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In this article we provide a brief analysis of the Soar archi- 
tecture [Laird et al., 1987; Laird et al., 1990; Rosenbloom et 
al., 1991a] with respect to the issues listed in the preface of 
this collection. 

1 I n t e g r a t i o n  R e q u i r e m e n t s  

Soar was originally designed to be an architecture that  
supported a wide range of methods for problem solving. 
We also had the goal that  it  be extensible to cover the 
full range of tasks performed by humans. Originally, we 
did not a t tempt  to closely model human behavior, but in- 
stead, used human behavior as a guideline for general in- 
telligence. Only recently have we taken the structure of 
Soar as a theory for human cognition [Lewis et al., 1990; 
Newell, 1990]. Because of our goals of generality and flexibil- 
ity across a wide variety of domains, integration has always 
been a primary concern in the design of Soar. Toward that  
end, Soar has evolved over the last eight years to include au- 
tomatic subgoaling, learning, and interaction with external 
environments. As we have been extending its capabilities, we 
have also been demonstrating it on tasks that  require integra- 
tion of many capabilities, including expert  systems, cognitive 
modeling, robotic control, and natural  language understand- 
ing. 

2 B a c k g r o u n d  I n f l u e n c e s  

Soar is inspired by many previous research efforts in arti- 
ficial intelligence and psychology. The concept of problem 
spaces and heuristic search that  were demonstrated in GPS 
[Ernst and Newell, 1969] are central to Soar. Soar's long- 
term memory is a production system that  has its roots both 
in psychology and AI [Newell, 1973]. Soar grew out of the 
instructable production system project at Carnegie Mellon 
University [Rychener and Newell, 1978; Rychener, 1983] and 
was originally built upon Xaps2 [Rosenbloom and Newell, 
1987] and then OPS5 [Forgy, 1981]. Soar's subgoaling mech- 
anism is a generalization of earlier work on impasse-driven 
Repair Theory [Brown and VanLehn, 1980], while chunking 
has its roots in the study of human practice and skill acqui- 
sition [Newell and Rosenbloom, 1981]. 

3 A r c h i t e c t u r e  C o m p o n e n t s  

Soar can be described at three levels: the knowledge level 
[Newell, 1982; Rosenbloom et al., 1991b], the problem space 
level [Newell et ai., 1991], and the symbol level. A knowledge 
level description of a system abstracts away from the under- 
lying structure and thus does not provide any insight into 
integration issues except possibly that  the system can pro- 
duce behavior that  one would expect requires the integration 
of multiple capabilities. 

*This research was sponsored by grants NCC2-517 and 
NCC2-538 from NASA Ames. 

3 .1  P r o b l e m  S p a c e  L e v e l  

At the problem space level, Soar is described in terms of the 
variety of problem spaces it uses on a task, and within a 
problem space, the states and operators it uses to solve prob- 
lems within that  space. At this level, we can identify problem 
spaces specialized for external interaction, natural  language 
processing, design, and so on. There are also general problem 
spaces that  support  computations required in the specialized 
problem spaces. For example, Soar has a s e l e c t i o n  problem 
space that  is used for meta-level control, and a set of problem 
spaces for performing arithmetic operations. 

Thus, Soar does not have predefined modules for the various 
tasks of an intelligent agent, such as natural  language under- 
standing, natural  language generation, design, etc. Instead, 
the architecture supports  the problem spaces that  contain 
the knowledge relevant to these tasks. These problem spaces 
are themselves dynamic, as new operators can be created 
through learning, and even new problem spaces can be cre- 
ated through experience. 

The integration of problem spaces is determined by Soar's 
subgoaling mechanism, which automatically creates subgoals 
in response to impasses. An impasse arises when the knowl- 
edge that  is directly available within the problem is insuffi- 
cient (or inconsistent) for performing the basic problem space 
functions, such as selecting and applying operators.  The pur- 
pose of the subgoal is to eliminate the impasse through prob- 
lem solving in a problem space. Thus, problem spaces are 
used to perform the functions of another problem space that  
could not be performed directly. 

For example, if a robot is a t tempting to clean up a room, 
it may be in a problem space with operators that  include 
p ickup-cup ,  f i n d - b a s k e t ,  and drop-cup .  With  insufficient 
control knowledge, it will encounter impasses when trying 
to decide which operator to select, and thus create a sub- 
goal and use a meta-level control problem space such as the 
s e l e c t i o n  problem space to break the tie. Once the prob- 
lem solving in the subgoal has determined which operator is 
best for the current situation, possibly through a abstract  
look-ahead search, one of the operators will be selected, say 
p i ckup-cup  in this case. This operator  involves many coordi- 
nated actions, and thus, an impasse will arise because it can 
not be performed directly. Within the subgoal, the operators 
within a problem space for controlling the robot 's  arm can 
be used to pick up the cup. 

Integration of different problem spaces, and thus the different 
knowledge and capabilities embedded within them, occurs in 
response to the demands of the task. If a task can be per- 
formed in a single problem space, it will be. On the other 
hand, if, for example, during an a t tempt  to understand nat- 
ural language, an ambiguity arises that  requires an internal 
simulation of a robotic action or perceptual processing, it will 
occur within a subgoal. The processes of detecting an ambi- 
guity, establishing a subgoal, and enabling the selection of a 
problem space for the subgoal all happen automatically via 
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architectural mechanisms. However, the processes of specify- 
ing which problem space to select in the subgoal, converting 
the ambiguity in the initial space into a problem expressed in 
a form understandable by the subgoal's problem space, and 
backwards converting the subgoal results to structures usable 
in the initial problem space are nonautomatic,  and must be 
mediated by knowledge added on top of the architecture. 

One additional feature of Soar is that  it not only performs 
a run-time integration of its knowledge as demanded by the 
task, but  it also proceeds to compile that  integration through 
learning so that  in the future the knowledge is available di- 
rectly, without need to invoke the subgoals. For example, 
within natural  language understanding, there are separate 
problem spaces for processing syntactic and semantic con- 
straints. During the processing of a sentence, these are used 
as necessary for disambiguation, thus integrating the knowl- 
edge at run-time. Soar's learning mechanism then compiles 
the use of these two sources of knowledge, thus moving the 
fragments of knowledge from the spaces in which they origi- 
nally resided to the space in which they are needed, and cre- 
ating rules that  combine both syntactic and semantic knowl- 
edge. In the future, the processing will be "recognitional," 
using the rules directly without any subgoals [Lehman et al., 
forthcoming]. 

3 .2  S y m b o l  L e v e l  

The whole purpose of Soar's symbol level processing is to 
support  the primitive functions necessary to carry out the 
problem space level. Thus, the symbol level must provide 
access to knowledge relevant to the current problem solving 
situation and methods for combining that  knowledge for per- 
forming the problem space functions, such as selecting and 
applying operators. The architecture also provides the prim- 
itive support  for interaction with external environments by 
defining the interfaces for input and output.  Finally, the 
architecture directly supports the acquisition of new knowl- 
edge. 

Soar's symbol level architecture is described in detail in Laird 
et al. (1990) and here we give a brief overview, taken in 
part  from that  source. Figure 1 presents an overview of the 
symbol level, including the memories, processes that  work on 
the contents of those memories, and the / tow of information 
between them. 

The rectangles are memories, while the triangles are processes 
that  take as their input the contents of the memories to which 
they are attached. Start ing from the top-left, the prefer- 
ence memory receives input from the externM environment 
through perception modules as well as directly from produc- 
tions. Preference memory does not directly cue the retrieval 
of da ta  from recognition memory, but is first processed by 
the decision procedure, which computes changes to working 
memory  based on the contents of preference memory. 

Recognition memory contains the permanent knowledge that  
is encoded as productions. Productions are simple "if-then" 
rules whose conditions test the conditions of working memory 
and whose actions create preferences. Productions in recog- 
nition memory are matched against working memory and if 
successful, add preferences to preference memory. 

Preferences that  propose new context objects (problem 
spaces, states, and operators) are also added to working mem- 
ory so that  they can serve as retrieval cues for additional pref- 
erences that  will determine which object to select as current. 
The main flow of information is shown by the dark arrows 
where match computes changes to preference memory and 
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Figure 1: Soar's Symbol Level Architecture 

decision computes changes to working memory, which in turn 
leads to changes in match. The contents of working memory 
are also processed by action, which sends motor commands to 
the system's effectors. As productions are matched and fired, 
the instantiated production traces are sent to trace memory  
which is then processed by chunking. The output  of chunking 
is new productions which are added to recognition memory. 

3.2.1 In t eg ra t i on  of  Learning .  

The integration of chunking within the symbol level architec- 
ture has some interesting properties. 

1. Learning is autonomous and not under direct control of 
domain knowledge. Thus, learning does not interfere 
with the other activities, it just  happens. In eonstrast, 
there is no simple command that  can be used to remem- 
ber a declarative fact, but instead, Soar must engage in 
some indirect activity to dehberately learn. The system 
must somehow create a situation in which an impasse 
arises and the fact that  is to be recalled becomes the re- 
sult of the ensuing subgoal [Rosenbloom et al., 1991b]. 

2. Different types of learning arise not from different learn- 
ing mechanisms, but instead through different tasks and 
different methods for generating knowledge within prob- 
lem spaces [Rosenbloom and Aasman, 1990]. 

3. Chunking as a learning mechanism can not be improved 
through the addition of knowledge. However, it will in- 
corporate new knowledge for future problem solving. In 
particular, the quality of future learning behaviors can 
be improved by acquiring knowledge that  alters what 
happens in subgoals, and thus alters what is learned. 
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3.2.2 In t eg ra t ion  of  Percep t ion  and Act ion .  

The perceptual and motor systems consist of independent 
modules--one for each input and/or  output channel - - tha t  
can run asynchronously with respect to each other and to 
the remainder of the architecture. Perceptual modules dehver 
da ta  into working memory whenever it  is available. Motor 
modules accept commands from working memory and exe- 
cute them (their progress can be monitored through sensors 
that  deliver feedback into working memory). 

Soar does not introduce any additional modules or control 
structures for processing perception or controlling the mo- 
tor systems but  instead relies on its three levels of control: 
productions, operators,  and subgoals. At  the lowest level, 
productions can encode incoming da ta  in parallel. Similarly, 
productions can decode an operator into a series of commands 
to the motor system. If more deliberate parsing is required, 
operators or even subgoals may be involved. This is also 
true on the action side where the system may dynamically 
decompose a complex operator (such as "put the cup in the 
basket") into a sequence of finer-grain operators ("find the 
cup", "pick up the cup", "find the basket", "drop the cup"), 
and finally into motor commands that  are executed in either 
parallel or sequentially (move the arm joint to 45 degrees and 
open the gripper). 

One issue of recent concern is the potential of "choking" the 
system if too much da ta  arrives too fast. This has not been 
a problem to date when using sonar sensors or slow vision 
systems, but  could be a problem with real-time vision. We 
intend to avoid these problems by introducing an attentional 
mechanism that  was first developed for simulated vision and 
has been used to model human visual attention [Wiesmeyer 
and Laird, 1990]. A key component of this is determining the 
appropriate type of features that  are delivered by perception. 

4 A r c h i t e c t u r e  C h a r a c t e r i z a t i o n  

This analysis of Soar is by necessity brief, and is intended to 
complement the earlier analysis that  appeared in Rosenbloom 
et al. (1991a). 

1. 

2. 

G e n e r a l i t y :  
Soar has been applied to a wide variety of tasks in- 
cluding simple puzzles and games [Laird et al., 1987]; 
more complex cognitive tasks, such as computer con- 
figuration [Rosenbloom et al., 1985], medical diagno- 
sis [Washington and Rosenbloom, 1989], medical anal- 
ysis, natural  language understanding [Lehman et al., 
forthcoming], production scheduling [Hsu et al., 1989], 
and algorithm discovery [Steier, 1987]; robotic control 
tasks, such as the control of hand-eye and mobile-hand 
systems [Laird et al., 1991; Laird and Rosenbloom, 
1990]; and cognitive modeling tasks [Lewis et al., 1990; 
Newell, 1990]. These tasks can be characterized as fun- 
damentally being search-based, knowledge-based, learn- 
ing, or robotic tasks [Rosenbloom et al., 1991a]. Soar 
is less well suited for purely algorithmic tasks (such as 
computing account receivable for a business), heavily 
numeric tasks, and tasks that  require detailed analysis 
of large da ta  sets. 

V e r s a t i l i t y :  
Soar was designed to support  a "universal weak method" 
which responds to a task and the system's knowledge 
of the task with the appropriate method [Laird and 
Newell, 1983]. This originally covered a range of weak 
search methods, and more recently has been demon- 

3. 

4. 

5. 

s trated to cover a range of planning behaviors [Laird 
and Rosenbloom, 1990; Rosenbloom et al., 1990]. Sim- 
ilarly, Soar incorporates "universal subgoaling" which 
automatically generates all of the types of goals nec- 
essary for reasoning in a problem space [Laird, 1984]. 
Soar's versatility in learning has been described earlier 
in the section on integration of learning. 

R a t i o n a l i t y :  
Soar bases its decisions on a parallel and exhaustive 
retrieval of knowledge from its long-term recognition 
memory; the productions in this memory test the cur- 
rent situation and goals and suggest relevant actions. 
This comprises the knowledge that  is immediate ly  avail- 
able for decision making. However, it does not cover all 
of the system's knowledge that  may be relevant. Some 
of this additional knowledge is indirectly avai lable-- that  
is, it can be made accessible, but  only through problem 
solving in one or more other problem spaces--while the 
remainder may just  be inaccessible for this purpose (but 
accessible for other purposes). For example, the system 
may be able to simulate its own behavior internally, but 
the results of such a simulation are not directly available 
and can only be produce through significant problem 
solving. 

The support  of both immediate and indirect knowledge 
can lead to two sources of irrationality through the fail- 
ure to properly reflect knowledge embodied by the sys- 
tem. The first source of irrationali ty is that ,  since the 
indirectly available knowledge can only be accessed if an 
impasse a r i ses - - tha t  is, because the immediately avail- 
able knowledge is incomplete or inconsis tent-- there is 
the potential  for a decision to be made based on only 
the immediately available knowledge that  would not be 
made in the presence of the indirectly available knowl- 
edge. This irrationality can be ameliorated in those 
cases where the system suspects that  its immediately 
available knowledge is incorrect--possibly because of er- 
rors it makes on a task. If sufficient time is available 
to ruminate further, the system can deliberate create 
an impasse in which it can access the indirectly avail- 
able knowledge (which in turn can allow it to correct its 
immediately available knowledge via learning) [Laird, 
1988]. However, in sufficiently time-constrained situa- 
tions, irrationality may very well occur. The second 
source of irrationality is that  some of the extant  knowl- 
edge may simply be irretrievable for the current situ- 
ation; for example, its retrieval might depend on the 
external world's being in a part icular configuration that  
is distinct from the present one. 

A b i l i t y  to  a d d  n e w  k n o w l e d g e :  
All Soar's long-term knowledge is encoded as produc- 
tions and new knowledge is added by writing new pro- 
ductions. Problem spaces provide a framework for orga- 
nizing knowledge that  has many of the desirable quali- 
ties of structured programming for building expert  sys- 
tems [Yost and Newell, 1989]. 

A b i l i t y  to  l e a r n :  
Soar learns new productions through chunking. Chunk- 
ing improves performance at the problem-space level by 
replacing problem solving in a subgoal with a produc- 
tion. Chunking gets its generality because of its integra- 
tion with Soar's subgoaiing scheme; it can learn what- 
ever can be produced in a subgoal. Different types of 
learning arise from different types of processing in a sub- 
goal. For example, if the problem solving in a subgoal 
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is deductive, the learning will be deductive. If the prob- 
lem solving is inductive, the learning will be inductive. 
The types of results produced by a subgoal can lead to 
learning either from success or failure. 

Learning does not modify the symbol-level components 
of Soar except to add productions to production mem- 
ory. Thus, Soar does not improve its matcher, decision 
procedure, or learning mechanism. These are fixed ar- 
chitectural mechanisms. 

6. T a s k a b i l i t y :  
Prehminary work has been done in using Soar's de- 
veloping natural  language capabihty [Lehman et  al., 
forthcoming] to direct the system's activities. This 
has been demonstrated for both simple robotic com- 
mands and instruction taking for psychological tasks 
[Lewis et  al., 1990]. Since natural  language is general, 
it must be opera t iona l i z ed to  affect system performance. 
Chunking over the operationalization process allows the 
hnk between language constructs and the task domain 
to be learned, improving performance on future tasks. 
The abihty to integrate knowledge from diverse prob- 
lem spaces can allow for a strong interaction between 
language processing, perception, and action. 

7. S e a l a b i l i t y :  
The largest task Soar has been applied to is a reimple- 
mentation of Neomycin [Washington and Rosenbloom, 
1989] that  has over 4000 productions. This is a bit of an 
anomaly because a single Neomycin rule was automati-  
cally expanded to multiple Soar rules. A bet ter  example 
is NL-Soar, the natural  language system in Soar that  has 
approximately 900 productions and learns an additional 
400 productions through chunking. One issue that  could 
affect scalability is the impact that  new productions 
have on the speed of the production system matcher. 
Initial results suggest this problem can be solved by 
combining restrictions on the expressiveness of the pro- 
duction language with parallelism [Tambe et al., 1990; 
Tambe and Rosenbloom, 1990]. A second issue is the 
size of memory required to hold productions. This is- 
sue has not been addressed except to note that  simi- 
lar production system architectures (such as OPS5 and 
OPS83) have been used to create systems with 10,000 
productions. 

There may be additional limits to scalability, such as an 
inability to organize large bodies of knowledge within 
a problem space framework; however it is difficult to 
predict them at this time. 

8. R e a c t i v i t y :  
By encoding long-term knowledge in a recognition- 
driven fashion--as a production sys tem--Soar  is able to 
quickly respond to changes in its environment. When a 
sensor detects a change, it is relayed to working memory. 
If the change is irrelevant given the current context (the 
environment and the system's internal state and goals), 
no productions will fire and the change will be ignored. 
If the change in the environment requires a small mod- 
ulation in the current activity, productions will fire to 
modify the current action. If the system is currently 
planning and the change signals that  the planning is ir- 
relevant, or that  an action must be taken immediately, 
once again, productions will fire to suggest the appro- 
priate action. This behavior has been demonstrated in 
robotic domains [Laird and Rosenbloom, 1990]. 

9. E f l l e i ency :  
Soar's reactivity is limited by the cycle time for firing 

10. 

productions which empirically is approximately 25 msec. 
on an Explorer I I+ .  This is sufficient for control of a 
Hero mobile robot, where computation time is domi- 
nated by communication costs with the robot. However, 
it  is sufficiently slow to interfere with the development of 
knowledge-based systems that  require significant inter- 
nal problem solving. The current t ime bottlenecks are 
the production match, the maintenance of da ta  struc- 
tures for determining the persistence of working memory 
elements, and chunking. A new implementation of Soar 
is currently being designed to improve its efficiency. 

There is no guaranteed bound on the response time 
for Soar, although we are working towards bounding 
the time required by various architectural components, 
beginning with bounding the computation required to 
match productions. To date, the best time bound we 
have been able to achieve on match (per production), 
without sacrificing too much in expressiveness, is linear 
in the number of conditions [Tambe et  al., 1990]. 

P s y c h o l o g i c a l  o r  n e u r o s e i e n t i f l c  v a l i d i t y :  
Soar has been used to model many different psycholog- 
ical phenomena such as immediate reasoning tasks, vi- 
sual attention, and conversation development [Lewis et 
al., 1990; Newell, 1990]. We have also begun to lay out 
the relationship of Soar to the neural level [Newell, 1990; 
Rosenbloom, 1989], and to implement a version of Soar 
based on neural networks [Cho et  al., 1991]. 

5 K n o w l e d g e  I n t e g r a t i o n  

Sharing knowledge at the symbol level is not really an is- 
sue. The real issue is how both short- tram and long-term 
knowledge are shared at the problem space level. 

Soar provides sharing of its short- term knowledge in its work- 
ing memory. All productions continually match against the 
perceptual input and the states and operators of active prob- 
lem spaces. This sharing is important  for reactivity; for ex- 
ample, ongoing planning has continual access to perception 
and can be aborted if the external environment changes dras- 
tically. 

All long-term knowledge is context-dependent,  but can vary 
widely as to which contexts it is appropriate in. Thus, there 
is no a pr io r i  modularization of long-term knowledge. For 
example, a single operator may be shared by many problem 
spaces, or a bit of control knowledge may be independent 
of a goal (never step on a tack). However, since the behav- 
ior is structured in terms of problem spaces, it is natural for 
most knowledge to be sensitive to the current goal or prob- 
lem space. Within a problem space, long-term knowledge and 
intermediate da ta  structures can be specialized so that  the 
reasoning in that  problem space is efficient. Thus, problem 
spaces can provide the advantages of modularity of knowledge 
when necessary. For example, there are separate problem 
spaces for syntactic and semantic knowledge in natural lan- 
guage understanding. Although the problem spaces provide 
modularity, Soar can combine the knowledge from different 
problem spaces during problem solving through its impasse- 
driven subgoaling. Chunking can capture the processing in 
different problem spaces into productions that  combine the 
different types of knowledge (and also thus move the knowl- 
edge between spaces). 

Although problem spaces support  integration, they do not 
guarantee it. When a problem space is used within a sub- 
goal, the representation of information in working memory 
must be in a form that  the operators of the problem space 
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can make use of. Thus, the operators must be able to in- 
terpret the data that is shared with other problem spaces. 
Information in working memory might have to be explicitly 
translated from one representation to another at the start of 
a subgoal, and then results of the subgoai might have to be 
translated back. Our hope is that Soar can take advantage 
of the efficiencies to be gained by supporting multiple rep- 
resentations of the same knowledge, without paying a high 
price in mapping between these representations. Although 
this translation may be initially complex and require its own 
subgoals, through chunking, Soar should be able to compile 
the translation into productions that perform the mapping 
directly, with little cost. 

The initial modularity of long-term knowledge, combined 
with the ability to combine it together leads to the follow- 
ing evolution of a system. It starts out with very general 
problem spaces that cover the different types of knowledge 
required for the task. This knowledge is not specialized to 
its different uses, and may require significant processing to 
operationailze for a new task. With experience, chunking 
combines knowledge from different problem spaces, creating 
efficient specialized knowledge for the tasks the system has 
had experience in. 

6 C o n t r o l  I n t e g r a t i o n  

As in knowledge sharing, the control between components 
at the symbol level is fixed. The flexibility and generMity 
of the system comes from the way in which these symbol 
level components interact to support the control of processing 
within and across problem spaces. Control is mediated by 
the contents of working memory, which itself is shared, and 
thus makes it possible for a global determination of control. 
All decisions for problem space activity are mediated by the 
knowledge encoded in productions. As stated earlier, changes 
can occur at any time at any level of the goal hierarchy if the 
consensus of the knowledge is to make a change. 

7 C o m p a r i s o n  t o  O t h e r  S y s t e m s  

Soar is comparable to other symbolic architectures that em- 
phasize the integration of problem solving, planning, and 
learning within an operator-based paradigm such as STRIPS 
[Fikes et al., 1972], PRODIGY [Minton et al., 1989] and Theo 
[Mitchell el al., 1991]. 

8 C o n c l u s i o n  

Soar's quest for integration is based on the assumption that 
intelligent behavior can be be cast as attempting to achieve 
goals within a problem space. Thus, a single uniform frame- 
work can be adopted for all tasks and subtasks. The Soar ar- 
chitecture supports problem space activities through adopt- 
ing uniform approaches to the basic functions of symbol pro- 
cessing including long-term memory, short-term memory, dee- 
liberation, interaction with external environments, and ac- 
quisition of knowledge. 
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