
A n Ana lys i s of Soar as an In tegra ted Archi tec ture*

John Lai rd , Mike Hucka, Sco t t Huffman
Art i f ic ia l Inte l l igence L a b o r a t o r y

T h e Univers i ty of Michigan
1101 Beal Ave.

Ann Arbor , MI 48109-2110

Pau l Rosenb loom
I n f o r m a t i o n Sciences I n s t i t u t e

Univers i ty of Sou the rn Ca l i fo rn i a
4676 A d m i r a l t y W a y

M a r i n a del Rey, C A 90292

In this article we provide a brief analysis of the Soar archi-
tecture [Laird et al., 1987; Laird et al., 1990; Rosenbloom et
al., 1991a] with respect to the issues listed in the preface of
this collection.

1 I n t e g r a t i o n R e q u i r e m e n t s

Soar was originally designed to be an architecture that
supported a wide range of methods for problem solving.
We also had the goal that it be extensible to cover the
full range of tasks performed by humans. Originally, we
did not a t tempt to closely model human behavior, but in-
stead, used human behavior as a guideline for general in-
telligence. Only recently have we taken the structure of
Soar as a theory for human cognition [Lewis et al., 1990;
Newell, 1990]. Because of our goals of generality and flexibil-
ity across a wide variety of domains, integration has always
been a primary concern in the design of Soar. Toward that
end, Soar has evolved over the last eight years to include au-
tomatic subgoaling, learning, and interaction with external
environments. As we have been extending its capabilities, we
have also been demonstrating it on tasks that require integra-
tion of many capabilities, including expert systems, cognitive
modeling, robotic control, and natural language understand-
ing.

2 B a c k g r o u n d I n f l u e n c e s

Soar is inspired by many previous research efforts in arti-
ficial intelligence and psychology. The concept of problem
spaces and heuristic search that were demonstrated in GPS
[Ernst and Newell, 1969] are central to Soar. Soar's long-
term memory is a production system that has its roots both
in psychology and AI [Newell, 1973]. Soar grew out of the
instructable production system project at Carnegie Mellon
University [Rychener and Newell, 1978; Rychener, 1983] and
was originally built upon Xaps2 [Rosenbloom and Newell,
1987] and then OPS5 [Forgy, 1981]. Soar's subgoaling mech-
anism is a generalization of earlier work on impasse-driven
Repair Theory [Brown and VanLehn, 1980], while chunking
has its roots in the study of human practice and skill acqui-
sition [Newell and Rosenbloom, 1981].

3 A r c h i t e c t u r e C o m p o n e n t s

Soar can be described at three levels: the knowledge level
[Newell, 1982; Rosenbloom et al., 1991b], the problem space
level [Newell et ai., 1991], and the symbol level. A knowledge
level description of a system abstracts away from the under-
lying structure and thus does not provide any insight into
integration issues except possibly that the system can pro-
duce behavior that one would expect requires the integration
of multiple capabilities.

*This research was sponsored by grants NCC2-517 and
NCC2-538 from NASA Ames.

3 .1 P r o b l e m S p a c e L e v e l

At the problem space level, Soar is described in terms of the
variety of problem spaces it uses on a task, and within a
problem space, the states and operators it uses to solve prob-
lems within that space. At this level, we can identify problem
spaces specialized for external interaction, natural language
processing, design, and so on. There are also general problem
spaces that support computations required in the specialized
problem spaces. For example, Soar has a s e l e c t i o n problem
space that is used for meta-level control, and a set of problem
spaces for performing arithmetic operations.

Thus, Soar does not have predefined modules for the various
tasks of an intelligent agent, such as natural language under-
standing, natural language generation, design, etc. Instead,
the architecture supports the problem spaces that contain
the knowledge relevant to these tasks. These problem spaces
are themselves dynamic, as new operators can be created
through learning, and even new problem spaces can be cre-
ated through experience.

The integration of problem spaces is determined by Soar's
subgoaling mechanism, which automatically creates subgoals
in response to impasses. An impasse arises when the knowl-
edge that is directly available within the problem is insuffi-
cient (or inconsistent) for performing the basic problem space
functions, such as selecting and applying operators. The pur-
pose of the subgoal is to eliminate the impasse through prob-
lem solving in a problem space. Thus, problem spaces are
used to perform the functions of another problem space that
could not be performed directly.

For example, if a robot is a t tempting to clean up a room,
it may be in a problem space with operators that include
p ickup-cup , f i n d - b a s k e t , and drop-cup . With insufficient
control knowledge, it will encounter impasses when trying
to decide which operator to select, and thus create a sub-
goal and use a meta-level control problem space such as the
s e l e c t i o n problem space to break the tie. Once the prob-
lem solving in the subgoal has determined which operator is
best for the current situation, possibly through a abstract
look-ahead search, one of the operators will be selected, say
p i ckup-cup in this case. This operator involves many coordi-
nated actions, and thus, an impasse will arise because it can
not be performed directly. Within the subgoal, the operators
within a problem space for controlling the robot 's arm can
be used to pick up the cup.

Integration of different problem spaces, and thus the different
knowledge and capabilities embedded within them, occurs in
response to the demands of the task. If a task can be per-
formed in a single problem space, it will be. On the other
hand, if, for example, during an a t tempt to understand nat-
ural language, an ambiguity arises that requires an internal
simulation of a robotic action or perceptual processing, it will
occur within a subgoal. The processes of detecting an ambi-
guity, establishing a subgoal, and enabling the selection of a
problem space for the subgoal all happen automatically via

S I G A R T Bul le t in , Vol. 2, No. 4 98

architectural mechanisms. However, the processes of specify-
ing which problem space to select in the subgoal, converting
the ambiguity in the initial space into a problem expressed in
a form understandable by the subgoal's problem space, and
backwards converting the subgoal results to structures usable
in the initial problem space are nonautomatic, and must be
mediated by knowledge added on top of the architecture.

One additional feature of Soar is that it not only performs
a run-time integration of its knowledge as demanded by the
task, but it also proceeds to compile that integration through
learning so that in the future the knowledge is available di-
rectly, without need to invoke the subgoals. For example,
within natural language understanding, there are separate
problem spaces for processing syntactic and semantic con-
straints. During the processing of a sentence, these are used
as necessary for disambiguation, thus integrating the knowl-
edge at run-time. Soar's learning mechanism then compiles
the use of these two sources of knowledge, thus moving the
fragments of knowledge from the spaces in which they origi-
nally resided to the space in which they are needed, and cre-
ating rules that combine both syntactic and semantic knowl-
edge. In the future, the processing will be "recognitional,"
using the rules directly without any subgoals [Lehman et al.,
forthcoming].

3 .2 S y m b o l L e v e l

The whole purpose of Soar's symbol level processing is to
support the primitive functions necessary to carry out the
problem space level. Thus, the symbol level must provide
access to knowledge relevant to the current problem solving
situation and methods for combining that knowledge for per-
forming the problem space functions, such as selecting and
applying operators. The architecture also provides the prim-
itive support for interaction with external environments by
defining the interfaces for input and output. Finally, the
architecture directly supports the acquisition of new knowl-
edge.

Soar's symbol level architecture is described in detail in Laird
et al. (1990) and here we give a brief overview, taken in
part from that source. Figure 1 presents an overview of the
symbol level, including the memories, processes that work on
the contents of those memories, and the / tow of information
between them.

The rectangles are memories, while the triangles are processes
that take as their input the contents of the memories to which
they are attached. Start ing from the top-left, the prefer-
ence memory receives input from the externM environment
through perception modules as well as directly from produc-
tions. Preference memory does not directly cue the retrieval
of da ta from recognition memory, but is first processed by
the decision procedure, which computes changes to working
memory based on the contents of preference memory.

Recognition memory contains the permanent knowledge that
is encoded as productions. Productions are simple "if-then"
rules whose conditions test the conditions of working memory
and whose actions create preferences. Productions in recog-
nition memory are matched against working memory and if
successful, add preferences to preference memory.

Preferences that propose new context objects (problem
spaces, states, and operators) are also added to working mem-
ory so that they can serve as retrieval cues for additional pref-
erences that will determine which object to select as current.
The main flow of information is shown by the dark arrows
where match computes changes to preference memory and

<
I " " - = " ' ° ' '

Figure 1: Soar's Symbol Level Architecture

decision computes changes to working memory, which in turn
leads to changes in match. The contents of working memory
are also processed by action, which sends motor commands to
the system's effectors. As productions are matched and fired,
the instantiated production traces are sent to trace memory
which is then processed by chunking. The output of chunking
is new productions which are added to recognition memory.

3.2.1 In t eg ra t i on of Learning .

The integration of chunking within the symbol level architec-
ture has some interesting properties.

1. Learning is autonomous and not under direct control of
domain knowledge. Thus, learning does not interfere
with the other activities, it just happens. In eonstrast,
there is no simple command that can be used to remem-
ber a declarative fact, but instead, Soar must engage in
some indirect activity to dehberately learn. The system
must somehow create a situation in which an impasse
arises and the fact that is to be recalled becomes the re-
sult of the ensuing subgoal [Rosenbloom et al., 1991b].

2. Different types of learning arise not from different learn-
ing mechanisms, but instead through different tasks and
different methods for generating knowledge within prob-
lem spaces [Rosenbloom and Aasman, 1990].

3. Chunking as a learning mechanism can not be improved
through the addition of knowledge. However, it will in-
corporate new knowledge for future problem solving. In
particular, the quality of future learning behaviors can
be improved by acquiring knowledge that alters what
happens in subgoals, and thus alters what is learned.

99 S I G A R T Bul le t in , Vol. 2, No. 4

3.2.2 In t eg ra t ion of Percep t ion and Act ion .

The perceptual and motor systems consist of independent
modules--one for each input and/or output channel - - tha t
can run asynchronously with respect to each other and to
the remainder of the architecture. Perceptual modules dehver
da ta into working memory whenever it is available. Motor
modules accept commands from working memory and exe-
cute them (their progress can be monitored through sensors
that deliver feedback into working memory).

Soar does not introduce any additional modules or control
structures for processing perception or controlling the mo-
tor systems but instead relies on its three levels of control:
productions, operators, and subgoals. At the lowest level,
productions can encode incoming da ta in parallel. Similarly,
productions can decode an operator into a series of commands
to the motor system. If more deliberate parsing is required,
operators or even subgoals may be involved. This is also
true on the action side where the system may dynamically
decompose a complex operator (such as "put the cup in the
basket") into a sequence of finer-grain operators ("find the
cup", "pick up the cup", "find the basket", "drop the cup"),
and finally into motor commands that are executed in either
parallel or sequentially (move the arm joint to 45 degrees and
open the gripper).

One issue of recent concern is the potential of "choking" the
system if too much da ta arrives too fast. This has not been
a problem to date when using sonar sensors or slow vision
systems, but could be a problem with real-time vision. We
intend to avoid these problems by introducing an attentional
mechanism that was first developed for simulated vision and
has been used to model human visual attention [Wiesmeyer
and Laird, 1990]. A key component of this is determining the
appropriate type of features that are delivered by perception.

4 A r c h i t e c t u r e C h a r a c t e r i z a t i o n

This analysis of Soar is by necessity brief, and is intended to
complement the earlier analysis that appeared in Rosenbloom
et al. (1991a).

1.

2.

G e n e r a l i t y :
Soar has been applied to a wide variety of tasks in-
cluding simple puzzles and games [Laird et al., 1987];
more complex cognitive tasks, such as computer con-
figuration [Rosenbloom et al., 1985], medical diagno-
sis [Washington and Rosenbloom, 1989], medical anal-
ysis, natural language understanding [Lehman et al.,
forthcoming], production scheduling [Hsu et al., 1989],
and algorithm discovery [Steier, 1987]; robotic control
tasks, such as the control of hand-eye and mobile-hand
systems [Laird et al., 1991; Laird and Rosenbloom,
1990]; and cognitive modeling tasks [Lewis et al., 1990;
Newell, 1990]. These tasks can be characterized as fun-
damentally being search-based, knowledge-based, learn-
ing, or robotic tasks [Rosenbloom et al., 1991a]. Soar
is less well suited for purely algorithmic tasks (such as
computing account receivable for a business), heavily
numeric tasks, and tasks that require detailed analysis
of large da ta sets.

V e r s a t i l i t y :
Soar was designed to support a "universal weak method"
which responds to a task and the system's knowledge
of the task with the appropriate method [Laird and
Newell, 1983]. This originally covered a range of weak
search methods, and more recently has been demon-

3.

4.

5.

s trated to cover a range of planning behaviors [Laird
and Rosenbloom, 1990; Rosenbloom et al., 1990]. Sim-
ilarly, Soar incorporates "universal subgoaling" which
automatically generates all of the types of goals nec-
essary for reasoning in a problem space [Laird, 1984].
Soar's versatility in learning has been described earlier
in the section on integration of learning.

R a t i o n a l i t y :
Soar bases its decisions on a parallel and exhaustive
retrieval of knowledge from its long-term recognition
memory; the productions in this memory test the cur-
rent situation and goals and suggest relevant actions.
This comprises the knowledge that is immediate ly avail-
able for decision making. However, it does not cover all
of the system's knowledge that may be relevant. Some
of this additional knowledge is indirectly avai lable-- that
is, it can be made accessible, but only through problem
solving in one or more other problem spaces--while the
remainder may just be inaccessible for this purpose (but
accessible for other purposes). For example, the system
may be able to simulate its own behavior internally, but
the results of such a simulation are not directly available
and can only be produce through significant problem
solving.

The support of both immediate and indirect knowledge
can lead to two sources of irrationality through the fail-
ure to properly reflect knowledge embodied by the sys-
tem. The first source of irrationali ty is that , since the
indirectly available knowledge can only be accessed if an
impasse a r i ses - - tha t is, because the immediately avail-
able knowledge is incomplete or inconsis tent-- there is
the potential for a decision to be made based on only
the immediately available knowledge that would not be
made in the presence of the indirectly available knowl-
edge. This irrationality can be ameliorated in those
cases where the system suspects that its immediately
available knowledge is incorrect--possibly because of er-
rors it makes on a task. If sufficient time is available
to ruminate further, the system can deliberate create
an impasse in which it can access the indirectly avail-
able knowledge (which in turn can allow it to correct its
immediately available knowledge via learning) [Laird,
1988]. However, in sufficiently time-constrained situa-
tions, irrationality may very well occur. The second
source of irrationality is that some of the extant knowl-
edge may simply be irretrievable for the current situ-
ation; for example, its retrieval might depend on the
external world's being in a part icular configuration that
is distinct from the present one.

A b i l i t y to a d d n e w k n o w l e d g e :
All Soar's long-term knowledge is encoded as produc-
tions and new knowledge is added by writing new pro-
ductions. Problem spaces provide a framework for orga-
nizing knowledge that has many of the desirable quali-
ties of structured programming for building expert sys-
tems [Yost and Newell, 1989].

A b i l i t y to l e a r n :
Soar learns new productions through chunking. Chunk-
ing improves performance at the problem-space level by
replacing problem solving in a subgoal with a produc-
tion. Chunking gets its generality because of its integra-
tion with Soar's subgoaiing scheme; it can learn what-
ever can be produced in a subgoal. Different types of
learning arise from different types of processing in a sub-
goal. For example, if the problem solving in a subgoal

S I G A R T Bul le t in , Vol. 2, No. 4 100

is deductive, the learning will be deductive. If the prob-
lem solving is inductive, the learning will be inductive.
The types of results produced by a subgoal can lead to
learning either from success or failure.

Learning does not modify the symbol-level components
of Soar except to add productions to production mem-
ory. Thus, Soar does not improve its matcher, decision
procedure, or learning mechanism. These are fixed ar-
chitectural mechanisms.

6. T a s k a b i l i t y :
Prehminary work has been done in using Soar's de-
veloping natural language capabihty [Lehman et al.,
forthcoming] to direct the system's activities. This
has been demonstrated for both simple robotic com-
mands and instruction taking for psychological tasks
[Lewis et al., 1990]. Since natural language is general,
it must be opera t iona l i z ed to affect system performance.
Chunking over the operationalization process allows the
hnk between language constructs and the task domain
to be learned, improving performance on future tasks.
The abihty to integrate knowledge from diverse prob-
lem spaces can allow for a strong interaction between
language processing, perception, and action.

7. S e a l a b i l i t y :
The largest task Soar has been applied to is a reimple-
mentation of Neomycin [Washington and Rosenbloom,
1989] that has over 4000 productions. This is a bit of an
anomaly because a single Neomycin rule was automati-
cally expanded to multiple Soar rules. A bet ter example
is NL-Soar, the natural language system in Soar that has
approximately 900 productions and learns an additional
400 productions through chunking. One issue that could
affect scalability is the impact that new productions
have on the speed of the production system matcher.
Initial results suggest this problem can be solved by
combining restrictions on the expressiveness of the pro-
duction language with parallelism [Tambe et al., 1990;
Tambe and Rosenbloom, 1990]. A second issue is the
size of memory required to hold productions. This is-
sue has not been addressed except to note that simi-
lar production system architectures (such as OPS5 and
OPS83) have been used to create systems with 10,000
productions.

There may be additional limits to scalability, such as an
inability to organize large bodies of knowledge within
a problem space framework; however it is difficult to
predict them at this time.

8. R e a c t i v i t y :
By encoding long-term knowledge in a recognition-
driven fashion--as a production sys tem--Soar is able to
quickly respond to changes in its environment. When a
sensor detects a change, it is relayed to working memory.
If the change is irrelevant given the current context (the
environment and the system's internal state and goals),
no productions will fire and the change will be ignored.
If the change in the environment requires a small mod-
ulation in the current activity, productions will fire to
modify the current action. If the system is currently
planning and the change signals that the planning is ir-
relevant, or that an action must be taken immediately,
once again, productions will fire to suggest the appro-
priate action. This behavior has been demonstrated in
robotic domains [Laird and Rosenbloom, 1990].

9. E f l l e i ency :
Soar's reactivity is limited by the cycle time for firing

10.

productions which empirically is approximately 25 msec.
on an Explorer I I+ . This is sufficient for control of a
Hero mobile robot, where computation time is domi-
nated by communication costs with the robot. However,
it is sufficiently slow to interfere with the development of
knowledge-based systems that require significant inter-
nal problem solving. The current t ime bottlenecks are
the production match, the maintenance of da ta struc-
tures for determining the persistence of working memory
elements, and chunking. A new implementation of Soar
is currently being designed to improve its efficiency.

There is no guaranteed bound on the response time
for Soar, although we are working towards bounding
the time required by various architectural components,
beginning with bounding the computation required to
match productions. To date, the best time bound we
have been able to achieve on match (per production),
without sacrificing too much in expressiveness, is linear
in the number of conditions [Tambe et al., 1990].

P s y c h o l o g i c a l o r n e u r o s e i e n t i f l c v a l i d i t y :
Soar has been used to model many different psycholog-
ical phenomena such as immediate reasoning tasks, vi-
sual attention, and conversation development [Lewis et
al., 1990; Newell, 1990]. We have also begun to lay out
the relationship of Soar to the neural level [Newell, 1990;
Rosenbloom, 1989], and to implement a version of Soar
based on neural networks [Cho et al., 1991].

5 K n o w l e d g e I n t e g r a t i o n

Sharing knowledge at the symbol level is not really an is-
sue. The real issue is how both short- tram and long-term
knowledge are shared at the problem space level.

Soar provides sharing of its short- term knowledge in its work-
ing memory. All productions continually match against the
perceptual input and the states and operators of active prob-
lem spaces. This sharing is important for reactivity; for ex-
ample, ongoing planning has continual access to perception
and can be aborted if the external environment changes dras-
tically.

All long-term knowledge is context-dependent, but can vary
widely as to which contexts it is appropriate in. Thus, there
is no a pr io r i modularization of long-term knowledge. For
example, a single operator may be shared by many problem
spaces, or a bit of control knowledge may be independent
of a goal (never step on a tack). However, since the behav-
ior is structured in terms of problem spaces, it is natural for
most knowledge to be sensitive to the current goal or prob-
lem space. Within a problem space, long-term knowledge and
intermediate da ta structures can be specialized so that the
reasoning in that problem space is efficient. Thus, problem
spaces can provide the advantages of modularity of knowledge
when necessary. For example, there are separate problem
spaces for syntactic and semantic knowledge in natural lan-
guage understanding. Although the problem spaces provide
modularity, Soar can combine the knowledge from different
problem spaces during problem solving through its impasse-
driven subgoaling. Chunking can capture the processing in
different problem spaces into productions that combine the
different types of knowledge (and also thus move the knowl-
edge between spaces).

Although problem spaces support integration, they do not
guarantee it. When a problem space is used within a sub-
goal, the representation of information in working memory
must be in a form that the operators of the problem space

101 S I G A R T Bul le t in , Vol. 2, No. 4

can make use of. Thus, the operators must be able to in-
terpret the data that is shared with other problem spaces.
Information in working memory might have to be explicitly
translated from one representation to another at the start of
a subgoal, and then results of the subgoai might have to be
translated back. Our hope is that Soar can take advantage
of the efficiencies to be gained by supporting multiple rep-
resentations of the same knowledge, without paying a high
price in mapping between these representations. Although
this translation may be initially complex and require its own
subgoals, through chunking, Soar should be able to compile
the translation into productions that perform the mapping
directly, with little cost.

The initial modularity of long-term knowledge, combined
with the ability to combine it together leads to the follow-
ing evolution of a system. It starts out with very general
problem spaces that cover the different types of knowledge
required for the task. This knowledge is not specialized to
its different uses, and may require significant processing to
operationailze for a new task. With experience, chunking
combines knowledge from different problem spaces, creating
efficient specialized knowledge for the tasks the system has
had experience in.

6 C o n t r o l I n t e g r a t i o n

As in knowledge sharing, the control between components
at the symbol level is fixed. The flexibility and generMity
of the system comes from the way in which these symbol
level components interact to support the control of processing
within and across problem spaces. Control is mediated by
the contents of working memory, which itself is shared, and
thus makes it possible for a global determination of control.
All decisions for problem space activity are mediated by the
knowledge encoded in productions. As stated earlier, changes
can occur at any time at any level of the goal hierarchy if the
consensus of the knowledge is to make a change.

7 C o m p a r i s o n t o O t h e r S y s t e m s

Soar is comparable to other symbolic architectures that em-
phasize the integration of problem solving, planning, and
learning within an operator-based paradigm such as STRIPS
[Fikes et al., 1972], PRODIGY [Minton et al., 1989] and Theo
[Mitchell el al., 1991].

8 C o n c l u s i o n

Soar's quest for integration is based on the assumption that
intelligent behavior can be be cast as attempting to achieve
goals within a problem space. Thus, a single uniform frame-
work can be adopted for all tasks and subtasks. The Soar ar-
chitecture supports problem space activities through adopt-
ing uniform approaches to the basic functions of symbol pro-
cessing including long-term memory, short-term memory, dee-
liberation, interaction with external environments, and ac-
quisition of knowledge.

R e f e r e n c e s

[Brown and VanLehn, 1980] J. S. Brown and K. VanLehn.
Repair Theory: A generative theory of bugs in procedural
skills. Cognitive Science, 4:379-426, 1980.

[Cho et al., 1991] B. Cho, C. P. Dolan, and P. S. Rosen-
bloom. Neuro-Soar: A neural-network architecture for
goal-oriented behavior. In preparation, 1991.

[Ernst and Newell, 1969] G. W. Ernst and A. Newell. GPS:
A Case Study in Generality and Problem Solving. Aca-
demic Press, New York, 1969.

[Fikes et ai., 1972] R. E. Fikes, P. E. Hart, and N. J. Nilsson.
Learning and executing generalized robot plans. Artificial
Intelligence, 3:251-288, 1972.

[Forgy, 1981] C. L. Forgy. OPS5 user's manual. Technical
report, Computer Science Department, Carnegie-Mellon
University, July 1981.

[Hsu et al., 1989] W. Hsu, M. Prietula, and D. Steier. Merl-
Soar: Scheduling within a general architecture for intelli-
gence. In Proceedings of the Third International Confer-
ence on Expert Systems and the Leading Edge Production
and Operations Management, May 1989.

[Laird and Newell, 1983] J. E. Laird and A. Newell. A uni-
versal weak method: Summary of results. In Proceedings
of IJCAI-83, Los Altos, CA, 1983. Kaufman.

[Laird and Rosenbloom, 1990] J. E. Laird and P. S. Rosen-
bloom. Integrating execution, planning, and learning in
Soar for external environments. In Proceedings of AAAI-
90, July 1990.

[Laird et al., 1987] J. E. Laird, A. Newell, and P. S. Rosen-
bloom. Soar: An architecture for general intelligence. Ar-
tificial Intelligence, 33(3):1-64, 1987.

[Laird et al., 1990] J. E. Laird, C. B. Congdon, E. Altmann,
and K. Swedlow. Soar user's manual: Version 5.2. Tech-
nical Report CSE-TR-72-90, Electrical Engineering and
Computer Science Department, The University of Michi-
gan, October 1990. Also available from The Soar Group,
School of Computer Science, Carnegie Mellon University,
as technical report CMU-CS-90-179.

[Laird et al., 1991] J. E. Laird, M. Hucka, E. S. Yager, and
C. M. Tuck. Robo-Soar: An integration of external in-
teraction, planning and learning using Soar. Robotics and
Autonomous Systems, 1991. In press.

[Laird, 1984] J. E. Laird. Universal Subgoaling. PhD thesis,
Carnegie-Mellon University, 1984.

[Laird, 1988] J. E. Laird. Recovery from incorrect knowledge
in Soar. In Proceedings of the AAAI-88, August 1988.

[Lehman et al., forthcoming] J. Fain Lehman, R. Lewis, and
A. Newell. Natural language comprehension in Soar.
Carnegie Mellon University Technical Report, forthcom-
ing.

[Lewis et al., 1990] R. L. Lewis, S. B. Huffman, B. E. John,
J. E. Laird, J. F. Lehman, A. Newell, P. S. Rosenbloom,
T. Simon, and S. G. Tessler. Soar as a unified theory of
cognition: Spring 1990. In Proceedings of the 12th Annual
Conference of the Cognitive Science Society, pages 1035-
1042, Cambridge, MA, 1990.

[Minton et ai., 1989] S. Minton, J. G. Carbonell, C.A.
Knoblock, D.R. Kuokka, O. Etzioni, and Y. Gil.
Explanation-based learning: A problem solving perspec-
tive. Artficial Intelligence, 40(1-3):163-118, 1989.

[Mitchell et al., 1991] T. M. Mitchell, J. Allen, P. Chalasani,
J. Cheng, O. Etzionoi, M. Ringuette, and J. Schlim-
mer. Theo: A framework for self-improving systems. In
K. VanLehn, editor, Architectures .for Intelligence. Erl-
baum, Hillsdale, N J, 1991. In press.

SIGART Bulletin, Vol. 2, No. 4 102

[Newell and Rosenbloom, 1981] A. Newell and P. Rosen-
bloom. Mechanisms of skill acquisition and the law of
practice. In J. R. Anderson, editor, Learning and Cog-
nition. Erlbaum, Hillsdale, N J, 1981.

[Newell et al., 1991] A. Newell, G. R. Yost, J. E. Laird, P. S.
Rosenbloom, and E. Altmann. Formulating the prob-
lem space computational model. In R. F. Rashid, editor,
Carnegie Mellon Computer Science: A 25 Year Commem-
orative. ACM Press/Addison-Wesley, 1991. In press.

[Newen, 1973] A. Newell. Production systems: Models of
control structures. In W. C. Chase, editor, Visual Infor-
mation Processing, pages 463-526. Academic Press, New
York, 1973.

[Newell, 1982] A. Newell. The knowledge level. Artificial
Intelligence, 18:87-127, 1982.

[Newell, 1990] A. Newell. Unified Theories of Cognition.
Harvard University Press, Cambridge, MA, 1990.

[Rosenbloom and Aasman, 1990] P. S. Rosenbloom and
J. Aasman. Knowledge level and inductive uses of chunk-
ing (EBL). In Proceedings of AAAI-90, pages 821-827,
Boston, 1990. AAAI, MIT Press.

[Rosenbloom and Newell, 1987]
P. S. Rosenbloom and A. Newell. Learning by chunking: A
production-system model of practice. In Production Sys-
tem Models of Learning and Development, pages 221-286.
Bradford Books/MIT Press, Cambridge, MA, 1987.

[Rosenbloom et al., 1985] P. S. Rosenbloom, J. E. Laird,
J. McDermott, A. Newell, and E. Orciuch. R1-Soar:
An experiment in knowledge-intensive programming in
a problem-solving architecture. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 7(5):561-569,
1985.

[Rosenbloom et al., 1990] P. S. Rosenbloom, S. Lee, and
A. Unruh. Responding to impasses in memory-driven be-
havior: A framework for planning. 1990.

[Rosenbloom et al., 1991a] P. S. Rosenbloom, J. E. Laird,
A. Newell, and R. McCarl. A preliminary analysis of the
Soar architecture as a basis for general intelligence. Arti-
ficial Intelligence, 1991. In press.

[Rosenbloom et al., 1991b] P.S. Rosenbloom, A. Newell, and
J. E. Laird. Towards the knowledge level in Soar: The role
of the architecture in the use of knowledge. In K. VanLehn,
editor, Architectures for Intelligence. Erlbaum, Hillsdale,
N J, 1991. In press.

[Rosenbloom, 1989] P. S. Rosenbloom. A symbolic goal-
oriented perspective on connectionism and Soar. In Con-
nectionism in Perspective, pages 245-263. Elsevier (North-
Holland), Amsterdam, 1989.

[Rychener and Newell, 1978] M. D. Rychener and A. Newell.
An instructable production system: Basic design issues. In
Pattern-Directed Inference Systems. Academic Press, New
York, 1978.

[Rychener, 1983] M. D. Rychener. The instructable produc-
tion system: A retrospective analysis. In Machine Learn-
ing: An Artificial Intelligence Approach. Tioga, Palo Alto,
CA, 1983.

[Steier, 1987] D. M. Steier. Cypress-Soar: A case study in
search and learning in algorithm design. In Proceedings of
IJCAI-87, Milano, Italy, August 1987. Morgan Kaufmann.

[Tambe and Rosenbloom, 1990] M. Tambe and P. S. Rosen-
bloom. A framework for investigating production system
formulations with polynomially bounded match. In Pro-
ceedings of AAAI-90, pages 693-700, Boston, 1990. AAAI,
MIT Press.

[Tambe et al., 1990] M. Tambe, A. Newell, and P. S. Rosen-
bloom. The problem of expensive chunks and its solution
by restricting expressiveness. Machine Learning, 5(4):299-
348, 1990.

[Washington and Rosenbloom, 1989] R. Washington and
P. S. Rosenbloom. Applying problem solving and learn-
ing to diagnosis. Computer Science Department, Stanford
University., 1989.

[Wiesmeyer and Laird, 1990] M.D. Wiesmeyer and J.E.
Laird. A computer model of visual attention. In Pro-
ceedings of the 12th Annual Conference of the Cognitive
Science Society, Cambridge, MA, 1990.

[Yost and Newell, 1989] G. Yost and A. Newen. A problem
space approach to expert system specification. In Proceed-
ings of IJCAI-89, 1989.

103 SIGART Bulletin, Vol. 2, No. 4

