0.5"/>
<parameter id="q" value="1"/>
<parameter id="delta_t" value="1"/>

</listOfParameters>
<listOfRules>

<rateRule variable="P">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<divide/>
<apply>
<minus/>
<apply>
<divide/>
<cn> 1 </cn>
<apply>
<plus/>
<cn> 1 </cn>
<apply>
<times/>
<ci> m </ci>
<apply>
<power/>
<apply>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/symbols/delay">
delay

</csymbol>
<ci> P </ci>
<ci> delta_t </ci>
</apply>
<ci> q </ci>

</apply>
</apply>
</apply>
</apply>
<ci> P </ci>

</apply>
<ci> tau </ci>
</apply>
</math>

</rateRule>
</listOfRules>

</model>
</sbml>

5.9 Example Involving Events

This section presents a simple model system that demonstrates the use of events in SBML. Consider a system
with two genes, k1 and k2. k1 is initially on and k2 is initially off. When turned on, the two genes lead to the
production of two products, P1 and P2, respectively, at a fixed rate. When P1 reaches a given concentration,
k2 switches off. This system can be represented mathematically as follows:

dP1

dt
= k1 − P1

dP2

dt
= k2 − P2

k2 =

{
0 when P1 ≤ τ ,

1 when P1 > τ.

The initial values are:
k1 = 1 k2 = 0 τ = 0.25 P1 = 0 P2 = 0

46



The SBML Level 2 representation of this as follows:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"

xmlns:math="http://www.w3.org/1998/Math/MathML">
<model>

<listOfCompartments>
<compartment id="cell"/>

</listOfCompartments>
<listOfSpecies>

<species id="P1" compartment="cell" initialConcentration="0"/>
<species id="P2" compartment="cell" initialConcentration="0"/>

</listOfSpecies>
<listOfParameters>

<parameter id="k1" value="1" constant="false"/>
<parameter id="k2" value="0" constant="false"/>
<parameter id="tau" value="0.25"/>

</listOfParameters>
<listOfRules>

<rateRule variable="P1">
<math:math>

<math:apply>
<math:minus/>
<math:ci> k1 </math:ci>
<math:ci> P1 </math:ci>

</math:apply>
</math:math>

</rateRule>
<rateRule variable="P2">

<math:math>
<math:apply>

<math:minus/>
<math:ci> k2 </math:ci>
<math:ci> P2 </math:ci>

</math:apply>
</math:math>

</rateRule>
</listOfRules>
<listOfEvents>

<event>
<trigger>

<math:math>
<math:apply>

<math:gt/>
<math:ci> P1 </math:ci>
<math:ci> tau </math:ci>

</math:apply>
</math:math>

</trigger>
<listOfEventAssignments>

<eventAssignment variable="k2">
<math:math>

<math:cn> 1 </math:cn>
</math:math>

</eventAssignment>
</listOfEventAssignments>

</event>
<event>

<trigger>
<math:math>

<math:apply>
<math:leq/>
<math:ci> P1 </math:ci>
<math:ci> tau </math:ci>

</math:apply>
</math:math>

</trigger>
<listOfEventAssignments>

<eventAssignment variable="k2">

47



<math:math>
<math:cn> 0 </math:cn>

</math:math>
</eventAssignment>

</listOfEventAssignments>
</event>

</listOfEvents>
</model>

</sbml>

5.10 Example Involving Two-Dimensional Compartments

The following example is a model that uses a two-dimensional compartment. It is a fragment of a larger model
of calcium regulation across the plasma membrane of a cell. The model includes a calcium influx channel,
Ca channel, and a calcium-extruding PMCA pump, Ca Pump. The model also includes two cytosolic proteins
that buffer calcium via the CalciumCalbindin gt BoundCytosol and CalciumBuffer gt BoundCytosol re-
actions.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model id="facilitated_ca_diffusion">
<listOfUnitDefinitions>

<unitDefinition id="substance">
<listOfUnits>

<unit kind="mole" scale="-6"/>
</listOfUnits>

</unitDefinition>
<unitDefinition id="area">

<listOfUnits>
<unit kind="metre" scale="-6" exponent="2" />

</listOfUnits>
</unitDefinition>

</listOfUnitDefinitions>
<listOfCompartments>

<compartment id="Extracellular" spatialDimensions="3"/>
<compartment id="PlasmaMembrane" outside="Extracellular" spatialDimensions="2"/>
<compartment id="Cytosol" outside="PlasmaMembrane" spatialDimensions="3"/>

</listOfCompartments>
<listOfSpecies>

<species
id="CaBPB_C"
compartment="Cytosol"
initialConcentration="47.17"/>

<species
id="B_C"
compartment="Cytosol"
initialConcentration="396.04"/>

<species
id="CaB_C"
compartment="Cytosol"
initialConcentration="3.96"/>

<species
id="Ca_EC"
compartment="Extracellular"
initialConcentration="1000"/>

<species
id="Ca_C"
compartment="Cytosol"
initialConcentration="0.1"/>

<species
id="CaCh_PM"
compartment="PlasmaMembrane"
initialConcentration="1"/>

<species
id="CaPump_PM"
compartment="PlasmaMembrane"
initialConcentration="1"/>

48



<species
id="CaBP_C"
compartment="Cytosol"
initialConcentration="202.83"/>

</listOfSpecies>
<listOfReactions>

<reaction id="CalciumCalbindin_gt_BoundCytosol" fast="true">
<listOfReactants>

<speciesReference species="CaBP_C"/>
<speciesReference species="Ca_C"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="CaBPB_C"/>
</listOfProducts>
<kineticLaw>

<notes>
<p xmlns="http://www.w3.org/1999/xhtml">

(((Kf_CalciumCalbindin_BoundCytosol * CaBP_C) * Ca_C) -
(Kr_CalciumCalbindin_BoundCytosol * CaBPB_C))

</p>
</notes>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<minus/>
<apply>

<times/>
<ci> Kf_CalciumCalbindin_BoundCytosol </ci>
<ci> CaBP_C </ci>
<ci> Ca_C </ci>

</apply>
<apply>

<times/>
<ci> Kr_CalciumCalbindin_BoundCytosol </ci>
<ci> CaBPB_C </ci>

</apply>
</apply>

</math>
<listOfParameters>

<parameter id="Kf_CalciumCalbindin_BoundCytosol" value="20.0"/>
<parameter id="Kr_CalciumCalbindin_BoundCytosol" value="8.6"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction id="CalciumBuffer_gt_BoundCytosol" fast="true">

<listOfReactants>
<speciesReference species="Ca_C"/>
<speciesReference species="B_C"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="CaB_C"/>
</listOfProducts>
<kineticLaw>

<notes>
<p xmlns="http://www.w3.org/1999/xhtml">

(((Kf_CalciumBuffer_BoundCytosol * Ca_C) * B_C) -
(Kr_CalciumBuffer_BoundCytosol * CaB_C))

</p>
</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<minus/>
<apply>

<times/>
<ci> Kf_CalciumBuffer_BoundCytosol </ci>
<ci> Ca_C </ci>
<ci> B_C </ci>

</apply>
<apply>

<times/>

49



<ci> Kr_CalciumBuffer_BoundCytosol </ci>
<ci> CaB_C </ci>

</apply>
</apply>

</math>
<listOfParameters>

<parameter id="Kf_CalciumBuffer_BoundCytosol" value="0.1"/>
<parameter id="Kr_CalciumBuffer_BoundCytosol" value="1.0"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction id="Ca_Pump">

<listOfReactants>
<speciesReference species="Ca_C"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="Ca_EC"/>
</listOfProducts>
<listOfModifiers>

<modifierSpeciesReference species="CaPump_PM"/>
</listOfModifiers>
<kineticLaw>

<notes>
<p xmlns="http://www.w3.org/1999/xhtml">

((Vmax * kP * ((Ca_C - Ca_Rest) / (Ca_C + kP)) / (Ca_Rest + kP)) *
CaPump_PM)

</p>
</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<apply>

<times/>
<ci> Vmax </ci>
<ci> kP </ci>
<ci> CaPump_PM </ci>
<apply>

<minus/>
<ci> Ca_C </ci>
<ci> Ca_Rest </ci>

</apply>
</apply>
<apply>

<times/>
<apply>

<plus/>
<ci> Ca_C </ci>
<ci> kP </ci>

</apply>
<apply>

<plus/>
<ci> Ca_Rest </ci>
<ci> kP </ci>

</apply>
</apply>

</apply>
</math>
<listOfParameters>

<parameter id="Vmax" value="-4000"/>
<parameter id="kP" value="0.25"/>
<parameter id="Ca_Rest" value="0.1"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction id="Ca_channel">

<listOfReactants>
<speciesReference species="Ca_EC"/>

</listOfReactants>
<listOfProducts>

50



<speciesReference species="Ca_C"/>
</listOfProducts>
<listOfModifiers>

<modifierSpeciesReference species="CaCh_PM"/>
</listOfModifiers>
<kineticLaw>

<notes>
<p xmlns="http://www.w3.org/1999/xhtml">

(J0 * Kc * (Ca_EC - Ca_C) / (Kc + Ca_C) * CaCh_PM)
</p>

</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<apply>

<times/>
<ci> CaCh_PM </ci>
<ci> J0 </ci>
<ci> Kc </ci>
<apply>

<minus/>
<ci> Ca_EC </ci>
<ci> Ca_C </ci>

</apply>
</apply>
<apply>

<plus/>
<ci> Kc </ci>
<ci> Ca_C </ci>

</apply>
</apply>

</math>
<listOfParameters>

<parameter id="J0" value="0.014"/>
<parameter id="Kc" value="0.5"/>

</listOfParameters>
</kineticLaw>

</reaction>
</listOfReactions>

</model>
</sbml>

6 Discussion

The volume of data now emerging from molecular biotechnology leave little doubt that extensive computer-
based modeling, simulation and analysis will be critical to understanding and interpreting the data (Abbott,
1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik, 2000). This has lead to an explosion in the develop-
ment of computer tools by many research groups across the world. The explosive rate of progress is exciting,
but the rapid growth of the field is accompanied by problems and pressing needs.

One problem is that simulation models and results often cannot be directly compared, shared or re-used,
because the tools developed by different groups often are not compatible with each other. As the field
of systems biology matures, researchers increasingly need to communicate their results as computational
models rather than box-and-arrow diagrams. They also need to reuse published and curated models as
library components in order to succeed with large-scale efforts (e.g., the Alliance for Cellular Signaling;
Gilman, 2000; Smaglik, 2000). These needs require that models implemented in one software package be
portable to other software packages, to maximize public understanding and to allow building up libraries of
curated computational models.

We offer SBML to the systems biology community as a suggested format for exchanging models between
simulation/analysis tools. SBML is an open model representation language oriented specifically towards
representing systems of biochemical reactions.

51



Our vision for SBML is to create an open standard that will enable different software tools to exchange
computational models. SBML is not static; we continue to develop and experiment with it, and we interact
with other groups who seek to develop similar markup languages. We plan on continuing to evolve SBML
with the help of the systems biology community to make SBML increasingly more powerful, flexible and
useful.

6.1 Future Enhancements: SBML Level 3 and Beyond

As mentioned above, SBML Level 2 is intended to provide a foundation for modeling biochemical networks.
Many people have expressed a desire to see additional capabilities added to SBML. The following summarizes
additional features that are under consideration to be included in SBML Level 3:

• Arrays. This will enable the creation of arrays of components (species, reactions, compartments and
submodels).

• Connections. This will be a mechanism for describing the connections between items in an array.

• Geometry. This will enable the encoding of the spatial characteristics of models including the ge-
ometry of compartments, the diffusion properties of species and the specification of different species
concentrations across different regions of a cell.

• Model Composition. This will enable a large model to be built up out of instances of other models. It
will also allow the reuse of model components and the creation of several instances of the same model.

• Multi-state and Complex Species. This will allow the straight-forward construction of models involving
species with a large number of states or species composed of subcomponents. The representation
scheme would be designed to contain the combinatorial explosion of objects that often results from
these types of models.

• Controlled Vocabularies. This will enable models and model components to be labelled with instances
of controlled vocabularies. A model vocabulary will describe the SBML features used by a given model.

• Diagrams. This feature will allow components to be annotated with data to enable the display of the
model in a diagram.

• Dynamic Structure. This will enable model structure to vary during simulation. One aspect of aspect
of this allowing rules and reactions to have their effect conditional on the state of the model system.
For example in SBML Level 2 it is possible to create a rule with the effect:

ds

dt
=

{
0 if s > 0
y otherwise

Dynamic restructuring would enable the expression of the following example:

if s > 0
ds

dt
= y

where s is not determined by the rule when s ≤ 0.

• Rules for Initial Conditions. This will enable the encoding of rules that are only executed at the start
of a simulation i.e. set initial conditions. These rules will be similar to assignment rules and are
evaluated in the same sequence as assignment rules but only in the very first instance of simulation.

• Tie-breaking algorithm. This will include a controlled vocabulary and associated fields on models to
indicate the simultaneous event tie-breaking algorithm required to correctly simulate the model.

• Composed Units. This will enable a unit definition to be composed from one or more other unit
definitions.

52



6.2 Relationships to Other Efforts

There are a number of ongoing efforts with similar goals as those of SBML. Many of them are oriented more
specifically toward describing protein sequences, genes and related entities for database storage and search.
These are generally not intended to be computational models, in the sense that they do not describe entities
and behavioral rules in such a way that a simulation package could “run” the models.

The effort perhaps closest in spirit to SBML is CellMLTM (Hedley et al., 2001). CellML is an XML-based
markup language designed for storing and exchanging computer-based biological models. It includes facilities
for representing model structure, mathematics and additional information for database storage and search.
Models are described in terms of networks of connections between discrete components, where a component
is a functional unit that may correspond to a physical compartment or simply a convenient modeling abstrac-
tion. Components contain variables and connections contain mappings between the variables of connected
components. CellML provides facilities for grouping components and specifying the kinds of relationships
that may exist between components. It also uses MathML (W3C, 2000b) for expressing mathematical rela-
tionships between components and provides the ability to use ECMAScript (formerly known as JavaScript)
to define functions.

The constructs in CellML tend to be at a more abstract and general level than those in SBML Level 2, and
describe the structure and underlying mathematics of cellular models in a very general way. By contrast,
SBML is closer to the internal object model used in model analysis software. Because SBML Level 2 is being
developed in the context of interacting with a number of existing simulation packages, it is a more concrete
language than CellML and may be better suited to its purpose of enabling interoperability with existing
simulation tools.

The development of SBML Level 2 has benefited from discussions with the developers of CellML. The
developers of SBML and CellML are actively engaged in ensuring that the two representations can be
translated between each other.

Acknowledgments

SBML was developed with funding and support from the ERATO Kitano Symbiotic Systems project, a
project funded by the Japan Science and Technology Corporation and hosted in part at the California
Institute of Technology.

SBML was first conceived at the JST/ERATO-sponsored First Workshop on Software Platforms for Systems
Biology, held in April, 2000, at the California Institute of Technology in Pasadena, California, USA. The
participants collectively decided to begin developing a common XML-based declarative language for repre-
senting models. A draft version of the Systems Biology Markup Language was developed by the Caltech
ERATO team and delivered to all collaborators in August, 2000. This draft version underwent extensive
discussion over mailing lists and then again during the Second Workshop on Software Platforms for Systems
Biology held in Tokyo, Japan, November 2000. A revised version of SBML was issued by the Caltech ERATO
team in December, 2000, and after further discussions over mailing lists and in meetings, we produced a
description of SBML Level 1 (Hucka et al., 2001).

SBML Level 2 was conceived at the 5th Workshop on Software Platforms for Systems Biology, held in July
2002, at the University of Hertfordshire, UK. The participants collectively decided to revise the form of
SBML in Level 2. The first draft of this document was released in August 2002. The final set of features
in SBML Level 2 described in this document was finalized in May 2003 at the 7th Workshop on Software
Platforms for Systems Biology in Ft. Lauderdale, Florida.

SBML Level 2 was developed with the help of many people, especially the authors of BASIS, BioSketchPad,
BioSpice, CellDesigner, Cellerator, CellML, COPASI, DBSolve, E-Cell, ESS, Gepasi, Jarnac, JDesigner,
JigCell, MCell, NetBuilder, Promot/DIVA, StochSim, and Virtual Cell, and members of the sysbio and
sbml-discuss mailing lists. We are particularly grateful to the following people for discussions, advice and
comments: Nicolas Allen, Adam Arkin, Hamid Bolouri, Ben Bornstein, Dennis Bray, Roger Brent, Steve
Burbeck, Claudine Chaouiya, Kwang Cho, Athel Cornish-Bowden, Manuel Corpas, Autumn Cuellar, John

53



Doyle, Serge Dronov, Drew Endy, David Fell, Carl Firth, Ed Frank, Akira Funahashi, Ralph Gauges, Mar-
tin Ginkel, Victoria Gor, Igor Goryanin, Warren Hedley, Charles Hodgman, Stefan Hoops, Nick Juty, Jay
Kaserger, Sarah Keating, Hiroaki Kitano, Ben Kovitz, Andreas Kremling, Nicolas Le Novère, Fred Liv-
ingston, Les Loew, Daniel Lucio, Joanne Matthews, Mike McCollum, Pedro Mendes, Eric Minch, Eric Mjol-
sness, David Morley, Mineo Morohashi, Poul Nielsen, Greg Peterson, Mark Poolman, Carole Proctor, Wayne
Rindone, Sven Sahle, Takeshi Sakurada, Vijay Saraswat, Herbert Sauro, James Schaff, Maria Schilstra, John
Schwacke, Cliff Shaffer, Bruce Shapiro, Tom Shimizu, Herbert Sauro, Hugh Spence, Jörg Stelling, Kouichi
Takahashi, Masaru Tomita, Marc Vass, John Wagner, Jonathan Webb, Jörg Weimar, Darren Wilkinson,
Olaf Wolkenhauer and Tau-Mu Yi.

54



Appendix

A Summary of Notation

The definitive explanation for the notation used in this document can be found in the companion notation
document (Hucka, 2000). Here we briefly summarize some of the main components of the notations used in
describing SBML.

Within the definitions of the various object classes introduced in this document, the following types of
expressions are used many times:

field1 : float
field2 : integer[0..*]
field3 : float {use = "optional" default = "0.0"}
math : Math {namespace="http://www.w3.org/1998/Math/MathML"}
field4 : (math : Math {namespace="http://www.w3.org/1998/Math/MathML"})

The symbols field1, field2, etc., represents fields in a data structure. The colon immediately after the
name separates the name of the field from the type of data that it stores.

More complex specifications use square brackets ([]) just after a type name. This is used to indicate that
the field contains a list of elements of the same type. Specifically, the notation [0..*] signifies a list con-
taining zero or more elements; the notation [1..*] signifies a list containing at least one element; and so
on. The approach used here to translate from a list form into XML is, first, create a subelement named
listOf s, where the blank indicates the capitalized name of the field, and then put a sequences of ele-
ments each named after the type of the field as the content of the listOf s element. listOf s
elements representing list of the form [0..*] are optional: a missing listOf element indicates that
the list is empty. listOf elements should always have content.

Expressions in curly braces ({}) shown after an field type indicate additional constraints placed on the field.
We express constraints using XML Schema language. In the examples above, the text {use="optional"
default="0.0"} indicates that the field field3 is optional and that it has a default value of 0.0. A constraint
of the form {namespace="X "} indicates that the field is not in the SBML Level 2 XML namespace but resides
in the given XML namespace X. If a field is in a different namespace then the type of the field will not be
defined by the SBML UML. In the examples above, the math field and its content is defined in the MathML
namespace.

A field definition of the form X : (A : B) defines an element X that contains a field A with type B. If A
is the string ANY then the element X contains an arbitrary sequence of elements. A field definition of the
form X : ( A : B ) { C } is similar except that the field X and its content is constrained by constraint
C. A field definition of the form X : ( A : B { C } ) is similar except that the field A and its content
is constrained by constraint C. In the examples above the field field4 is an element which contains a math
field. The math field is in the MathML namespace but field4 is in the SBML namespace.

B Differences between SBML Level 1 Version 2 and Level 2

Compared to SBML Level 1 Version 2, SBML Level 2 introduces the following changes:

• SBML Level 2 supports the inclusion of metadata using the same approach as CellML (Cuellar et al.,
2002). All structures in SBML can be annotated with optional content in RDF (Resource Description
Format; Lassila and Swick, 1999) following the guidelines put forward by Cuellar et al.. (Section 3.1.)

• All data structures, including Sbml and listOf elements, are now derived from the type SBase.
(Section 3.1.) This means all major structures in SBML can have separate annotations and metadata
associated with them.

• A new field, id, replaces the name field previously defined for most SBML structures to identify each
part of a model. (See Section 3.3.) The id field has a type of SId, whose definition is similar to SName

55



in Level 1. In SBML Level 2, the name field is optional and is defined to allow any Unicode characters
allowed by the string type of XML Schema (Biron and Malhotra, 2000).

• Formulas in Level 2 are expressed using MathML (W3C, 2000b) 2.0. The field named formula pre-
viously available on the KineticLaw and Rule structures has been replaced by a MathML element
named math containing MathML content. In addition, stoichiometry numbers may now be expressed
using MathML, allowing for more flexibility in defining reactions. (Sections 3.6, 4.8 and 4.9.)

• The namespace for identifiers in a model does not contain any built-in symbols; gone, for example,
are the predefined rate laws of SBML Level 1. The approach taken in SBML Level 2 is that each
model must itself define whatever functions it needs using the new FunctionDefinition mechanism.
Although SBML Level 2 does define two built-in entities (a symbol representing time and another
symbol representing delay functions), these are referenced using a feature of MathML and are not in
the same namespace as identifiers defined by a model. (Section 3.6.4.)

• SBML Level 2 makes explicit a previously unstated assumption, that the XML encoding of a model uses
UTF-8. SBML documents must refer to the UTF-8 encoding in their XML declaration. (Section 4.1.)

• The top-level Model structure can contain an optional list of global user-defined functions expressed in
MathML and organized in new structures of type FunctionDefinition. (Sections 4.2 and 4.3.)

• The top-level Model structure can contain an optional list of event definitions organized in structures of
type Event. Events define discrete changes in model behavior at specific times during a time simulation
of the model. (Section 4.2 and 4.10.)

• Unlike in SBML Level 1, unit identifiers in Level 2 are in a separate namespace from the namespace
used for models, functions, species, compartments, reactions and parameters. Also, the unit names
“meter” and “liter” are not defined in Level 2 because the SBML user community deemed them
unnecessary. Finally, Unit structures now have the additional fields multiplier and offset to enable
the definition of non-SI units. (Section 4.4.)

• The Compartment structure has a new field, spatialDimensions, whose value is a positive integer
specifying the number of dimensions in space the compartment possesses. This enables the definition
of such things as two-dimensional membranes. As a side-effect, the units of species concentration in
SBML Level 2 depend on the spatial dimensions of the compartment where the species is located. To
support these new capabilities, Compartment now uses a field named size instead of volume, and there
are two new built-in units for area and length. (Sections 4.4 and 4.5.)

• All fields representing initial conditions or parameter values, including compartment sizes and species
concentrations, are optional in Level 2. A missing value for one of these fields implies that the value is
either unknown, not required for analysis, or should be obtained from an external source. (Sections 4.5,
4.6 and 4.7.)

• The Compartment, Species and Parameter structures each have a new boolean field named constant.
This field specifies whether the variables represented by these structures can be changed by rules and
reactions. (Sections 4.5, 4.6 and 4.7.)

• The Species structure has a new field, initialConcentration, for setting the initial value of a species
in terms of its concentration. This is in addition to the ability, carried over from Level 1, to set the
values in terms of amounts. (Section 4.6.)

• The Species structure has two new fields, spatialSizeUnits and substanceUnits, which replace
the units field in Level 1. These fields are composed to form the concentration units of the species
symbol. (Section 4.6.)

• The rule structures are simpler compared to SBML Level 1. There is no longer a type field on
Rule, and new structures AssignmentRule and RateRule replace SBML Level 1’s ParameterRule,
SpeciesConcentrationRule and CompartmentVolumeRule. (Section 4.8.)

56



• The Reaction structure has a new list of modifiers in addition to the list of reactants and products.
The listOfModifiers enumerates species that affect a reaction but are neither created nor destroyed
by the reaction. (Section 4.9.)

C XML Schema for SBML

The following is an XML Schema definition for the SBML Level 2 Version 1, using the W3C Recommendation
for XML Schema version 1.0 of 2 May 2001 (Biron and Malhotra, 2000; Fallside, 2000; Thompson et al.,
2000). This schema does not define all aspects of SBML Level 2: a SBML document validated by this schema
is not necessarily a valid SBML Level 2 document.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema

targetNamespace="http://www.sbml.org/sbml/level2"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns="http://www.sbml.org/sbml/level2"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1">

<xsd:import
namespace="http://www.w3.org/1998/Math/MathML"
schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"/>

<xsd:annotation>
<xsd:documentation>

File name : sbml.xsd
Author : M. Hucka, A. Finney, D. Lucio
Description : XML Schema for the Systems Biology Markup Language Level 2.

This is designed for XML Schema version 1.0.
Version : 1

Copyright 2003 California Institute of Technology and Japan Science and
Technology Corporation.

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License, or
any later version.

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY, WITHOUT EVEN THE IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. The software
and documentation provided hereunder is on an "as is" basis, and the
California Institute of Technology and Japan Science and Technology
Corporation have no obligations to provide maintenance, support,
updates, enhancements or modifications. In no event shall the
California Institute of Technology or the Japan Science and Technology
Corporation be liable to any party for direct, indirect, special,
incidental or consequential damages, including lost profits, arising
out of the use of this software and its documentation, even if the
California Institute of Technology and/or Japan Science and Technology
Corporation have been advised of the possibility of such damage. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

</xsd:documentation>
</xsd:annotation>
<!--The definition of SId follows.-->
<xsd:simpleType name="SId">

<xsd:annotation>
<xsd:documentation>

The type SId is used throughout SBML as the type of the ’id’
attributes on model elements.

57



</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:pattern value="(_|[a-z]|[A-Z])(_|[a-z]|[A-Z]|[0-9])*"/>
</xsd:restriction>

</xsd:simpleType>
<!--The definition of SBase follows.-->
<xsd:complexType name="SBase" abstract="true">

<xsd:annotation>
<xsd:documentation>

The SBase type is the base type of all main components in SBML.
It supports attaching metadata, notes and annotations to components.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="notes" minOccurs="0">
<xsd:complexType>

<xsd:sequence>
<xsd:any

namespace="http://www.w3.org/1999/xhtml"
processContents="skip"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="annotation" minOccurs="0">

<xsd:complexType>
<xsd:sequence>

<xsd:any processContents="skip" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="metaid" type="xsd:ID" use="optional"/>

</xsd:complexType>
<!--The definition of FunctionDefinition follows.-->
<xsd:complexType name="FunctionDefinition">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element ref="mml:math"/>

</xsd:sequence>
<xsd:attribute name="id" type="SId" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!--The definition of UnitKind follows.-->
<xsd:simpleType name="UnitKind">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="ampere"/>
<xsd:enumeration value="becquerel"/>
<xsd:enumeration value="candela"/>
<xsd:enumeration value="Celsius"/>
<xsd:enumeration value="coulomb"/>
<xsd:enumeration value="dimensionless"/>
<xsd:enumeration value="farad"/>
<xsd:enumeration value="gram"/>
<xsd:enumeration value="gray"/>
<xsd:enumeration value="henry"/>
<xsd:enumeration value="hertz"/>
<xsd:enumeration value="item"/>
<xsd:enumeration value="joule"/>
<xsd:enumeration value="katal"/>
<xsd:enumeration value="kelvin"/>
<xsd:enumeration value="kilogram"/>
<xsd:enumeration value="litre"/>
<xsd:enumeration value="lumen"/>
<xsd:enumeration value="lux"/>

58



<xsd:enumeration value="metre"/>
<xsd:enumeration value="mole"/>
<xsd:enumeration value="newton"/>
<xsd:enumeration value="ohm"/>
<xsd:enumeration value="pascal"/>
<xsd:enumeration value="radian"/>
<xsd:enumeration value="second"/>
<xsd:enumeration value="siemens"/>
<xsd:enumeration value="sievert"/>
<xsd:enumeration value="steradian"/>
<xsd:enumeration value="tesla"/>
<xsd:enumeration value="volt"/>
<xsd:enumeration value="watt"/>
<xsd:enumeration value="weber"/>

</xsd:restriction>
</xsd:simpleType>
<!--The definition of Unit follows.-->
<xsd:complexType name="Unit">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="kind" type="UnitKind" use="required"/>
<xsd:attribute name="exponent" type="xsd:integer" default="1"/>
<xsd:attribute name="scale" type="xsd:integer" default="0"/>
<xsd:attribute name="multiplier" type="xsd:double" default="1"/>
<xsd:attribute name="offset" type="xsd:double" default="0"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!--The definition of UnitDefinition follows.-->
<xsd:complexType name="ListOfUnits">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="unit" type="Unit" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="UnitDefinition">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="listOfUnits" type="ListOfUnits"/>

</xsd:sequence>
<xsd:attribute name="id" type="SId" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!--The definition of Compartment follows.-->
<xsd:complexType name="Compartment">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="size" type="xsd:double" use="optional"/>
<xsd:attribute name="spatialDimensions" use="optional" default="3">

<xsd:simpleType>
<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="3"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name="units" type="SId" use="optional"/>
<xsd:attribute name="outside" type="SId" use="optional"/>
<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="true"/>

</xsd:extension>
</xsd:complexContent>

59



</xsd:complexType>
<!--The definition of Species follows.-->
<xsd:complexType name="Species">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="compartment" type="SId"/>
<xsd:attribute name="initialAmount" type="xsd:double" use="optional"/>
<xsd:attribute name="initialConcentration" type="xsd:double" use="optional"/>
<xsd:attribute name="substanceUnits" type="SId" use="optional"/>
<xsd:attribute name="spatialSizeUnits" type="SId" use="optional"/>
<xsd:attribute

name="hasOnlySubstanceUnits"
type="xsd:boolean"
use="optional"
default="false"/>

<xsd:attribute
name="boundaryCondition"
type="xsd:boolean"
use="optional"
default="false"/>

<xsd:attribute name="charge" type="xsd:integer" use="optional"/>
<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="false"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!--The definition of Parameter follows.-->
<xsd:complexType name="Parameter">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="value" type="xsd:double" use="optional"/>
<xsd:attribute name="units" type="SId" use="optional"/>
<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="true"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="ListOfParameters">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="parameter" type="Parameter" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<!--The definition of Rule follows. -->
<xsd:complexType name="Rule" abstract="true">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element ref="mml:math"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="AlgebraicRule">

<xsd:complexContent>
<xsd:extension base="Rule"/>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="AssignmentRule">

<xsd:complexContent>
<xsd:extension base="Rule">

<xsd:attribute name="variable" type="SId" use="required"/>
</xsd:extension>

</xsd:complexContent>

60



</xsd:complexType>
<xsd:complexType name="RateRule">

<xsd:complexContent>
<xsd:extension base="Rule">

<xsd:attribute name="variable" type="SId" use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<!--The definition of Reaction follows.-->
<xsd:complexType name="KineticLaw">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element ref="mml:math"/>
<xsd:element name="listOfParameters" type="ListOfParameters" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="timeUnits" type="SId" use="optional"/>
<xsd:attribute name="substanceUnits" type="SId" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="SimpleSpeciesReference" abstract="true">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="species" type="SId" use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="ModifierSpeciesReference">

<xsd:complexContent>
<xsd:extension base="SimpleSpeciesReference"/>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="ListOfModifierSpeciesReferences">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element

name="modifierSpeciesReference"
type="ModifierSpeciesReference"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="StoichiometryMath">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element ref="mml:math"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="SpeciesReference">

<xsd:complexContent>
<xsd:extension base="SimpleSpeciesReference">

<xsd:sequence>
<xsd:element name="stoichiometryMath" type="StoichiometryMath" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="stoichiometry" type="xsd:double" use="optional" default="1"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="ListOfSpeciesReferences">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element

61



name="speciesReference" type="SpeciesReference" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="Reaction">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element

name="listOfReactants" type="ListOfSpeciesReferences" minOccurs="0"/>
<xsd:element

name="listOfProducts" type="ListOfSpeciesReferences" minOccurs="0"/>
<xsd:element

name="listOfModifiers"
type="ListOfModifierSpeciesReferences"
minOccurs="0"/>

<xsd:element
name="kineticLaw" type="KineticLaw" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="id" type="SId" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="reversible" type="xsd:boolean" use="optional" default="true"/>
<xsd:attribute name="fast" type="xsd:boolean" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!--The definition of Event follows.-->
<xsd:complexType name="EventAssignment">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element ref="mml:math"/>

</xsd:sequence>
<xsd:attribute name="variable" type="SId" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="ListOfEventAssignments">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element

name="eventAssignment" type="EventAssignment" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="MathField">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element ref="mml:math"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="Event">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="trigger" type="MathField"/>
<xsd:element name="delay" type="MathField" minOccurs="0"/>
<xsd:element name="listOfEventAssignments" type="ListOfEventAssignments"/>

</xsd:sequence>
<xsd:attribute name="id" type="SId" use="optional"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="timeUnits" type="SId" use="optional"/>

</xsd:extension>

62



</xsd:complexContent>
</xsd:complexType>
<!-- The definition of Model follows.-->
<xsd:complexType name="Model">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="listOfFunctionDefinitions" minOccurs="0">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:sequence>

<xsd:element
name="functionDefinition"
type="FunctionDefinition"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="listOfUnitDefinitions" minOccurs="0">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:sequence>

<xsd:element
name="unitDefinition"
type="UnitDefinition"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="listOfCompartments" minOccurs="0">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:sequence>

<xsd:element
name="compartment"
type="Compartment"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="listOfSpecies" minOccurs="0">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:sequence>

<xsd:element
name="species" type="Species" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="listOfParameters" minOccurs="0">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:sequence>

<xsd:element
name="parameter"
type="Parameter"

63



maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="listOfRules" minOccurs="0">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:choice maxOccurs="unbounded">

<xsd:element
name="algebraicRule"
type="AlgebraicRule"
minOccurs="0"/>

<xsd:element
name="assignmentRule"
type="AssignmentRule"
minOccurs="0"/>

<xsd:element
name="rateRule"
type="RateRule"
minOccurs="0"/>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="listOfReactions" minOccurs="0">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:sequence>

<xsd:element
name="reaction" type="Reaction" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="listOfEvents" minOccurs="0">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:sequence>

<xsd:element
name="event" type="Event" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="SId" use="optional"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- The following is the type definition for the top-level element in an SBML document.-->
<xsd:complexType name="Sbml">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="model" type="Model"/>

</xsd:sequence>
<xsd:attribute name="level" type="xsd:positiveInteger" use="required" fixed="2"/>
<xsd:attribute name="version" type="xsd:positiveInteger" use="required" fixed="1"/>

</xsd:extension>
</xsd:complexContent>

64



</xsd:complexType>
<!--The following is the (only) top-level element allowed in an SBML document.-->
<xsd:element name="sbml" type="Sbml"/>
<!--The end.-->

</xsd:schema>

65



References
Abbott, A. (1999). Alliance of US labs plans to build map of cell signalling pathways. Nature, 402:219–200.

Arkin, A. P. (2001). Simulac and Deduce. Available via the World Wide Web at http://gobi.lbl.gov/
~aparkin/Stuff/Software.html.

Bartol, T. M. and Stiles, J. R. (2002). MCell. Available via the World Wide Web at http://www.mcell.
cnl.salk.edu/.

Belta, C., Goulian, M., Gowen, S., Ivancic, F., Kumar, V., Owen, A., Rubin, H., Rubin, M., Schug, J.,
Sokolsky, O., Webb, J., and Welber, L. (2003). Bio Sketch Pad. Available via the World Wide Web at
http://bio.bbn.com/biospice/biosketchpad/.

Biron, P. V. and Malhotra, A. (2000). XML Schema part 2: Datatypes (W3C candidate recommendation
24 October 2000). Available via the World Wide Web at http://www.w3.org/TR/xmlschema-2/.

Bosak, J. and Bray, T. (1999). XML and the second-generation Web. Scientific American, 280(5):89–93.

Bray, D., Firth, C., Le Novère, N., and Shimizu, T. (2001). StochSim. Available via the World Wide Web
at http://www.zoo.cam.ac.uk/comp-cell/StochSim.html.

Bray, T., D. Hollander, D., and Layman, A. (1999). Namespaces in XML. World Wide Web Con-
sortium 14-January-1999. Available via the World Wide Web at http://www.w3.org/TR/1999/
REC-xml-names-19990114/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. (2000). Extensible markup language (XML)
1.0 (second edition), W3C recommendation 6-October-2000. Available via the World Wide Web at http:
//www.w3.org/TR/1998/REC-xml-19980210.

Bureau International des Poids et Mesures (2000). The International System of Units (SI) supplement
2000: addenda and corrigenda to the 7th edition (1998). Available via the World Wide Web at http:
//www.bipm.fr/pdf/si-supplement2000.pdf.

Cuellar, A. A., Nelson, M., and Hedley, W. (2002). The CellML metadata 1.0 specification working draft—
16 January 2002. Available via the World Wide Web at http://cellml.org/public/metadata/cellml_
metadata_specification.html.

Eriksson, H.-E. and Penker, M. (1998). UML Toolkit. John Wiley & Sons, New York.

Fallside, D. C. (2000). XML Schema part 0: Primer (W3C candidate recommendation 24 October 2000).
Available via the World Wide Web at http://www.w3.org/TR/xmlschema-0/.

Funahashi, A. and Kitano, H. (2003). CellDesigner. Available via the World Wide Web at http://www.
systems-biology.org/.

Gilman, A. (2000). A letter to the signaling community. Alliance for Cellular Signaling, The University
of Texas Southwestern Medical Center. Available via the World Wide Web at http://afcs.swmed.edu/
afcs/Letter_to_community.htm.

Goryanin, I. (2001). DBsolve: Software for metabolic, enzymatic and receptor-ligand binding simulation.
Available via the World Wide Web at http://homepage.ntlworld.com/igor.goryanin/.

Goryanin, I., Hodgman, T. C., and Selkov, E. (1999). Mathematical simulation and analysis of cellular
metabolism and regulation. Bioinformatics, 15(9):749–758.

Harold, E. R. and Means, E. S. (2001). XML in a Nutshell. O’Reilly & Associates.

Hedley, W. J., Nelson, M. R., Bullivant, D., Cuellar, A., Ge, Y., Grehlinger, M., Jim, K., Lett, S., Nickerson,
D., Nielsen, P., and Yu, H. (2001). CellML specification. Available via the World Wide Web at http:
//www.cellml.org/public/specification/20010810/cellml_specification.html.

66

http://gobi.lbl.gov/~aparkin/Stuff/Software.html
http://gobi.lbl.gov/~aparkin/Stuff/Software.html
http://www.mcell.cnl.salk.edu/
http://www.mcell.cnl.salk.edu/
http://bio.bbn.com/biospice/biosketchpad/
http://www.w3.org/TR/xmlschema-2/
http://www.zoo.cam.ac.uk/comp-cell/StochSim.html
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.bipm.fr/pdf/si-supplement2000.pdf
http://www.bipm.fr/pdf/si-supplement2000.pdf
http://cellml.org/public/metadata/cellml_metadata_specification.html
http://cellml.org/public/metadata/cellml_metadata_specification.html
http://www.w3.org/TR/xmlschema-0/
http://www.systems-biology.org/
http://www.systems-biology.org/
http://afcs.swmed.edu/afcs/Letter_to_community.htm
http://afcs.swmed.edu/afcs/Letter_to_community.htm
http://homepage.ntlworld.com/igor.goryanin/
http://www.cellml.org/public/specification/20010810/cellml_specification.html
http://www.cellml.org/public/specification/20010810/cellml_specification.html


Hucka, M. (2000). SCHUCS: A notation for describing model representations intended for XML encoding.
Available via the World Wide Web at http://www.sbml.org/.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001). Systems Biology Markup Language (SBML)
Level 1: Structures and facilities for basic model definitions. Available via the World Wide Web at
http://www.sbml.org.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J.,
Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I.,
Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A.,
Kummer, U., Le Novère, N., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama,
Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence,
H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003). The Systems Biology
Markup Language (SBML): A medium for representation and exchange of biochemical network models.
Bioinformatics, 19(4):524–531.

Kirkwood, T. B. L., Boys, R. J., Gillespie, C. S., Proctor, C. J., Shanley, D. P., and Wilkinson, D. J. (2003).
Towards an e-biology of ageing: integrating theory and data. Nature Reviews Molecular Cell Biology,
4:243–249.

Lassila, O. and Swick, R. (1999). Resource description framework (RDF) model and syntax specification.
Available via the World Wide Web at http://www.w3.org/TR/REC-rdf-syntax/.

McCollum, M. and Lancaster, J. (2003). Biospreadsheet.

Mendes, P. (1997). Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends
in Biochemical Sciences, 22:361–363.

Mendes, P. (2000). New research software to simulate biochemical processes. Available via the World Wide
Web at http://www.vbi.vt.edu/pr/press_releases/press_20001218_news_new-software.htm.

Mendes, P. (2001). Gepasi 3.21. Available via the World Wide Web at http://www.gepasi.org.

Minch, E., de Rinaldis, M., and Weiss, S. (2003). pathSCOUT: exploration and analysis of biochemical
pathways. Bioinformatics, 19(3):431–432.

Morton-Firth, C. J. and Bray, D. (1998). Predicting temporal fluctuations in an intracellular signalling
pathway. Journal of Theoretical Biology, 192:117–128.

Oestereich, B. (1999). Developing Software with UML: Object-Oriented Analysis and Design in Practice.
Addison-Wesley Publishing Company.

Peterson, G. D. and Drager, S. L. (2003). Accelerating defense applications using high performance reconfig-
urable computing. In Proceedings of 2003 Government Microcircuit Applications Conference (GOMAC),
pages 544–547, Tampa, Florida, USA.

Popel, A. and Winslow, R. L. (1998). A letter from the directors... Center for Computational Medicine &
Biology, Johns Hopkins School of Medicine, Johns Hopkins University. Available via the World Wide Web
at http://www.bme.jhu.edu/ccmb/ccmbletter.html.

Sauro, H. M. (2000). Jarnac: A system for interactive metabolic analysis. In Hofmeyr, J.-H. S., Rohwer,
J. M., and Snoep, J. L., editors, Animating the Cellular Map: Proceedings of the 9th International Meeting
on BioThermoKinetics. Stellenbosch University Press.

Sauro, H. M. and Fell, D. A. (1991). SCAMP: A metabolic simulator and control analysis program. Mathl.
Comput. Modelling, 15:15–28.

Sauro, H. S. (2001). JDesigner: A simple biochemical network designer. Available via the World Wide Web
at http://members.tripod.co.uk/sauro/biotech.htm.

67

http://www.sbml.org/
http://www.sbml.org
http://www.w3.org/TR/REC-rdf-syntax/
http://www.vbi.vt.edu/pr/press_releases/press_20001218_news_new-software.htm
http://www.gepasi.org
http://www.bme.jhu.edu/ccmb/ccmbletter.html
http://members.tripod.co.uk/sauro/biotech.htm


Schaff, J., Slepchenko, B., and Loew, L. M. (2000). Physiological modeling with the Virtual Cell framework.
In Johnson, M. and Brand, L., editors, Methods in Enzymology, volume 321, pages 1–23. Academic Press,
San Diego.

Schaff, J., Slepchenko, B., Morgan, F., Wagner, J., Resasco, D., Shin, D., Choi, Y. S., Loew, L., Carson,
J., Cowan, A., Moraru, I., Watras, J., Teraski, M., and Fink, C. (2001). Virtual Cell. Available via the
World Wide Web at http://www.nrcam.uchc.edu.

Schilstra, M. and Bolouri, H. (2002). Netbuilder. Available via the World Wide Web at http://strc.
herts.ac.uk/bio/maria/NetBuilder/index.html.

Shapiro, B. E., Levchenko, A., and Mjolsness, E. (2001). Automatic model generation for signal transduc-
tion with applications to MAP-kinase pathways. In Kitano, H., editor, Foundations of Systems Biology,
chapter 7, pages 145–161. MIT Press.

Shapiro, B. E., Levchenko, A., and Mjolsness, E. D. (2003). Cellerator web site. Available via the World
Wide Web at http://www-aig.jpl.nasa.gov/public/mls/cellerator.

Smaglik, P. (2000). For my next trick... Nature, 407:828–829.

Stelling, J., Ginkel, M., Bettenbrok, K., and Gilles, E. D. (2001). Towards a virtual biological laboratory.
In Kitano, H., editor, Foundations of Systems Biology, chapter 5, pages 189–212. MIT Press.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2000). XML Schema part 1: Structures
(W3C candidate recommendation 24 October 2000). Available via the World Wide Web at http://www.
w3.org/TR/xmlschema-1/.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S.,
Yugi, K., Venter, J. C., and Hutchison, C. (1999). E-Cell: Software environment for whole cell simulation.
Bioinformatics, 15(1):72–84.

Tomita, M., Nakayama, Y., Naito, Y., Shimizu, T., Hashimoto, K., Takahashi, K., Matsuzaki, Y., Yugi, K.,
Miyoshi, F., Saito, Y., Kuroki, A., Ishida, T., Iwata, T., Yoneda, M., Kita, M., Yamada, Y., Wang, E.,
Seno, S., Okayama, M., Kinoshita, A., Fujita, Y., Matsuo, R., Yanagihara, T., Watari, D., Ishinabe, S.,
and Miyamoto, S. (2001). E-Cell. Available via the World Wide Web at http://www.e-cell.org/.

Unicode Consortium (1996). The Unicode Standard, Version 2.0. Addison-Wesley Developers Press, Reading,
Massachusetts.

Vass, M., Shaffer, C. A., Tyson, J. J., Ramakrishnan, N., and Watson, L. T. (2003). The jigcell model
builder: A tool for modeling intra-cellular regulatory networks. Bioinformatics. In Press.

W3C (2000a). Naming and addressing: URIs, URLs, ... Available via the World Wide Web at http:
//www.w3.org/Addressing/.

W3C (2000b). W3C’s math home page. Available via the World Wide Web at http://www.w3.org/Math/.

68

http://www.nrcam.uchc.edu
http://strc.herts.ac.uk/bio/maria/NetBuilder/index.html
http://strc.herts.ac.uk/bio/maria/NetBuilder/index.html
http://www-aig.jpl.nasa.gov/public/mls/cellerator
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.e-cell.org/
http://www.w3.org/Addressing/
http://www.w3.org/Addressing/
http://www.w3.org/Math/

	Introduction
	Scope and Limitations
	Notational Conventions

	Overview of SBML
	Preliminary Definitions
	Type SBase and the SBML Type Inheritance Hierarchy
	Guidelines for the Use of the annotation Field in SBase
	The id and name Fields on SBML Components
	Type SId
	Component Identifiers and Namespaces in SBML
	Mathematical Formulas in SBML Level 2

	SBML Components
	The SBML Container
	Models
	Function Definitions
	Unit Definitions
	Compartments
	Species
	Parameters
	Rules
	Reactions
	Events

	Example Models Expressed in XML Using SBML
	A Simple Example Application of SBML
	Example Involving Units
	Example Involving Assignment Rules
	Example Involving Algebraic Rules
	Example Involving Combinations of boundaryCondition and constant Values on Species with RateRule structures
	Example of translation from a multi-compartmental model to ODEs
	Example Involving Function Definitions
	Example Involving delay Functions
	Example Involving Events
	Example Involving Two-Dimensional Compartments

	Discussion
	Future Enhancements: SBML Level 3 and Beyond
	Relationships to Other Efforts

	Acknowledgments
	Appendix
	Summary of Notation
	Differences between SBML Level 1 Version 2 and Level 2
	XML Schema for SBML
	References

