Systems Biology Markup Language (SBML) Level 1:
Structures and Facilities for Basic Model Definitions

Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri
{mhucka ,afinney,hsauro ,hbolouri}@cds .caltech.edu
Systems Biology Workbench Development Group
JST ERATO Kitano Symbiotic Systems Project
Control and Dynamical Systems, MC 107-81
California Institute of Technology, Pasadena, C'A 91125, USA

http://www.cds.caltech.edu/erato

Principal Investigators: John Dovle and Hiroaki Kitano

SBML Level 1, Version 2 (Final)
28 August 2003

Contents
1 Introduction
1.1 Summary of Changes in Version 2 of SBML Level 1 0 00000 o ot
1.2 Scope and Limitations L L L e e
1.3 Notational CoOnvERLIONS & s w s %t oo 6% 44 54 84 84 54 54 P8 §8 §8 $5 65 &5 £7 @R w8 W W
2 Overview of SBML
3 Preliminary Definitions
31 TYPESBASE wiow s s w iw i A A EATES B4 G B4 E4 PR PG PR GBS BE SF S w W s w s
3.2 Guidelines for the Use of the annotation Field in 8Base
33 TYPESNAME v -v s i 34 54 59 5058 84 76 78 P8 ¥ 59 0% 0% £/ 84 S5 SRR W E W R
3.4 Component Names and Namespaces in SBML L
35 Forfiilasie c o v s v v s om s n s m i L A B4 mu o sn mE BB D W DA ew B @@ SR S E LWL
4 SBML Components
41 Modéls @ v ov g o wm v B ¥ B B S % 55 B4 RH UL BB LA VH VG €3 £05 £3 08 88 S8 ¥ .6 K6
4.2 1t BeflOitions o e mo o w s v oi oo s s a s na wa ©n wm MB HE B8 BN Rk RE BB En & S A D E @
4.3 Comparfments o o v v v v v 50 v % v S b b 8 e s B4 Rl R h s wa WA W B R A B R ey
A4 SPBCIES . o o v o e e e e e e e e e e e e e e
4.5 Parfamelers .« cowoso s w o B e Y S s e Y R R Sk Dm Sk D a B BE B4 o wE omh R oSG E A oEw E
4.6 Rules . . . o e e e e e e e e e e e
47 REACHANS wsve o @ o w39 3% 8% 2 54 8% §4 B4 94 P4 B PG PR PR BE BE £F SR Wi
5 Examples of Full Models Encoded in XML Using SBML
5.1 A Simple Example Application of SBML e
5.2 Simple Use of Units Feature ina Model o o e e
5.3 An Example of Using Rules o o 0 e e e e e e e
6 Discussion
6.1 Future Enhancements to SBML: Level 2 and Beyondo
6:2 Relatignships 0 iOFher BFFOTS « o o oo v o v s st st s s 25 2o s s wa S S won s
6.3 Availability L e e e e e e e e e e e e e e
Acknowledgments
Appendix

A Summary of Notation

B XML Schema for SBML

C Predefined Functions in SBML
References

1 Introduction

We present the Systems Biology Markup Language (SBML) Level 1, Version 2, a description language
for simulations in systerns biology. SBML is ariented towards representing biochemical networks common in
research on a number of topics, including cell signaling pathways, metabolic pathways, biochemical reactions,
gene regulation, and many others. A recent conference (Kitano, 2001) highlights the range of topics that
fall under the umbrella of systems biology and arc in the domain of the description language defined here.
Many contemiparary research initiatives demonstrate the growing popularity of this kind of multidisciplinary

work {e.g., Abbott, 1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik, 2000a.b).

SBML Level 1 s the result of merging modeling-language features from the following simulation systems:
DioSpice (Arkin, 2001), DBSolve (Goryanin, 2001; Goryanin et al., 1999), E-Cell {Tomita et al., 1999,
2001), Gepasi (Mendes, 1997, 2001), Jarnac (Sauro, 2000; Sauro and Fell, 1991). StochSim (Bray et al.,
2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al., 2000, 2001). SBML was developed with
the help of the authors of these packages. As a result of heing based on actual working simulation software,
it is a practical and functional description langnage. Our goal in creating it has been to provide an open
standard that will enable simulation software to exchange models, something that is currently impossible
because there is no standard model exchange langnage. We expect SBML models to be encoded using XML,
the eXtensible Markup Language (Bosak and Bray, 1999; Bray ct al., 1998), and we include here an XML
Schema that defines SBML Level 1.

1.1 Summary of Changes in Version 2 of SBML Level 1

This document describes Version 2 of SBML Level 1. Changes with respect to Version 1 of the SBML
gpecification are indicated in red. Most changes in this document are simply textual changes made in an
attemnpt to clarify the language of the specification and to correct typographical and other small errors. The
following list is an overview of the more notable changes:

e SBML Level 1 Version 2 deprecates the spelling specie in favor of species.

e There are additional names in the list of reserved XML Namespaces in Table 1. (Section 3.2.)

e The specified syntax of SName now corresponds to the intended syntax (Section 3.3), and the syntax
is expressed using the variant of EBNF used by the XML 1.0 specification.

e Table 2 on page 7 no longer lists “umar” twice.
e The default scale of units is now correctly defined as zero. (Section 4.2.)

e Campartments are now optional (Section 4.3); however, each species in a model is still required to be
located in a compartment, which means that for all meaningful models, compartments are mandatory.

e Species are now optional. {Section 4.4.)

e The value of a parameter is now optional. (Section 4.5.)

e The section on rules has greater detail on the intended use and limitations of rules. (Section 4.6.)

e Reactions arc optional, and lists of recactants and products in a reaction may be empty. (Section 4.7.)

e The values of attributes on speciesReference are required to be positive numbers; also, Section 4.7.1
is now more cxplicit about the intended use of speciesReference.

s The example given in Section 5.3 is a different, corrected example.

o The rate laws in Appendix ' are more correct and consistent. In addition, the law massr is no longer
defined hecause its definition posed parsing problems and it was redundant. The law massi is now
called mass. SBML Level 1 Version 1's massr is cquivalent to “mass[S;, k1] — mass[FP;, k).

e The version attribute of the sbml clement now has a value of “27 instead of “17.

In addition, we have established the web site http://www.sbml.org as the home site for SBML, and all
documents, schemas and software are available from there.

1.2 Scope and Limitations

SBML Level 1 is meant to support non-spatial biochemical models and the kinds of operations that are
possible in existing analysis/simulation tools. A number of potentially desirable features have been inten-
tionally omitted from the language definition. Future software tools will undoubtedly require the evolution
of SBML; we expect that subsequent releases of SBML (termed levels) will add additional structures and
facilities currently missing from Level 1, once the simulation community gains experience with the current
language definition. In Section 6.1, we discuss extensions that will likely be included in SBML Level 2 or 3.

The definition of the model description language presented here does not specify how programs should
communicate or read/write SBML. We assume that for a simulation program to communicate a model
encoded in SBML, the program will have to translate its internal data structures to and from SBML, use a
suitable transmission medium and protocol, etc., but these issues are outside of the scope of this document.

1.3 Notational Conventions

SBML is intended to be a common XML-based format for encoding systems biology models in a simple form
that software tools can use as an exchange format. However, for easier communication to human readers,
we define SBML using a graphical notation based upon UML, the Unified Modeling Language (Eriksson and
Penker, 1998; Oestereich, 1999). This UML-based definition in turn is used to define an XML Schema (Biron
and Malhotra, 2000; Fallside, 2000; Thompson et al., 2000) for SBML. There are three main advantages to
using UML as a basis for defining SBML data structures. First, compared to using other notations or a
programming language, the UML visual representations are generally easier to grasp by readers who are not
computer scientists. Second, the visual notation is implementation-neutral: the defined structures can be
encoded in any concrete implementation language—mnot just XML, but C or Java as well. Third, UML is
a de facto industry standard that is documented in many sources. Readers are therefore more likely to be
familiar with it than other notations.

Our notation and our approach for mapping UML to XML Schemas is explained in a separate docu-
ment (Hucka, 2000). A summary of the essential points is presented in Appendix A, and examples through-
out this document illustrate the approach. We also follow certain naming and typographical conventions
throughout this document. Specifically, the names of data structure attributes or fields begin with a lower-
case letter, and the names of data structures and types begin with an uppercase letter. Keywords (names of
types, XML elements, etc.) are written in a typewriter-style font; for example, Compartment is a type name
and compartment is a field name. Likewise, literal XML examples are also written in a typewriter-style font.

2 Overview of SBML

The example on the right is a simple, hypothetical network of

biochemical reactions that can be represented in SBML. Broken k. X kS, X,
down into its constituents, this model contains a number of com- Xo Lo S, <
ponents: reactant species, product species, reactions, rate laws, k.S, X,

and parameters in the rate laws.

To analyze or simulate this network, additional components must be made explicit, including compartments
for the species, and units on the various quantities. The top level of an SBML model definition simply
consists of lists of these components:

beginning of model definition
list of unit definitions
list of compartments
list of species
list of parameters
list of rules
list of reactions

end of model definition

The meaning of cach component is as follows:

Unit definition: A name for a unit used in the expression of quantities in a model. Units may be snpplied
in a number of contexts in an SBML model, and it is convenient to have a facility for both setting
default units and for allowing combinations of units to be given abbreviated names.

Compartment: A container of finite volume for substances. In SBML Level 1, a compartment is primarily
a topological structure with a volume but no geometric qualities.

Species: A substance or entity that takes part in a reaction. Some example species are ions such as Ca®"
and molecules such as glncose or AT, The primary qualities associated with a species in SBML Level 1
arc its initial amount and the compartment in which it is located.

Rleaction: A statement describing some transformation, transport or binding process that can change the
amount of one or more species. For example, a reaction may describe how certain entities (reactants)
are transformed into certain other entities (products). Reactions have associated rate laws describing
how quickly they take place.

Parameter: A quantity that has a symbolic name. SBML Level 1 provides the ability to define parameters
that arc global to a modcl as well as parameters that arc local to a single reaction.

Rule: In SBML, a mathematical expression that is added to the differential equations constructed from the
set of reactions and can be used to set parameter values, establish constraints between quantities, etc.

A software package can read in a model expressed in SBML and translate it into its own internal format
for model analysis. For instance, a package might provide the ability to simulate a maodel by constructing
a set of differential equations representing the network and then performing numerical integration on the
equations to explore the model’s dynamic behavior.

SBML allows models of arbitrary complexity to be represented. Each tvpe of component in a model is
described using a specific type of data structure that organizes the relevant information. The data structures
determine how the resulting model is encoded in XML.

In the sections that follow, the various constructs in SBML and their uses are described in detail. Section 3
first introduces a few basic structures that are used throughout SBML, then Section 4 provides details on
cach of the main components of SBML. Section 5 provides several complete examples of modcls encoded in
XML using SBML.

3 Preliminary Definitions

This section covers cortain constructs that arc used repeatedly in the rest of SBML and are useful to discuss
before diving into the details of the components provided in SBML.

3.1 Type SBase

Each of the main components composing an SBML model definition has a specific data type that is derived
directly or indirectly from a single abstract type called SBase. This inheritance hicrarchy is depicted in
Figurc 1 on the next page.

The type SBase is designed to allow a modeler or a software package to attach information to cach component
in an SBML model. The definition of SBase is presented in Figure 2 on the following page. SBase contains
twa fields, both of which are optional: notes and annotation. The field notes is a container for XHTML
content. It is intended for recording optional user-visible annotations. Every data object derived directly
or indirectly from type SBase can have a separate value for notes, allowing users considerable freedom for
annotating their models. The second ficld, annotation, is provided for softwarce-generated annotations. It is
a containcr for arbitrary data (XML type any) and is intended to store information not intended for human
viewing. As with the user-visible notes field, every data object can have its own annotation value.

Compartment

| SpeciesReference |

| Rule | | unitDefinition |
| AlgebraicRule | |AssignmentRuIe|
 ———
|SpeciesConcentrationRuIe| |CompartmentVqumeRuIe| | ParameterRule

Figure 1: A UML diagram of the inheritance hierarchy of major data types in SBML. Open arrows indicate inheritance,
pointing from inheritors to their parents (Eriksson and Penker, 1998; Oestereich, 1999).

SBase

notes : (XHTML) {minOccurs="0"}
annotation : (any) {minOccurs="0"}

Figure 2: The definition of SBase. Text enclosed in braces next to attribute types (i.e., {minOccurs="1"}) indicates
constraints on the possible attribute values; we use XML Schema language to express constraints since we are primarily
interested in the XML encoding of SBML.

The Version 1 specification of SBML Level 1 was inconsistent about the spelling of the annotation field. It
named the field annotation in Figure 2, but used annotations (i.e., plural) in the discussions throughout
the document. SBML Level 1 Version 2 clarifies that annotation (singular) is the intended name.

In other type definitions presented below, we follow the UML convention of eliding the attributes derived
from a parent type such as SBase. It should be kept in mind that these attributes are always available.

3.2 Guidelines for the Use of the annotation Field in SBase

The annotation field in the definition of SBase is formally unconstrained in order that software developers
may attach any information they need to different components in an SBML model. However, it is important
that this facility not be misused accidentally. In particular, it is critical that information essential to a
model definition is not stored in annotation. Parameter values, functional dependencies between model
components, etc., should not be recorded as annotations.

Here are examples of the kinds of data that may be appropriately stored in annotation: (a) Information
about graphical layout of model components; (b) application-specific processing instructions that do not
change the essence of a model; (c) bibliographic information pertaining to a given model; and (d) identi-
fication information for cross-referencing components in a model with items in a database. (We expect to
introduce an explicit scheme for recording bibliographic information and making database references in a
higher level of SBML, at which time using annotations for these purposes will become unnecessary.)

Different applications may use XML Namespaces (Bray et al., 1999) to specify the intended vocabulary of
a particular annotation. Here is an example of this kind of usage. Suppose that a particular application
wants to annotate data structures in an SBML model definition with screen layout information and a time
stamp. The application developers should choose a URI (Universal Resource Identifier; Harold and Means
2001; W3C 2000a) reference that uniquely identifies the vocabulary that the application will use for such
annotations, and a prefix string to be used in the annotations. For illustration purposes, let us say the URI

reference is “http://www.mysim. org/ns” and the prefix is mysim. An example of an annotation might then
be as follows:

<annotation xmlns:mysim="http://www.mysim.org/ns'">

<mysim:nodecolors mysim:bgcolor="green" mysim:fgcolor="white"/>

<mysim:timestamp>2000-12-18 18:31 PST</mysim:timestamp>
</annotation>

The namespace prefix mysim is used to qualify the XML elements mysim:nodecolors and mysim: timestamp;
presumably these symbols have meaning to the application. This example places the XML Namespace
information on annotation itsclf rather than on a higher-level enclosing construct or the enclosing document
level, but other placements would be valid as well (Bray ot al., 1999).

The use of XML Namespaces permits multiple applications to place annotations on XML elements of
a model without risking interference or clement name collisions. Annotations stored by different simu-
lation packages can therefore coexist in the same maodel definition. Although XML Namespace names
(“http://wuw.mysim.org/” in the example above) must be URIs references, an XML Namespace name is
not required to be directly usable in the sense of identifying an actual, retrieval document or resource on the
Internet (Bray ct al., 1999), The name is simply intended to cnable unique identification of constructs, and
using URIs is a common and simple way of creating a unique name string. For the convenience of developers
of simulation and analysis tools, we reserve certain namespace names for use with annotations in SBML.
These reserved names are listed in Table 1.

http://www.sbml.org/2001/ns/basis http://www.sbml.org/2001/ns/jdesigner
http://wuw.sbml.org/2001/ns/bioccharon http://www.sbml.crg/2001/ns/jigecell
http://www.sbml.org/2001/ns/bioreactor http://www.sbml.org/2001/ns/jsim
http://wuw.sbml.org/2001/ns/biosketchpad http://www.sbml.org/2001/ns/libsbml

http://wuw.sbml.org/2001/ns/biospice http://www.sbml.org/2001/ns/mathsbml
http://wuw.sbml.org/2001/ns/cellerator http://www.sbml.org/2001/ns/mcell
http://wuw.sbml.org/2001/ns/copasi http://www.sbml.org/2001/ns/netbuilder
http://wuw.sbml.org/2001/ns/cytoscape http://www.sbml.org/2001/ns/pathdb
http://wuw.sbml.org/2001/ns/dbsolve http://www.sbml.org/2001/ns/promot
http://www.sbml.org/2001/ns/ecell http://www.sbml.org/2001/ns/sbedit
http://www.sbml.org/2001/ns/gepasi http://www.sbml.org/2001/ns/sigpath
http://wuw.sbml.org/2001/ns/isys http://www.sbml.org/2001/ns/stochsim
http://wuw.sbml.org/2001/ns/jarnac http://www.sbml.org/2001/ns/vecell

Table 1: Reserved XML Namespace names in SBML Level 1 Version 2.

Note that the namespaces heing referred to here are XML Namcespaces specifically in the context of the
annotation field on SBase. The namespace issue here is unrelated to the namespaces discussed in Section 3.4
in the context of SName and symbols in SBML.

3.3 Type SName

The type SName is used in many places in SBML for expressing namces of components in a model. SName is
is a data type derived from the basic XML type string, but with restrictions about the types of characters
permitted and the sequence in which they may appear. Its definition is shown in Figure 3 on the following
page.

The need to define a constrained data type for names stems from the fact that many existing simulation
packages allow only a limited set of characters in symbol names. SBML codifies this limitation in the form
of a lowest-common-denominator data type (8Name), to prevent the creation of models with symbol names
that might confuse some simulation softwarc packages. This is important for facilitating model exchange
between tools.

letter es tad , g, AR A2
digit 7, 00
name (letter | ’_’) (letter | digit | ’_7)*

Figure 3: The definition of the type SName, expressed in the variant of Extended Backus-Naur Form (EBNF) used by the
XML 1.0 specification (Bray et al., 2000). The characters { and) are used for grouping, and the character * signifies
“zero or more times” the immediately-preceding term.

3.4 Component Names and Namespaces in SBML

A biochemical network model can contain a large number of named components representing different parts
of a model. This leads to a problem in deciding the scope of a symbol: in what contexts does a given symbol
X represent the same thing? The approaches used in existing simulation packages tend to fall into two
categories that we may call global and local. The global approach places all svimbols into a single global
namespace, so that a symbol X represents the same thing wherever it appears in a given model definition.
The local approach places symbols in different namespaces depending on the context, where the context may
be, for example, individual rate laws. The latter approach means that a user may use the same symbol X in
different rate laws and have cach instance represent a different quantity, The fact that different simulation
programs may use differert rules for name resolution poses a problem for the exchange of models between
simmulation tools. Without careful congideration, a model written out in SBML format by one program may
be misinterpreted by another program. SBML must therefore include a specific set of rules for treating
symbols and namespaces.

The namespace rules in SBML Level 1 are relatively straightforward and are intended to avoid this problem
with a minimum of requirements on the implementation of software tools:

e All modcllevel component names (compartments, specics, reactions, parameters, parameter rules, and
units) reside in the same global namespace. This means, for example, that a reaction and a species
definition cannot both have the same name.

e Each reaction definition (sce Scetion 4.7) establishes a private local namespace for parameter names.
Within the definition of a given reaction, parameter names introduced in that reaction override
{shadow) identical names in the global namespace.

e Certain names in SBML Level 1 are reserved or otherwise have special meaning. Table 2 lists these
reserved names. They are comprised of predefined mathematical functions, certain operators (present
and expected in the future), and rate law functions. In order to prevent name collisions, these reserved
names cannot be used as names for any component of a model.

abs cos hillr massr pow tan ucii umai usii uur
acos exp isouur not ppbr time ucir umar usir volume
and floor log or sin uai ucti umi uuci xor
asin hilli logl0 ordbbr sqr uaii uctr umr uucr

atan hillmmr mass ordbur sqrt ualii uhmi wunii uwuhr

ceil hillmr massi ordubr substance uar uhmr unir uuni

Table 2: The reserved names in SBML Level 1.

The sct of rules above can cnable software packages using cither local or global namespaces to cxchange
SBML model definitions. In particular, software environments using local namespaces internally should be
able to accept SBML madel definitions without needing to change component names. Environments using
a global namespace internally can perform a simple manipulation of the names of elements within reaction
definitions to avoid name collisions. (An example approach for the latter would bhe the following: when
receiving an SBML-encoded model, prefix cach name inside cach reaction with a string constructed from the
reaction’s name; when writing an SBML-encoded model, strip off the prefix.)

The namespace rules deseribed here provide a clean transition path to future levels of SBML, when submodels
are introduced (Section 6.1). Submadels will provide the ability to compose one model from a collection of
other models. This capability will have to be built on top of SBML Level 1's namespace organization. A
straightforward approach to handling namespaces is to make each submodel’s space be private. The rules
governing namespaces within a submodel can simply be the Level 1 namespace rule described here, with
cach submodel having its own (to itsclf, global) namespace.

3.5 Formulas

Formulas in SBML Level 1 are expressed in text string form. They are used in the definitions of kinetic laws
(Section 4.7.2) and in rules (Section 4.6). The formula strings are interpreted as expressions that evaluate to
a floating-point valuc of type double. The formula strings may contain operators, function calls, symbols,
and white space characters. The allowable white space characters are tab and space. Table 3 presents the
precedence rules for the different entities that may appear in formula strings. All operators in formulas
return double values.

Tokens Operation Class Precedence Associates
TLLITLE symbol reference operand 6 n/a
(expression) expression grouping operand 6 n/a
Fe.) function call prefix 6 left
= negation unary 3 right
- power binary 4 left
* multiplication binary 3 left
/ division binary 3 left
+ addition binary 2 left
- subtraction binary 2 left

i argument delimiter binary 1 left

Table 3: A table of the expression operators available in SBML. In the Class column, “operand” implies the construct is
an operand, “prefix” implies the operation is applied to the following arguments, “unary” implies there is one argument,
and “binary” implies there are two arguments. The values in the Precedence column show how the order of different
types of operation are determined. For example, the expression a # b+ ¢ Is evaluated as (a * b) + ¢ because the * operator
has higher precedence. The Associates column shows how the order of similar precedence operations is determined; for
example, a — b + ¢ is evaluated as (a — b) + ¢ because the + and — operators are left-associative. The precedence and
associativity rules are taken from the C programming language (Harbison and Steele, 1995; Kernighan and Ritchie, 1968),
except for the symbol ~, which is used in C for a different purpose.

The function call syntax cansists of a function name, followed by optional white space, followed by an opening
parenthesis token (*(*), followed by a sequence of zero or more arguments separated by commas (with each
comma optionally preceded and/or followed by zero or more white space characters), followed by a closing
parenthesis (*)’) token. The function name must be chosen from one of the functions available in SBML.
Table 6 in Appendix C lists the basic mathematical functions that arc defined in SBML at this time, while
Table 7 lists a large number of common rate law functions defined in SBML. The names of these predefined
funictions are reserved and make up the bulk of the list of names in Table 2 on the page before.

A program parsing a formula in an SBML meodel should assume that name tokens other than function names
are names of parameters, compartments or species. When a species name occurs in a formula, it represents
the concentration (i.e., substance/volume) of the species. When a compartment name occurs in a formula,
it represents the volume of the compartment. The units of substance and volume are determined from the
built-in substance and volume of Table 5 on page 11.

Readers may wonder why mathematical formulas in SBML are not expressed nsing MathML (W3C, 2000b),
an XML-based mathematical formula language. Although using MathML would be more in the spirit of
using XML and would in some ways be a more forward-looking choice, it would require simulation softwarc
to use fairly complex parsers to read and write the resulting SBML. Mast contemporary systems biclogy

simulation software simply represent mathematical formulas using text strings. To keep SBML Level 1 simple
and compatible with known simulation software, we chose to represent formulas as strings. This does not
preclude a later level of SBML from introducing the ability to use MathML as an extension.

4 SBML Components

In this section, we define each of the major data structures in SBML. To provide illustrations of their use,
we give partial XML encodings of SBML model components, but we leave full XML examples to Section 5.

4.1 Models

The Model structure is the highest-level construct in an SBML data stream or document. The UML definition
of Model is shown in Figure 4. Only one component of type Model is allowed per instance of an SBML
document or data stream, although it does not necessarily need to represent a single biological entity.

Model

name : SName {use="optional"}
unitDefinition : UnitDefinition[0..*]
compartment : Compartment[0..*]
species : Species[0..*]

parameter : Parameter[0..*]

rule : Rule[0..%]

reaction : Reaction[0..”]

Figure 4: The definition of Model. Additional fields are inherited from SBase.

Model serves as a container for UnitDefinition, Compartment, Species, Parameter, Rule, and Reaction
components. All of these components are optional; that is, the lists in each of the respective fields are
permitted to have zero length. (However, there are dependencies between components, such that defining
some requires defining others. See in particular Section 4.4 on Species.) An instance of a Model may also
have an optional name field that can be used to give the model a name. The name must be a text string
conforming to the syntax permitted by the SName data type described in Section 3.3.

In the XML encoding of an SBML model, the lists of species, compartments, unit definitions, parameters,
reactions, function definitions and rules are translated into lists of XML elements that each have headings of
the form 1ist0f___ s, where the blank is replaced by the name of the component type (e.g., “Reaction”).
The resulting XML data object has the form illustrated by the following skeletal model:

<?xml version="1.0" encoding="UTF-8"7>
<sbml xmlns="http://www.sbml.org/sbml/levell" level="1" version="2">
<model name="the_name_of_my_model">
<list0fUnitDefinitions>

</list0fUnitDefinitions>
<listOfCompartments>

</1list0fCompartments>
<listDfSpecies>

</1list0fSpecies>
<listOfParameters>

</list0fParameters>
<list0fRules>

</1list0fRules>
<listOfReactions>

</list0fReactions>
</model>
</sbml>

Readers may wonder about the motivations for the 1ist0f__ s notation. A simpler approach to creating
the lists of components would be to place them all directly at the top level under <model> ... </model>.
We chose instead to group them within XML elements named after 1ist0f s, because we believe
this helps organize the components and makes visual reading of model definitions easier.

4.2 Unit Definitions

Units may be supplied in a number of contexts in an SBML model. A facility for defining units is convenient
to have so that combinations of units can be given abbreviated names. This is the motivation behind the
UnitDefinition data structure, whose definition is shown in Figure 5.

UnitDefinition Unit
name : SName kind : UnitKind
unit : Unit[0..*] exponent : integer {use="optional" default="1"}
scale : integer {use="optional" default="0"}

Figure 5: The definition of UnitDefinition.

A unit definition consists of a name field of type SName and an optional list of structures of type Unit.
The approach to defining units in SBML is compositional; for example, meter second 2 is constructed by
combining a Unit-type element representing meter with a Unit-type element representing second ~2. The
Unit structure has one required attribute, kind, whose value must be a name taken from the list of units in
Table 4. The optional exponent field on Unit represents an exponent on the unit. Its default value is “1”
(one). In the example just mentioned, second ~2 is obtained by using kind="second" and exponent="-2".
Finally, a Unit structure also has an optional scale field; its value must be an integer exponent on a power
of ten multiplier used to set the scale of the unit. For example, a unit that has a kind value of “gram”
and a scale value of “-3” signifies 1072 % gram, or milligrams. The default value of scale is zero, because
10° = 1.

ampere farad joule lumen ohm steradian
becquerel gram katal lux pascal tesla
candela gray kelvin meter radian volt
celsius henry kilogram metre second watt
coulomb hertz 1liter mole siemens weber
dimensionless item litre newton sievert

Table 4: The possible values of kind in a UnitKind structure. All are names of base or derived S| units, ex-
cept for ‘“dimensionless” and “item”, which are SBML additions important for handling certain common cases.
‘Dimensionless” is intended for cases where a quantity does not have units, and “item” is needed in certain contexts
to express such things as “N items” (e.g., “100 molecules”). Although “Celsius” should be capitalized, for simplicity
SBML requires that all unit names be treated in a case-insensitive manner. Also, note that the gram and liter/litre are
not strictly part of SI (Bureau International des Poids et Mesures, 2000); however, they are so commonly used in SBML’s
areas of application that they are included as predefined unit names. (The standard Sl unit of mass is in fact the kilogram,
and volume is defined in terms of cubic meters.)

Unit combinations are constructed by listing several Unit structures inside a UnitDefinition-type structure.

The following example illustrates the definition of an abbreviation named “mmls” for the units mmol [~ s~

<1list0fUnitDefinitions>
<unitDefinition name="mmls">
<1ist0fUnits>
<unit kind="mole" scale="-3"/>
<unit kind="liter" exponent="-1"/>
<unit kind="second" exponent="-1"/>
</1list0fUnits>
</unitDefinition>
</1list0fUnitDefinitions>

10

Name Allowable Units Default Units

substance moles or number of molecules moles
volume liters liters
time seconds seconds

Table 5: SBML'’s built-in quantities. Each of these units has a default scale value of 0.

There are three special unit names in SBML, listed in Table 5, corresponding to the three types of quantities
that play roles in biochemical reactions: amount of substance, volume and time. SBML defines default
units for these quantities, all with a default scale value of 0. The various components of a model, such
as parameters, can use only the predefined units from Table 4, new units defined in unit definitions, or the
three predefined names “substance”, “time”, and “volume” from Table 5. The latter usage signifies that
the units to be used should be the designated defaults.

A model may change the default scales by reassigning the special unit names “substance”, “time”, and
“volume” in a unit definition. This takes advantage of the UnitDefinition structure’s facility for defining
scales on units. The following example changes the default units of volume to be milliliters:

<model>

<1list0fUnitDefinitions>
<unitDefinition name="volume">
<1ist0fUnits>
<unit kind="liters" scale="-3"/>
</1list0fUnits>
</unitDefinition>
</list0fUnitDefinitions>

</moc'1éi>
If the definition above appeared in a model, the volume scale on all components that did not explicitly use
different units would be changed to milliliters.
4.3 Compartments

A compartment in SBML represents a bounded volume in which species are located. Compartments do not
necessarily have to correspond to actual structures inside or outside of a cell, although models are often
designed that way. The definition of Compartment is shown in Figure 6.

Compartment

name : SName

volume : double {use="optional" default="1"}
units : SName {use="optional"}

outside : SName {use="optional"}

Figure 6: The definition of Compartment. Fields inherited from SBase are omitted here but are assumed.

Compartment has one required field, name, to give it a unique name by which other parts of an SBML
model definition can refer to it. A compartment can also have an optional floating-point field called volume
representing the total volume of the compartment. This enables concentrations of species to be calculated
in the absence of spatial geometry information. The volume attribute defaults to a value of “1” (one). The
units of volume may be explicitly set using the optional field units. The value of this attribute must be one
of the following: a predefined unit name from Table 4, the term “volume” (which, if used, signifies that the
default units of volume should be used—see Section 4.2), or the name of a unit defined by a unit definition
in the Model. If absent, as in the example above, the units default to the value set by the built-in “volume”.

The optional field outside of type SName can be used to express containment relationships between compart-
ments. If present, the value of outside for a given compartment must be the name of another compartment

11

enclosing it, or in other words, the compartment that is “outside” of it. This enables the representation of
simple topological relationships between compartments, for those simulation systems that can make use of
the information (e.g., for drawing simple diagrams of compartments). Although containment relationships
are partly taken into account by the compartmental localization of reactants and products, it is not always
possible to determine purely from the reaction equations whether one compartment is meant to be located
within another. In the absence of a value for outside, compartment definitions in SBML Level 1 do not
have any implied spatial relationships between each other.

In an XML data stream containing an SBML model, compartments are listed inside an XML element called
listOfCompartments within a Model-type data structure. (See the discussion of Model in Section 4.1.) The
following example illustrates two compartments in an abbreviated SBML example of a model definition:

<model>

<listOfCompartments>
<compartment name="cytosol" volume="2.5"/>
<compartment name="mitochondria" volume="0.3"/>
</1list0fCompartments>

</model>

The following is an example of using outside to model a cell membrane. To express that a compartment
named B has a membrane that is modeled as another compartment M, which in turn is located within
another compartment A, one would write:

<model>

<listOfCompartments>
<compartment name="A"/>
<compartment name="M" outside="A"/>
<compartment name="B" outside="M"/>
</list0fCompartments>

</moééi>
4.4 Species

The term species refers to entities that take part in reactions. These include simple ions (e.g., protons, cal-
cium), simple molecules (e.g., glucose, ATP), and large molecules (e.g., RNA, polysaccharides, and proteins).
The Species data structure is intended to represent these entities. Its definition is shown in Figure 7.

Species

name : SName

compartment : SName

initialAmount : double

units : SName {use="optional"}

boundaryCondition : boolean {use="optional" default="false"}
charge : integer {use="optional"}

Figure 7: The definition of Species. As usual, fields inherited from SBase are omitted here but are assumed.

Species has a required name field of type SName. The required field compartment, also of type SName, is
used to identify the compartment in which the species is located. The field initialAmount, of type double,
is used to set the initial amount of the species in the named compartment. The units of this quantity may
be set explicitly using the optional field units. The value of units must be chosen from one of the following
possibilities: a predefined unit name from Table 4, the term “substance” (which, if present, signifies that the
default units of quantity should be used—see Section 4.2), or a new unit name defined by a unit definition
in the enclosing Model. If absent, the units default to the value set by the built-in “substance”.

12

The optional boolean field boundaryCondition dotermines whother the amount of the species is fixed or
variable over the course of a simulation. The value of boundaryCondition defaulis o “false”, indicating
that by defanli, the amount is not fived. I the amonnn of w species is defined ag being fixed, it implies
that sowe external mechanism mainkains A constant quantity in the compariment throughont the course of
a reaction. {The term boundary condition alludes to the role of this constraing in o simulation.)

The optional field charge is an integer indicating the charge on the species (in terms of electrons, not the

SI unit Coulombs). This may be useful when the species involved is a charged jon such as calcium {Ca '),

Fi

The following example shows two species definitions within an abbreviated SBML model definition. The
example shows that species are listed under the heading 1istDfSpecies in the model:

<medel>

<listlfSpecies>
<species name="Glucose" compartment="cell" initiallmount="4"/>
<spescies name="Glucose 6_P" compartment="cell" initialdmoont="0.75"/>
</3istDf3pecies>

</model>

In SBML Lowel T Version 2, the torn specie {(used in SBEML Lovel | Version 1) has been replaced with the more
comuonlv-accepted spelling speciey throughous the specilication. Models wrilten in SBML Level 1 Version 2
format shonld use the new spelling. However, for backwards comparibility, software packages intended o
be conformant with SBML Level 1 Version 2 should aceept bofl spellings on inputl for all slements and
attributes wheve the torm ocours. Boglnniong with SBML Lovel 4. the specie apelling will be removed entively
and emly species will be used.

Finally, note that the delinition of Species in SBML requires a species in a model 1o bo located within a
compartmont. This means that ac least one compartment nust be dofined in an SBML model that defines

any epecies. The only exceplion 1o thiz i3 che case of degenerale models that have no specles or reactious,

4.5 Parameters

A Parameter structure is used to associate a name with a Hoating-point value so that the symbol can be
used in formulas in place of the value., The dofinition of Parameter is shown in Figure 8.

Parameter

name : SName
value : double {use="optional"}
units : SName {use="optional"}

Figure 8: The definition of Parameter.
The Paramster siructure has one required field, name, vepresenting the parvsmeler’s name o the wodel,
The optional ficld value determmines the value {of type double) assigned to the symbol. The units of the
parameter value are specified by the field unitas. The value assigned to units nmst be chosen from one
of the following possibilities: one of the hase unit names from Table 4 on page 10; one of the three names
“snbstance”, “time”, or “volume” (see Table B); or the name of a new unit defined in the ligt of unit
definitions in the enclosing Model structure.

Parameters con be defined in two places in SBML: in lists of parameters defined at the top level in a Model-
bype structnre {in the 1ist0fParameters described in Seclion 4.1}, and within individual reaction definitions
{as deseribed in Scectlon 4.7, Parameters defined at the top lovel are glebal to the whole model; parameters
that are defined within a reaction are local to the particular reaction and (within that reaction) override
any global parameters having the same names. (See Section 3.4 for furthar details.)

13

The following is an cxample of paramcters defined at the Model level:

<model>
<list0fSpecies>

</list0fSpecies>
<list0fParameters>
<parameter name="Kml" value="2.3" units="second"/>
<parameter name="Km2" value="10.7" units="second"/>
</list0fParameters>
<list0fReactions>

</listOfReactions>
</model>
An examuple of a full model that uses parameters is presented in Section 5.3.

4.6 Rules

In SBML, rules provide a way to create constraints on variables for cascs in which the constraints cannot
be expressed using reactions (Section 4.7) nor the assignment of an initial valne to a compaonent in a model.
There are two orthogonal dimensions by which rules can be described. First, there are three different possible
funetional forms, corresponding to the following three general cases (where 2 is a variable, f is some arbitrary
function, and W iz a vector of parameters and variables that may include):

(Algebraic rule) left-hand side is zero: 0= f(")
(Scalar rule) left-hand side is a scalar: &= f()
(Rate rule) left-hand side is a rate-of-change: duz/dt = f(W)

The second dimension concerns the role of variable x in the equations above: @ can be the name of a
compartment (to set its volume), the name of a species (to set its concentration}, or a parameter name (to
set its value).

In their general form given above, there is little to distinguish between scalar and algebraic rules. They are
treated as separate cases for the following reasons:

e Scalar rules can simply be evaluated to calculate intermediafe values for nse in numerical methods.
¢ Some simulators do not contain numerical solvers capable of solving unconstrained algebraic cquations.

e Those simulators that can solve algebraic equations normally make a distinction between the different
categories listed above:; therefore, it is important to distinguish them also in a model definition.

e Some specialized mumeric analyses of models may only be applicable to models that do not contain
algebraic rules; therefore, it is imnportant to indicate the presence of such rules in a model.

The approach taken to covering these cases in SBML is to define an abstract Rule structure that contains
just one field, formala, to hold the right-hand side expression, then to derive subtypes of Rule that add
fields to cover the various cases above. Figure 9 on the next page gives the definitions of Rule and the
subtypes detived from it. The figure shows that AlgebraicRule is defined directly from Rule, whercas
CompartmentVolumeRule, SpeciesConcentrationRule, and ParameterRule are all derived from an inter-
mediate abstract structure called AssignmentRule.

The type field introduced in AssignmentRule is an enumeration of type RuleType that determines whether
a rule falls into the scalar or rate categories in the list of cases above. In SBML Level 1, the enumeration
has two possible values: “scalar” and “rate”. The former means that the expression has a scalar value on
the left-hand side [i.c., & = f(I1¥), as in casc 2 in the list above]; the latter means that the expression has a
rate of change differential on the left-hand side [i.c., de/dt = f(X), as in case 3 in the list above]. Future
releases of SBML may add to the possible values of RuleType.

14

Rule

formula : string

AN

AlgebraicRule | AssignmentRule

type : RuleType {default="scalar"}

T T

SpeciesConcentrationRule CompartmentVolumeRule ParameterRule
species : SName compartment : SName name : SName
units : SName {use="optional"}

Figure 9: The definition of Rule and derived types.

4.6.1 AlgebraicRule

The rule type AlgebraicRule is used to express equations whose left-hand sides are zero. AlgebraicRule
does not add any fields to the basic Rule; its role is simply to distinguish this case from the other cases.

4.6.2 SpeciesConcentrationRule

The SpeciesConcentrationRule structure adds one field, species, to the basic AssignmentRule type. The
field species has type SName and is used to identify the species affected by the rule. The effect of the rule
depends on the value of type: if the value is “scalar”, the rule sets the referenced species’ concentration to
the value determined by the formula; if the value is “rate”, the rule sets the rate of change of the species’
concentration to the value determined by the formula. The units are in terms of substance/volume, where
the substance units are those that are declared on the referenced Species element, and the volume units
are those declared on the compartment element that contains the Species.

Unless the boundaryCondition field of a given species is set to “true”, that species cannot be named by
both a SpeciesConcentrationRule structure and a SpeciesReference structure (see Section 4.7). This
restriction simply codifies the notion that it would be a logical inconsistency to define a rule for a species
whose concentration is already being altered by one or more reactions.

4.6.3 CompartmentVolumeRule

The CompartmentRule structure adds one field, compartment, to the basic AssignmentRule type. The
field compartment has type SName and is used to identify the compartment affected by the assignment.
The effect of the rule depends on the value of type: if the type is “scalar”, the rule sets the referenced
compartment’s volume to the volume determined by the formula; if the type is “rate”, the rule sets the
rate of change of the compartment’s volume to the volume determined by the formula. No more than one
CompartmentVolumeRule can refer to a given compartment in an SBML model definition.

4.6.4 ParameterRule

The ParameterRule structure adds two fields, name and units, to the basic AssignmentRule type. The
name attribute has type SName and identifies the parameter. The parameter must already exist and be
defined by a Parameter structure in the enclosing model; in other words, ParameterRule does not create
new symbols. The units field acts in the same way as in the case of the Parameter structure (Section 4.5).
The value assigned to units must be chosen from one of the following possibilities: one of base unit names
from table 4; one of the three names “substance”, “time”, or “volume” (see Table 5); or the name of a new
unit defined in the list of unit definitions in the enclosing model structure.

The effect of this rule depends on the value of the type field in AssignmentRule: if the type is “scalar”, the
rule sets the referenced parameter’s value to that determined by the formula in math; if the type is “rate”,
the rule sets the rate of change of the parameter’s value to that determined by the formula.

15

4.6.5 Constraints on Rule Use

SBML specifically does not stipnlate the form of the algorithms that can be applied to rules and reactions.
For cxample, SBML docs not specify when or how often rules should be evaluated., The constraints described
by rules and kinetic rate laws are meant to apply collectively to the set of variable values for a specific time.

To prevent ambiguities and inconsistencies in an SBML model, no more than one assignment rule can be
defined for a given identifier. A scalar rule for a given identifier overrides the initial value of that identificr;
i.e., the initial value should be ignored. This does not mean that any structure declaring an identifier can
be omitted if there i a scalar rule for that identifier. For example, there must be a Parameter structure
for a given parameter if there is a ParameterRule for that parameter.

The ordering of scalar rules is significant: they are always evaluated in the order given in SBML. The
formula field of a scalar rule structure can contain any identifier except for the following: (a) identifiers
for which there exists a subsequent scalar rule, and (b) the identifier for which the rule is defined. These
constraints arc designed to climinate algebraic loops among the scalar rules. Eliminating algebraic loops
cnsures that scalar rules can be evaluated any number of times in a simulation without the result of those
evaluations changing.

As an example of all this, consider the following equations, in the order shown:
B o=k 1., =g 200 S=y 000

It this set of equations were interpreted as a set of scalar rules, it would be invalid because the rule for x
refers to @ and the rule for y refers to 2 before z is defined.

4.6.6 Example of Rule Use

The following is an example use of rules:
<model>

<list0fRules>
<parameterRule name="k" formula="k3/k2"/>
<speciesConcentrationRule species="s2" formula="k * z/(1 + k)"/>
<compartmentVolumeRule compartment="A" formula="0.10 * k4"/>
</listDfRules>

</moééi>
4.7 Reactions

A reaction vepresents some transformation, transport or binding process, typically a chemical reaction, that
can change the amount of one or more specics. The Reaction type is defined in Figure 10.

In SBML, reactions are defined using lists of reactant species, products, and their stoichiometries, and by
parameter values for separately-defined kinetic laws. These various quantities are recorded in the fields
reactant, product, and kineticLaw. Both reactant and product arc references to specics implemented
using lists of SpeciesReference structures (defined in Section 4.7.1 helow). The SpeciesReference struc-
ture contains fields for recording the names of species and their stoichiometries. kineticLaw is an optional
field of type KineticLaw (defined in Section 4.7.2 below), used to provide a mathematical formula describing
the rate of the reaction.

In addition to these fields, the Reaction structure also has a boolean field, reversible, that indicates
whether the reaction is reversible. The field is optional, and if left unspecified in a model, it defaults to
a value of “true”. Information about reversibility is uscful in certain kinds of structural analyses such as
elementary mode analydis.

The ficld fast is another hoolean attribute in the Reaction data structure; a value of “true” signifies that
the given recaction is a “fast” one. This may be relevant when computing cquilibrium concentrations of
rapidly equilibrating reactions. Simulation/analysis packages may choose to use this information to reduce

16

Reaction

name : SName

reactant : SpeciesReference[0..*]

product : SpeciesReference[0..*]

kineticLaw : KineticL,aw {minOccurs="0"}
reversible : boolean {use="optional" default="true"}
fast : boolean {use="optional" default="false"}

SpeciesReference KineticLaw
species : SName formula : string
stoichiometry : positivelnteger {use="optional" default="1"} parameter : Parameter[0..*]
denominator : positivelnteger {use="optional" default="1"} timeUnits : SName {use="optional"}
substanceUnits : SName {use="optional"}

Figure 10: The definitions of Reaction, KineticLaw and SpeciesReference.

the number of ODEs required and thereby optimize such computations. The default value of fast is “false”.
(A simulator/analysis package that has no facilities for dealing with fast reactions can ignore this attribute.
In theory, if the choice of which reactions are fast is correctly made, then a simulation performed with them
should give the same results as a simulation performed without fast reactions. However, currently there
appears to be no single unambiguous method for designating which reactions should be considered fast, and
some users may designate a reaction as fast when in fact it is not. Caveat developer.)

4.7.1 SpeciesReference

Each unique species involved in a reaction is listed once in a model, in a list contained in the species field
of the Model data structure discussed in Section 4.1. Lists of products and reactants in Reaction type
structures refer to those species. The connection between the products and reactants in a reaction definition
and the species names listed in the enclosing Model definition is achieved using the SpeciesReference type
data structure defined in Figure 10.

The field species of type SName in SpeciesReference must refer to the name of a species defined in the
enclosing Model-type structure. The two fields stoichiometry and denominator together set the stoichiom-
etry value for a species in a reaction. Both take positive integers as values, and both have default values
of “1” (one). The absolute value of the stoichiometric number is the value of stoichiometry divided by
denominator, and the sign is implicit from the role of the species (i.e., positive for reactants and negative
for products). The use of these separate terms allows a simulator to employ rational arithmetic on the
stoichiometry matrix if it is capable of it, potentially reducing round-off errors and other problems dur-
ing computations. Such computations are particularly important when working with large matrices and
calculating such things as elementary modes.

The following is a simple example of a species reference in a list of reactants within a reaction named “J1”:

<model>
<listOfReactions>
<reaction name="J1">
<listOfReactants>
<speciesReference species="X0" stoichiometry="2"/>
</list0fReactants>
</reaction>
</list0fReactions>
</model>

17

4.7.2 Kineticlaw

A kineticlaw structure describes the rate of the enclosing reaction. The use of a KineticLaw structure in
a Reaction component is optional. (In general, there is no uscful default value that can be substituted in
place of a missing kinctic law, but the element is optional beeause certain kinds of network analysis are still
possible in the absence of information on reaction kinetics.)

The ficld formula, of type string, cxpresses the rate in substance/time units. (Scction 3.5 discusscs
formulas.) The optional fields substanceUnits and timeUnits determine the units of substance and time.
If not set, the units are taken from the defaults defined by the built-in “substance” and “time” of Table 5
on page 11.

A KineticLaw type structure can contain zero or more Parameter structures (Section 4.5) that define symbols
that can be used in the formula string. As discussed in Section 3.4, reactions introduce local namespaces
for parameter names. Within a KineticLaw structure inside a reaction definition, a parameter whose name
is identical to a global parameter defined in the enclosing Model-type structure takes precedence over that
global paramecter.

The following is an example of a Reaction structure that defines the reaction J, : Xy — 5y; B Xy It
demonstrates the use of specics references and the KineticLaw structure:

<mcdel >

<listOfReactions>
<reaction name="J1">
<listOfReactants>
<speciesReference species="X0" stoichiometry="1"/>
</1list0fReactants>
<listOfProducts>
<speciesReference species="$1" stoichiometry="1"/>
</1list0fProducts>
<kineticLaw formula="k1*X0">
<listDfParameters>
<parameter name="ki" value="0"/>
</listDfParameters>
</kineticLaw>
</reaction>
</list0fReacticns>

</moc.1e.:2.|_>
5 Examples of Full Models Encoded in XML Using SBML

In this scction, we present several examples of complete madels encoded in XML using SBML Level 1. Our
approach to translating the UML-based structure definitions presented in the previous sections is described
elsewhere (Hucla, 2000). Appendix B gives the full listing of an XML Schema corresponding to SBML
Level 1.

5.1 A Simple Example Application of SBML

Consider the following hypothetical branched system:

Xo kMXy &

Si kS X
Si kS, Xo

The following is the main portion of an XML docnment that encodes the model shown above:

18

<7xml version="1.0" encoding="UTF-8"7>

<sbml xmlns="http://www.sbml.org/sbml/levell” level="1" version="2'">

<mcdel name="Branch">
<notes>

<body xmlns="http://www.w3.org/1999/xhtml">

<p>Simple branch system.</p>

<p>The reaction looks like this:</p>
<prreactiocn-1: X0 -> 51; k1x*X0;</p>

<prreaction-2: 51 -> X1; k2+51;
<prreaction-3: 51 -> X2; k3#*51;
</body>
</notes>
<listOfCompartments>

</p>
</p>

<compartment name="compartment(ne" volume="1"/>

</list0fCompartments>
<list0fSpecies>
<species name="31" initialAmount="0"
boundaryCondition="false"/>
<species name="X0" initialAmount="0"
boundaryCondition="true"/>
<species name="X1" initialAmount="0"
boundaryCondition="true"/>
<species name="X2" initialAmount="0"
boundaryCondition="true"/>

compartment="compartmentOne"
compartment="compartmentOne"
compartment="compartmentlne"

compartment="compartmentOne"

<speciesReference species="X0" stoichiometry="1"/>

<specieskeference species="S1" stoichiometry="1"/>

<speciesReference species="S1" stoichiometry="1"/>

<speciesReference species="X1" stoichiometry="1"/>

<speciesReference species="S1" stoichiometry="1"/>

<speciesReference species="X2" stoichiometry="1"/>

</list0fSpecies>
<list0fReactions>
<reaction name="reaction_1" reversible="false">
<listDfReactants>
</list0fReactants>
<list0fProducts>
</1istDfProducts>
<kineticLaw formula="kl * XO">
<listDfParameters>
<parameter name="k1" value="0"/>
</list0fParameters>
</kineticLaw>
</reaction>
<reaction name="reaction_2" reversible="false'">
<listDfReactants>
</list0fReactants>
<1ist0fPrecducts>
</list0fProducts>
<kineticLaw formula="k2 % S1">
<listO0fParameters>
<parameter name="k2" value="0"/>
</1list0fParameters>
</kineticLaw>
</reaction>
<reaction name="reaction_3" reversible="false">
<listDfReactants>
</1listDfReactants>
<listDfProeducts>
</1list0fProducts>
<kineticlaw formula="k3 * F1">
<list0fParameters>
<parameter name="k3" value="0"/>
</list0fParameters>
</kineticLaw>
</reaction>
</list0fReactions>
</model>
</sbml>

19

The XML cncoding shown above is quite straightforward. The outermost container is a tag, <smbl>, that
identifies the contents as being Systems Biology Markup Language. The first attribute, xmlns, is required
for tools that read XML to be able to verify the syntax of a given definition against the XML Schema for
SBML. The attributes level and version indicate that the content is formatted according to Version 2 of
the Level 1 definition of SBML.

The next-inner container is a single <model> element that serves as the highesi-level object in the model.
The model has a name, “Branch”. The model contains one compartment, four species, and three reactions.
The clements in the <listOfReactants> and <listOfProducts> in cach recaction rofer to the names of
clements listed in the <1ist0fSpecies>. The correspondences between the various clements is cxplicitly
stated by the <speciesReference> elements.

The model includes a <notes> annotation that summarizes the model in text form, with formatting hased on
XHTML. This may be useful for a software package that is able to read such annotations and, for example,
render them in HTML in a graphical user interface.

5.2 Simple Use of Units Feature in a Model

The following model uses the units features of SBML Level 1. In this model, the default value of substance
is changed in the list of unit definitions to be mole units with a scale factor of —3, or millimoles. This sets the
default substance units in the model, although components can override this scale locally. The volume and
time bhuilt-ins arc left to their defaults, ensuring that volume is in liters and time is in seconds. The result
ig that, in this model, kinetic law formulas define rates in millimoles per second and the species symbols in
them represent concentration values in millimoles per liter. All the species elements set the initial amount
of every given species to 1 millimole. The parameters ¥m and Km are defined to be in millimoles per liter per
sccond, and milliMolar, respectively.

<7xml version="1.0" encoding="UTF-8"7>
<sbml xmlns="http://www.sbml.org/sbml/levell™ level="1" version="2">
<model>
<1list0fUnitDefinitions>
<unitDefinition name="substance">
<list0fUnits>
<unit kind="mole" scale="-3"/>
</1listDfUnits>
</unitDefinition>
<unitDefinition name="mls">
<list0fUnits>
<unit kind="mole" scale="-3"/>
<unit kind="liter" exponent="-1"/>
<unit kind="second" exponent="-1"/>
</1listDfUnits>
</unitDefinition>
</list0fUnitDefinitions>
<listOfCompartments>
<compartment name='"cell"/>
</listDfCompartments>
<list0fSpecies>
<species name="x0" compartment="cell" initialAmount="1"/>
<species name="x1" compartment='"cell™ initialAmount="1"/>
<species name="s1" compartment='"cell" initialAmount="1"/>
<species name="s2" compartment="cell" initiallmount="1"/>
</1list0fSpecies>
<list0fParameters>
<parameter name="vm" value="2" units="mls"/>
<parameter name="km" value="2"/>
</listOfParameters>
<listOfReactions>
<reaction name="v1'>
<list0fReactants>
<speciesReference species="x0"/>
</list0fReactants>
<listDfProducts>
<gpeciesReference species="sl1"/>

20

</1istDfProducts>
<kineticLaw formula="(wvm * s1)/(km + s1)"/>
</reaction>
<reaction name="v2">
<listOfReactants>
<speciesReference species="sl1"/>
</list0fReactants>
<listDfProducts>
<speciesReference species="s2"/>
</1istDfProducts>
<kineticLaw formula="(vm # s2)/(km + s2}"/>
</reaction>
<reaction name="v3">
<listOfReactants>
<speciesReference species="s2"/>
</1listDfReactants>
<listDfPreducts>
<speciesReference species="x1"/>
</list0fProducts>
<kineticLaw formula="(vm #* s1)/(km + s1}"/>
</reaction>
</list0fReactions>
</model>
</sbml>

5.3 An Example of Using Rules

This section contains a model which simulates a system containing a fast reaction. This model uses rules to
cxpress the mathematics of the fast reaction explicitly rather than using the implicit fast ficld on a reaction
clement, The system modeled is

XU leS! S|
Sl kal — k,.Sz 52
-

Sg kQS!’ X]

oy =01, ky =015, k= K,,10000, k, = 10000, K., =2.5.

This can be approximated with the following system:

Xo kl)xg T
b lﬁ Xy

T

5=

SQ = I(E.qsl

The following SBML example encodes the approximate form.

<?7xml version="1.0" encoding="UTF-8"7>
<sbml xmlns="http://www.sbml.org/sbml/levell” level="1" version="2">
<model>
<listOfCompartments>
<compartment name="cell" volume="1"/>
</1list0fCompartments>
<listOfSpecies>
<species 1d="X0" compartment="cell" initialAmount="1"/>
<species id="X1" compartment="cell" initialimount="0"/>

21

<species id="T" compartment="cell" initialAmount="0"/>
<species id="S51" compartment="cell" initialAmount="0"/>
<species id="$2" compartment="cell" initialAmount="0Q"/>
</1istDfSpecies>
<listOfParameters>
<parameter id="Keq" value="2.5"/>
</list0fParameters>
<listO0fRules>
<speciesConcentrationRule species="S51" formula="T/(1 + Keq)" />
<speciesConcentrationRule species="52" formula="Keq * S1" />
</1ist0fRules>
<listUfReactions>
<reaction id="in'">
<listOfReactants>
<speciesReference species="X0"/>
</listDfReactants>
<listDfProducts>
<speciesReference species="T"/>
</1ist0fProducts>
<kineticLaw formula="k1 #* X0">
<listOfParameters>
<parameter id="kl1" value="0.1"/>
</list0fParameters>
</kineticLaw>
</reaction>
<reaction id="out">
<listO0fReactants>
<speciesReference species="T"/>
</list0fReactants>
<list0fProducts>
<gpeciesReference species="X1"/>
</listDfProducts>
<kineticlaw formula="k2 * 32">
<listOfParameters>
<parameter id="k2" value="0.15"/>
</list0fParameters>
</kineticLaw>
</reaction>
</list0fReactions>
</model>
</sbml>

6 Discussion

The volume of data now emerging from molecular biotechnology leave little doubt that extensive computer-
based modeling, simulation and analysis will be critical to understanding and interpreting the data (Abbott,
1999: Gilman, 2000; Popel and Winslow, 1998: Smaglik, 2000a). This has lead to an explosion in the
development of computer tools by many research groups across the world. The explosive rate of progress is
cxciting, but the rapid growth of the ficld is accompanied hy problems and pressing needs.

One problem is that simulation models and results often cannot be directly compared, shared or re-used,
beecause the tools developed by different groups often are not compatible with cach other. As the field
of systems biology maturcs, rescarchers increasingly need to communicate their results as computational
models rather than box-and-arrow diagrams. They also need to reuse published and curated models as
library components in order to succeed with large-scale efforts (e.g., the Alliance for Cellular Signaling;
Gilman, 2000; Smaglik, 2000a). These needs require that models implemented in one software package be
portable to other software packages, to maximize public understanding and to allow building up libraries of
curated computational models.

We offer SBML to the systems biology community as a suggested format for exchanging models between
simulation/analysis tools. SBML is an open model representation language oriented specifically towards
representing biochemical network models. SBML Level 1 provides basic facilities that are necessary for
expressing these kinds of models in terms of compartments, species, reactions, parameters, rules and units.

22

Our vision for SBML is to create an open standard that will enable simulation software to exchange modcls.
SBML is not, static; we continue to develop and experiment with it, and we interact with other groups who
seek to develop similar markup languages. We plan on continuing to evolve SBML with the help of the
svstems biology community to make SBML increasingly move powerful, fexible and useful.

6.1 Future Enhancements to SBML: Level 2 and Beyond

Ag mentioned above, SBML Level 1 is intended to provide the most basic foundations for modeling bio-
chemical networks. A number of significant capabilities are lacking from Level 1; these will be introduced in
higher-level definitions of SBML. The following summarizes additional features that will likely be included
in SBML Level 2 or 3:

o Arrays. This will enable the creation of arrays of components {species, reactions, compartments and
submodels).

e Connections. This will be a mechanism for describing the connections between items in an array.
For example, it should be possible to create a 2-D array of compartments and then a 3-D array
of reactions which transport species between the compartments, where the third dimension is the
connections between the compartments. Two possible ways of describing a connection scheme ave: (1)
sparse/explicit, simply listing the relative co-coordinates of connected objects for patterns of points;
(2) algebraic, where a conditional cquation describes whether two objects are connected.,

o Database Interoperability. In order to store models in a database, it will be necessary to add additional
header information that provides information about authors, version numbers, revision dates, cte.

o Geometry. We will develop a scheme for representing the 3-D structure of compartments.

o Submodels. This will enable a large model to be built up out of instances of other models. Tt will also
allow the reuse of model components and the creation of several instances of the same model.

o Component Identification. This will cnable components to be described using some stable universal
identification scheme.

o References. This will enable literature/anthors to be cited for any component.

o Diagrams. This feature will allow components to be annotated with data to enable the display of the
model in a diagram.

6.2 Relationships to Other Efforts

There are a number of ongoing efforts with similar goals as those of SBML. Many of them are oriented more
specifically toward describing protein sequences, genes and related entities for database storage and search.
These are generally not intended to be computational models, in the sense that they do not describe entities
and behavioral rules in such a way that a simulation package could “run” the models.

The effort perhaps closest in spirit to SBML is CellML ™ (Hedley et al., 2001b.a; Physiome Sciences, 2001).
CellML is an XMIL-based markup language designed for storing and exchanging computer-based biological
models. Tt includes facilities for representing model structure, mathematics and additional information for
databasc storage and scarch. Models arc described in terms of networks of connections between discrete
components, where a component is a functional unit that may correspond to a physical compartment or
simply a convenient modeling abstraction. Components contain variables and connections confain mappings
hetween the variables of connected components. CellML provides facilities for grouping components and
specifying the kinds of relationships that may oxist between components. It also uses MathML (W3C, 2000h)
for expressing mathematical relationships between components and provides the ability to use ECMASeript
(formerly known as JavaScript) to define functions.

T

The constructs in CellML tend to be at a more abstract and general level than those in SBML Level 1, and
describes the structure and underlying mathematics of cellular models in a very general way. By contrast,

23

SBML is closer to the internal object model used in a nwmber of common model simulation packages. Becausc
SBML Level 1 is being developed in the context of interacting with a number of existing software packages, it
is a more concrete language than CellML and may be better suited to its purpose of enabling interoperability
with existing simulation tools. However, CellML offers viable alternative ideas and the developers of SBML
and CellML are actively engaged in ensuring that the two representations can be translated between each
other.

6.3 Availability

The SBML Level 1 definition, the XML Schema corresponding to SBML Level 1, and other related documents
are openly available from the Caltech ERATO web site, http://wvw.sbml.org/.

Acknowledgments

SBML was fivst conceived at the JST/ERATO-sponsored First Workshop on Software Platforms for Molecu-
lar Biology, held in April, 2000, at the California Institute of Technology in Pasadena, California, USA. The
participants collectively decided to begin developing a common XML-based declarative language for repre-
senting models. A draft version of the Systems Biology Markup Language was developed by the Caltech
ERATO team and delivered to all collaborators in August, 2000. This draft version underwent extensive dis-
cussion over mailing lists and then again during the Second Workshop on Software Platforms for Molecular
Biology held in Tokyo, Japan, November 2000, A revised version of SBML was issued by the Caltech ERATO
team in December, 2000, and after further discussions over mailing lists and in meetings, we produced the

final version of SBML Level 1 Version 1 in March 2001 Hucka et al. (2001).

SBML Level 1 Version 2 was developed with the help of many people, especially the authors of BioSpice,
CellML, DBSolve, E-Cell, Gepasi, ProMoT/DIVA, StochSim, and Virtual Cell, and members of the sysbio
and sbml-discuss mailing lists. We are particularly grateful to the following people for discussions and
knowledge: Adam Arkin, Ben Bornstein, Dennis Bray, Athel Cornish-Bowden, Manuel Corpas, John Doyle,
Drew Endy, David Fell, Carl Firth, Akira Funahashi, Ralph Gauges, Martin Ginkel, Victoria Gor, Igor
Goryanin, Warren Hedley, Charles Hodgman, Stephan Hoops, Nick Juty, Jay Kascrger, Sarah Keating,
Hiroaki Kitano, Ben Kovitz, Andreas Kremling, Nicolas Le Novére, Fred Livingston, Les Loew, Daniel
Lucio, Joanne Matthews, Pedro Mendes, Eric Minch, Eric Mjolsness, David Morley, Mineo Morohashi, Poul
Nielsen, Gregory Peterson, Mark Poolman, Wayne Rindone, James Schaff, Maria Schilstra, Daniel Segre,
Cliff Shaffer, Bruce Shapiro, Tom Shimizu, Hugh Spence, Jorg Stelling, Kouichi Takahashi, Masarn Tomita,
John Wagner, Jonathan Webb, Jorg Weimar, Darren Wilkinson, Marc Vass, and Tau-Mu Yi.

We arc indebted to Daniel Lucio of the Virtual Cell group for generating the XML Schema of SBML Level 1
Version 1, which forms the basis of the Level 1 Version 2 schema presented in Appendix B.

24

Appendix

A Summary of Notation

The definitive explanation for the notation used in this document can be found in the companion notation
document, (Hucka, 2000). Here we briefly summarize some of the main components of the notatious used in
describing SBML.

Within the definitions of the various ohject classes introduced in this document, the following types of
expressions are used many times:

fieldl : float

field2 : integer[C..*]

field3 : (XHTML)

field4 : float {use = "default" value = "0.0"}

The symbols fieldl, field?2. etc., represents fields in a data structure. The colon immediately after the
name separates the name of the astribute from the type of data that it stores.

More complex specifications use square hrackets ([1) just after a type name. This is used to indicate that
the field contains a list of elements. Specifically, the notation [0..*] signifies a list containing zero or more
clements; the notation [1..%] significs a list containing at least one clement; and so on. The approach used
hete to translate from a list form into XML is, first, create a subelement named 1ist0f_ s, whoere the
blank indicates the capitalized name of the field, and then put a list of elements named after the field as the
content of the 1ist0f s element.

A ficld whose type is shown in parcentheses is implemented as an XML subclement rather than an XML
attribute. The parentheses indicate that the type refers to the type of the subelement value.

Expressions in curly braces ({}) shown after an attribute type indicate additional constraints placed on
the field. We express constraints using XML Schema language. In the examples above, the expression
{use="default" value="0.0"} indicates that the field field4 is optional and that it has a default value
of 0.0.

B XML Schema for SBML

SBML models expressed in XML must provide an XML Namespace reference on the top-level sbml ele-
ment that encapsulates the model. This XML Namespace reference takes the form of the attribute named
xmlns. The value of this attribute must be the string “http; //www,sbml.org/sbml/levell” as shown in
the examples of SBML provided in this specification.

The following is an XML Schema definition {using XML Schema 1.0) for the Systems Biology Markup
Language Level 1 Version 2. Example applications of this XML Schema are presented in Section 5.

<7xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://wew.w3.0rg/2001/XMLSchema"
xmlns="http://wew.sbml.org/sbnl/levell”
targetNamespace="http://www.sbml. org/sbml/levell”
elementFormDefault="qualified">
<xsd:annotation>
<xsd:documentation>
File name : sbml.xsd
Author : M. Hucka, D. Lucio, J. Schaff, A. Finney, H. Sauro
Description : XML Schema for the Systems Biology Markup Language Level 1
Version : 2
</xsd:documentation>
</xsd:annotation>
<!--The definition of SName follows.-->
<xsd:simpleType name="SName">
<xsd:annotation>
<xsd:documentation>The type SName is used throughout SBML for expressing
names of components in a model.</xsd:documentation>

</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:pattern value="(_|[a-z]|[A-Z]) (_|[a-=z]|[A-Z] | [0-9]1)*"/>
</xsd:restriction>
</xsd:simpleType>
<!--The definition of SBase fcllows.-—>
<xsd:complexType name="SBase" abstract="true">
<xsd:annotation>
<xsd:documentation>The SBase type is the base type of all main
components in SBML. It supports attaching notes and annotations
to components.
</xsd:documentation>
</xsd:annctation>
<xsd:sequence>
<xsd:element name="notes"
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="http://www.w3.org/1999/xhtml"
processContents="skip" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="annctation"
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="skip" maxDccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<!--The definition of UnitKind follows.-->

minlOccurs="0">

minQccurs="0">

<xsd:simpleType name="UnitKind">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="ampere"/>
<xsd:enumeration value="becquerel"/>
<xsd:enumeration value="candela"/>
<zsd:enumeration value="celsius"/>
<xsd:enumeration value="coulomb"/>
<xsd:enumeration value="dimensionless"/>
<xsd:enumeration value="farad"/>
<xsd:enumeration value="gram"/>
<xsd:enumeration value="gray"/>
<xsd:enumeration value="henry"/>
<xsd:enumeration value="hertz"/>
<xsd:enumeration value="item"/>
<zsd:enumeration value="joule"/>
<xsd:enumeration value="katal"/>
<xsd:enumeration value="kelvin"/>
<xsd:enumeration value="kilogram"/>
<xsd:enumeration value="liter"/>
<xsd:enumeration value="litre"/>
<xsd:enumeration value="lumen"/>
<xsd:enumeration value="lux"/>
<xsd:enumeration value="meter"/>
<xsd:enumeration value="metre"/>
<xsd:enumeration value="mole"/>
<xsd:enumeration value="newton"/>
<xsd:enumeration value="ohm"/>
<xsd:enumeration value="pascal”/>
<xsd:enumeration value="radian"/>
<xsd:enumeration value="second"/>
<xsd:enumeration value="gsiemens"/>
<xsd:enumeration value="sievert"/>
<xsd:enumeration value="steradian"/>
<xsd:enumeration value="tesla"/>
<xsd:enumeration value="volt"/>
<xsd:enumeration value="watt"/>
<xsd:enumeration value="weber"/>

26

</xsd:restriction>
</xsd:simpleType>
{!--The definition of Unit follows.-->
<xsd:complexType name="Unit">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:attribute name="kind" type="UnitKind" use="required"/>
<xsd:attribute name="exponent" type="zsd:integer" default="1"/>
<xsd:attribute name="scale" type="xsd:integer" default="0"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!--The definition of UnitDefinition follows.-->
<xsd:complexType name="UnitDefinition">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="1list0fUnits" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="unit" type="Unit" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="name" type="SName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!--The definition of Compartment follows.-->
<xsd:complexType name="Compartment'>
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:attribute name="name" type="SName" use="required"/>
<zsd:attribute name="volume" type="xsd:double" default="1"/>
<xsd:attribute name="units" type="SName" use="optional"/>
<xsd:attribute name="outside" type="SName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!--The definition of Species follows.-—>
<zsd:complexType name="Species'>
<xsd:complex(ontent>
<xsd:extension base="SBase">
<xsd:attribute name="name" type="SName" use="required"/>
<xsd:attribute name="compartment" type="SName" use="required"/>
<xsd:attribute name="initialAmount" type="xsd:double" use="required"/>
<xsd:attribute name="units" type="SName" use="optional"/>
<xsd:attribute name="boundaryCondition" type="zsd:boolean"
use="optional" default="false"/>
<xed:attribute name="
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!--The definition of Parameter follows.-->
<zsd:complexType name="Parameter'>
<xsd:complexContent>
<xsd:extension base="S5Base">
<xsd:attribute name="name" use="required"/>
<xsd:attribute name="value" type="xsd:double" use="optional"/>
<xsd:attribute name="units" type="SName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!--The definition of Rule follows. —->
<xsd:simpleType name="RuleType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="scalar"/>
<xsd:enumeration value="rate"/>

charge” type="xsd:integer" use="optional"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Rule" abstract="true'>
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:attribute name="formula" type="xsd:string" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<zsd:complexType name="AlgebraicRule'>
<xsd:complexContent>
<xsd:extension base="Rule"/>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="AssignmentRule" abstract="true">
<xsd:complexContent>
<xsd:extension base="Rule">
<xsd:attribute name="type" type="RuleType" default="scalar"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xzsd:complexType name="CompartmentVolumeRule">
<xsd:complexContent>
<xsd:extension base="AssignmentRule">
<xsd:attribute name="compartment" type='"SName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="SpeciesConcentrationRule">
<xsd:complexContent>
<xsd:extension base="AssignmentRule">
<xsd:attribute name="species" type="SName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="ParameterRule">
<xsd:complexContent>
<xzsd:extension base="AssignmentRule">
<xsd:attribute name="name" type="SName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
{!--The definition of Reaction follows.-—->
<xsd:complexType name="KineticLaw">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="listOfParameters" minDccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="parameter" type="Parameter" maxUccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xad:element>
</xsd:sequence>
<xsd:attribute name="formula" type="xsd:string" use="required"/>
<xsd:attribute name="timeUnits" type="SName" use="optional/>
<xsd:attribute name="substanceUnits" type="SName" use="optional'/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="SpeciesReference">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:attribute name="species" type="xsd:string" use="required"/>
<xsd:attribute name="stoichiometry" type="xsd:positivelnteger" use="optional" default="1"/>
<xsd:attribute name="denominator" type="xsd:positiveInteger" use="optional" default="1"/>
</xsd:extension>
</xsd:complexContent>

28

</xsd:complexType>
<xzsd:complexType name="Reaction">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="listOfReactants" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="speciesReference" type="SpeciesReference" maxOccurs="unbounded"/>
</zsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="1listOfProducts" minlccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="speciesReference" type="SpeciesReference" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="kineticLaw" type="KineticLaw" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="SName" use="required"/>
<xsd:attribute name="reversible" type="xsd:boolean" use="optional" default="true"/>
<xsd:attribute name="fast" type="xsd:boolean" use="optional" default="false'"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- The definition of Model follows.-->
<xsd:complexType name="Model">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="1list0fUnitDefinitions" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="unitDefinition" type="UnitDefinition" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfCompartments" minDccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="compartment" type="Compartment"
max{ccurs="unbounded" minlccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfSpecies" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="species" type="Species" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfParameters" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name='"parameter" type="Parameter" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfRules" minOccurs="0">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element name="algebraicRule" type="AlgebraicRule" minDccurs="0"/>
<xsd:element name="compartmentVolumeRule" type="CompartmentVolumeRule"
min0ccurs="0"/>
<xsd:element name="speciesConcentrationRule" type="3peciesConcentrationRule"
min0ccurs="0"/>

29

<xsd:element name="parameterRule" type="ParameterRule" minDccurs="0"/>
</zsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfReactions" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="reaction" type="Reaction" maxOccurs="unbounded"/>
</zsd:sequence>
</xzsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="name" type="SName" use="optional'/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- The following is the type definition for the top-level element in an SBML document.-->
<xsd:complexType name="sbmlDecument">
<xsd:sequence>
<xsd:element name="model" type="Model"/>
</xsd:sequence>
<xsd:attribute name="level" type="xzsd:positivelnteger" use="required" fixed="1"/>
<xsd:attribute name="version" type="xsd:positiveIlnteger" use="required"/>
</xsd:complexType>
<!--The following is the (only) top-level element allowed in an SBML document.-->
<xsd:element name="sbml" type='"sbmlDocument'/>
<!-- The end. -->
</xsd:schema>

C Predefined Functions in SBML

Table 6 lists the basic mathematical functions that are defined in SBML Level 1 at this time.

Argument

Name Args. Formula or Meaning Constraints Result Constraints
abs & absolute valuc of
ac0s i arc cosine of @ in radians —1.0 < < 1.0 0 < acos(x) <7
asin & arc sine of x in radians —-10<2<10 —w/2 < asin(x) < w/2
atan @ arc tangent of # in radians —7/2 <atan(x) < 7 /2
ceil i smallest number not less than

whose value is an exact integer
cos x cosine of
exp x e*. where e is the base of the nat-

ural logarithn
floor x the largest number not greater

than x whose value is an exact

integer
log i natural logarithm of z x>0
log10 @ basc 10 logarithm of = @ >0
pow T,y fad
sqr a x?
sqre x N z=>0 sqri(z) = 0
sit @ sine of =
tan x tangent of r x # nj, for odd integer n

Table 6: Basic mathematical functions defined in SBML.
Table 7 defines the rate law functions available in formula expressions in SBML. These were extracted from

the Gepasi help file (3.21). Segel (1993) provides more information; Hofmeyr and Cornish-Bowden (1997)
provide specific details on the reversible Hill equations.

31

Name Arguments | Meaning Formula
Mass Action
. s v=k ;
nass Si K Kinetics l H S
. R Irreversible Simple VS
i 5 Vi, Kom Michaelis-Menten = K,+8
- Uni-Uni Reversible y .
uur f{ Ii: Iﬁf Ve, Simple P 1’]‘8/1\77::%' = ThP/Ié mP
HRAE Michaelis-Menten 14+ 5/Kms + P/Kmp
Uni-Uni Reversible
S, P, V. Simple I .
uuhr Ko, K, Michaclis-Menten o= (Vi/K ml’) (5-#/ {“5‘7)
Koo with Haldane 1+ 5/ + P/ Koz
adjustment
S: P: va: - 3
HadE | B Ben, | o WHTE . Vit~ Bffeq)
I{éiw I{ﬂ; S (1 -+ P/IXH) -+ Ii;rnS (1 -+ P/Rmp)
. . e Vgh
hilli S, V, Sas, b | Hill Kinetics v= o
Se5 + 8"
S, B, Vi, Reversible Hill , c h—1
hilly Sy, Drg. B K?"etl,sl le Hi - (Vr5/505) [1- P/(SKey)] (S/S0s + P/Pos)
K., HHEHEs 1+ (5/So5+P/Pos)"
. (ViS/Sus) [1 = P/(SKeg)] (/S5 + P/Pos)"™
1 N K+ Ky
g’ ip’ I;U’ Reversible Hill ,_— : ?
hillmr n:}"” {]5 Kinetics with One o "
Mo.s, Vs, Modifier K1 = (8/S0s + P/Fos)”,
Kops ly & 5
1 (M/Mu)"
2 —
1+ o (M/My ;)"
= (V45/S05) [1 = P/(SKeq)] (/S0 + P/ Pos)" ™"
S, P, M, ‘ K| + Ky
55 <. B, where
M5, M,, Reversible Hill K1 =(5/50:+P/Pys)",
hillmmy | M, ., M, Kinetics with Two Sy h h
My W, Modifiers %, L4 (Mo /My,)" + (M /My, ;)

B Ty 0 b
Q. o, X2

14+ oy (Mo /Mgy)™ + a (My /My,)"

+ onopans (Mo /Mo,)" (My /M,)"

Table 7: Table of rate law functions in SBML. In all cases, K, >0, V., >0, 5> 0and P > (.

32

Name Arguments | Meaning Formula
S, V., K., Substrate Inhibition eV S/K,,
b K; Kinetics (Irreversible) v=Yq +8/K,, + S?/K;
st %S,’ 11, Vi Substrate Inhibition , VeS/K g + V. P/ K, p
ey Shns 7 - . w= - = 371
Ii{mp,r}fi Kinetics {Reversible) 1+ 8/Kpms+ P/ Kpp + S2/K;
x . o7 T 2
ual ? V; Koas Substrate Activation ;= V{5/Ksa) >
L e 14+ 5/ Koo+ (S/Kea)” + S/ K5
acii S.1,V, Competitive Inhibition Y= VS/K,,
K,,, K; (Irreversible) T+ S/Ky + I/K;
ueir 1[5 1}(17 V. Compctitive Inhibition y ViS/Kmg — Vo P/ Ky p
AL 1 mss -] = i - -
By B (Reversible) 14 S/Kpms + P/Knp+ I/K;
.. 8 LWy Noncompetitive o VS Ky,
H K., K; Inhibition (Irreversible) =y +I/K; +{(5/K,)(1+1I/K})
unis f 111 Vs Noncompetitive (VeS/Kg — V. P/ K, p
ey mss lror I U= -
K{mp,ﬁ}{i Inhibition (Reversihle) 1+ I/K; +(8/Kms + P/ Kump) (1 + 1/K;)
q S IV, Uncompetitive B V8/K,,
une K, K; Inhibition (Irreversible) I (8/K) A + 1KY
er 1[3 1}1—’ Vs Uncompetitive . ViS/Kps — Ve P/ Kpp
; Lo Kons, oy o) = . o _
%, 5 K Inhibition (Reversible) 1+ (S/K,s +P/K,p)(1+1/K;)
i i s }l Mixed Tnhibition . VS/K,,
K:/ e Kinctics (Irreversible) 14+ K;, +[8/E) (1 + I/K;:.)
S, P,
urnr Vi Vo Mixed Inhibition s Vel [K — Vo P/ Kep
K5, Kyp, | Kinetics {Reversible) 1+ /K + (5/ K g + P/ Kyp) (1 + T/ K3,
I{z'sy I(r'c
i S, 4.V, Specific Activation Y VS/K,,
' K, K, Kinetics - irreversible U1+ 8/K, + K, /A
S: P: *4(:7
war Vi, Vi Specific Activation - VeS| Kiws — VP [Kuip
) K5, Kyp. | Kinetics {Reversible) T 1+ 8/ Kpg + P/ Kmp + Ko J A,
K,
. S, AV, Catalytic Activation VS Ky
ucti 1

I(HL 3 I\’"(J.

(Irreversible)

= IR R4, P IBIK O] - Ay

Table 7: Tabie of rate law functions in SBML (continued). In alf cases, K., >0, V, >0, 8> 0and P > (.

33

Name | Arguments | Meaning Formula
5 0y Ao | Catalytic
Ve, ‘Y; " d d J .1(’ V S/ I{mh" - IV;P / I{mP
uctr I’ I e Activation U= = / - - =
Iz,m‘n LmpP (R.CVCI‘SiblC) 1 T IXG/AC + (S/Bms + P/B?RP) (1 + I&Q/AC)
S, 4.,V Mixed Activation VS/K
umai Ko, Kas Kinetics —_— 2 = e
i bl T4 KonfAe + (3/Kon) (L4 KucfAL)
S, P A . s
£ Mixed Activation 5 = ; -
wmar I"f: “/?‘: i Kindtica o= 1_]‘8/1\ mS IVTP/Iﬁ mP ;
I&mb’a I} rid?y (R,OVCI‘SiblC) 1+ f(as/Ac + (S/I(mS FE P/I(mP) (1 + K ac/AC)
K @8y Ba.c
S MV General
hmi = }{' ' Hyperbolic (VS/Km)[14 M/ (aK)]
s 5 (2, ; 7 T 2 T =
; my Medifier Kinctics L+ M/Kq+ (S/Kp) [1+ M/(aK)]
(Irreversible)
S, P, M, General
it ny I'r Hyperboli(: b= (I"‘}S/I{-mﬁ' - I’{!’P/I‘,ﬂlp) [1 + bﬂ‘{/(al{d)]
King, Kipp, Modifier Kinetics 1+ M JKa+ (8/Kms + P/ Knp) [1 + M/{aK, dﬂ
Ky a.b (Reversible)
s v K, | Mosteric V (S/Ks) (1+ S/K)""
ualii Kion L inhibition v = i —
iy Thy (Irreversible) L (1 + I/ﬁu) =+ (1 + S/I&S)
Vel(d —-PQ/K
A, P,Q,Vj, = £ e
Vi Ko, Ordered Uni Bi HKona+ AL+ P/K;p)
ordubr 5 2 oo
K0, K, p, | Kinetics
Kip, Keq + [V (Ve Keg)] (K P + KmpQ+ PQ)]
Vi (AD - P/K,,)
44: B, P Tbrf, B = f(/ eq
) | Vi, Kona, Ordered Bi Uni AR+ K, aB+ K,p4d
ordbur ‘ : b T
Kun, Kyp, | Kinetics
Kia, Keg + [Vi/(ViKoy)] [Kumr + P (14 AJK; 4)]]
A, B, P, Q, - Vy (AB — PQ/Ke)
Vi, Vi AB (14 PlEp)+ Kpnpld+ K+ RpaB + R
ardbbr Kpa, K, | Ordered Bi Bi wherc
vt tny | Kinstics Ky = [Vi/(ViKe)] [KmoP (1 + A/ Kia) + QK]
LA, i, = G = = o= =
K;p, I{eq Ky = Kup [1 A+ RU.’.-AB/(RT;AI&HLB) il (1 e B/RI,B)]
{lf E{ P, 4, : Vi (AR — PQ/K.,)
SRS 1 = A 2 4 v s
b Kma, Kmp, | Ping Pong Bi Bi AB+ Kund + KnaB (14 Q/Kig) + Ki
bpbr where

Kop, Koy 2>
Kia, Kig,
Koy

Kinetics

Ky = [Vi/(ViKey)| [KmoP (14+ A/K;4) + Q(Kump + P)]

Table 7: Table of rate law functions in SBML (continued). In all cases, K, >0, V,, >0, 5> 0and P > 0.

34

Symbol Meaning

o3 Effect of § and P on binding of M (i M < 1, M is inhibitor; if M > 1, M is activator)
A First substrate in two-substrate reaction

A, Activator

B Second substrate in two-substrate reaction

i Inhibitar

K TForward rate constant

K, Reverse rate constant

i, Activation constant

K. Catalytic activation congtant

K. Specific activation congtant

Ky Dissociation constant of the elementary step E+ M = EM

Ky Equilibrium constant

K Dissociation constant of the inhibitor from the inactive form of the enzyme

K; Inhibition constant for the substrate.

Kia Product inhibition constant of A acting on the reverse reaction

Kip Product inhibition constant of B acting on the reverse reaction

Ky Catalytic (noncompetitive) inhibition constant

K;p Product inhibition constant of 2 acting on the forward reaction

HKig Product inhibition constant of ¢} acting on the forward reaction

K, Specific {competitive) inhibition constant

K, Forward Michaelis-Menten constant,

Hiiwa Concentration of 4 such that v = V¢ /2 (Michaelis constant) at zero I and zero @

Kiniz Concentration of B such that » = /2 (Michaelis constant) at saturating 4 and zero P
K.p Concentration of 7 such that v = —V, /2 (Michaelis congtant) at zero A and B

Koo Concentration of) such that © = —V,./2 (Michaelis constant) at zero 4 and saturating P
Ko Substrate Michaclis-Menten constant

K, Dissoeiation constant of the substrate from the active form of the enzyme

T Dissociation constant of substrate-activation site

Ko Dissociation constant of substrate-active site

L Equilibrium constant between the active and inactive forms of the enzyme

M Modifier

M Concentration of M that half-saturates its binding site when § =0, P =0

M, Modifier

Ay Hill kinetics: concent. of M, that half-saturates its binding site when S =0, P =0, M, =0
M, Modifier

M, . Hill kinetics: concent. of M, that half-saturates its hinding site when S =0, P =0, M, =0
P First product in two-product reaction

Fys Product concent. g.t. v = —V,./2 when P = M = 0 (V, is limiting rate of reverse reaction)
Q Second product in two-product reaction

Sus Irreversible rate laws: substrate concentration such that ¥ = V¢ /2 when P =0, =0

1 Forward maximum wvelocity

Ve Forward maximum velocity

Vi Forward maximum velocity

V. Reverse maximum velocity

t Ratio of dissociation constant of elementary step £S5+ M = ESM averthat of E4+M = EM
b Ratio of rate constant of elementary step ESM — EM + P over that of ES — E+ .

h Hill Coeflicient

n No. hinding sites for substrate & inhibitor (typically the number of monomers in the enzyme)

Table 8: Table of symbols used in Table 7.

References
Abbott, A. (1999). Alliance of US labs plans to build map of cell signalling pathways. Neture, 402:219 200.

Arkin, A. P. (2001). Simulac and Deduce. Available via the World Wide Web at http://gobi.1bl.gov/
“aparkin/Stuff/Software.html.

Biron, P. V. and Malhotra, A. (2000). XML Schema part 2: Datatypes (W3C candidate recommendation
24 Qctober 2000). Available via the World Wide Web at http://www.w3.org/TR/xmlschema-2/.

Bosak, J. and Bray, T. (1999). XML and the sccond-gencration Web. Scientific American, 280(5):80-93,

Bray, D., Firth, C., Le Novére, N., and Shimizu, T. (2001). StochSim. Available via the World Wide Weh
at http://www.zoo.cam. ac.uk/comp-cell/StochSim.html.

Bray, T., D. Hollander, D., and Layman, A. (1999). Namespaces in XML. World Wide Web Con-
sortinm 14-January-1999. Awvailable via the World Wide Web at http://www.w3.org/TR/1999/
REC-xml-names-19990114/.

Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (1998). Extensible markup langnage (XML) 1.0, W3C
recommendation 10-February-1998. Available via the World Wide Web at http: //www.w3. org/TR/1998/
REC-xml-19980210.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. (2000). Extensible markup language [XML)
1.0 (second edition), W3C recommendation 6-October-2000. Available via the World Wide Web at http:
//www . w3 . org/TR/1998/REC-xm1-19980210.

Bureau International des DPoids et Mesures (2000). The International System of Units (SI) supplement
2000: addenda and corrigenda to the 7th edition (1998). Awvailable via the World Wide Web at htip:
//www.bipm.fr/pdf/si-supplement2000.pdf.

Eriksson, H.-E. and Penker, M. (1998). UML Toolkit. John Wiley & Sons, New York.

Fallside, D. C. {2000). XML Schema part 0: Primer {W3C candidate recommendation 24 October 2000).
Awvailable via the World Wide Web at http://www.w3.org/TR/zmlschema-0/.

Gilman, A. (2000). A letter to the signaling community. Alliance for Cellular Signaling, The University
of Texas Southwestern Medical Center. Available via the World Wide Web at http://afcs. sumed. edn/
afcs/Letter_to_community.htm.

Goryanin, I. (2001). DBsolve: Software for metabolic, enzymatic and receptor-ligand binding simulation.
Available via the World Wide Weh at http://homepage.ntlvworld.com/igor.goryanin/.

Goryanin, 1., Hodgman, T. C., and Seclkov, E. {1999). Mathematical simulation and analysis of ccllular
metabolism and regulation. Bioinformatics, 15(%):749-758.

Harbison, S. P. and Steele, G. L. {1995). C: A Reference Manual. Prentice-Hall.
Harold, E. R. and Means, E. 5. (2001). XML in o Nutshell. O'Reilly & Associates.

Hedley, W. J., Nelson, M. R., Bullivant, D., Cuellar, A.. Ge, Y., Grehlinger, M., Jim, K., Lett, S., Nickerson,
D., Nielsen, P., and Yu, H. {2001a). CellML specification. Available via the World Wide Web at http:
//www.cellml.org/public/specification/20010810/cellml_specification.html.

Hedley, W. J., Nelson, M. R., Bullivant, D. I., and Nielson, P. F. (2001b). A short introduction to CellML.
Philosophicel Transactions of the Royal Society of London A, 359:1073-1089.

Hofmeyr, J. H. and Cornish-Bowden, A. (1897). The reversible Hill equation: How to incorporate cooperative
cnzymes into metabolic models. Computer Applications in the Biosciences, 13:377-385,

Hucka, M. (2000). SCHUCS: A notation for describing model representations intended for XML cncoding,.
Available via the World Wide Web at http://www.sbml.org/.

36

Hucka, M., Finncy, A., Sauro, H. M., and Bolouri, H. {2001). Systems Biology Markup Language (SBML)
Level 1: Structures and facilities for basic model definitions. Awvailable via the World Wide Web at
http://www.sbml.org.

Kernighan, B. W. and Ritchie, D. M. (1988). The ¢ Programming Language. Prentice-Hall, New Jersey:
Englewood Cliffs, sccond edition.

Kitana, H. (2001). Foundations of Systems Biology. MIT Press.

Mendes, I’ (1997). Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends
in Biochemical Sciences, 22:361-363.

Mendes, P. {2001). Gepasi 3.21. Available via the World Wide Web at http://www.gepasi.org.

Morton-Firth, C. J. and Bray, D. (1998). Predicting temporal fluctuations in an intracellular signalling
pathway. Jewrnal of Theoretical Biology, 192:117 128.

Ocstercich, B. (1999). Developing Software with UML: Object-Oriented Analysis and Design in Practice.
Addison-Wesley Publishing Company.

Physiome Sciences, 1. (2001). CellML™ home page. Available via the World Wide Web at http://cellml.
org/.

Popel, A. and Winslow, R. L. (1998). A letter from the directors... Center for Computational Medicine &
Biology, Johns Hopking School of Medicine, Johns Hopkins University. Available via the World Wide Web
at http://www . bme. jhu.edu/cemb/cembletter . html.

Sauro, H. M. (2000). Jarnac: A system for interactive metabolic analysis. In Hofmeyr, J-H. 5., Rohwer,
J. M., and Snoep, J. L., editors, Animating the Cellular Map: Proceedings of the 9th International Meeting
on BioThermoKinetics. Stellenbosch University Press.

Saurc, H. M. and Fell, D. A. {1091}, SCAMDP: A metabolic simulator and control analysis program. Maothl.
Comput. Modelling, 15:15-28.

Schadff, J., Slepchenko, B., and Loew, L. M. (2000). Physiological modeling with the Virtual Cell framework.
In Johnson, M. and Brand, L., editors, Methods in Enzymology, volume 321, pages 1 23. Academic Press,
San Diego.

Schafl, J., Slepchenko, B., Morgan, F., Wagner, J., Resasco, D., Shin, D., Chol, Y. S., Locw, L., Carson,
J., Cowan, A., Moraru, I., Watras, J., Teraski, M., and Fink, C. (2001). Virtual Cell. Awvailable via the
World Wide Web at http://www.nrcam.uchc. edu.

Scgel, 1. H. (1993). Enzyme Kinetics. Wiloy Classics Library.
Smaglik, P. (2000a). For my next trick... Nature, 407:828-829.
Smaglik, . (2000b). US grant glues 'virtual cell’” together. Nature, 407(6806):819.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2000). XML Schema part 1: Structures
{W3C candidate recommendation 24 October 2000). Available via the World Wide Web at http://www.
w3.org/TR/xmlschema-1/.

Tomita, M., Hashimoto, K.. Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S.,
Yugi, K., Venter, J. C., and Hutchison, C. (1999). E-Cell: Softwarc environment for whole cell simulation.
Bioinformatics, 15(1):72-84.

Tomita, M., Nakayama, Y., Naito. Y., Shirnizu, T., Hashimoto, K., Takahashi, K., Matsuzaki, Y., Yugi, K.,
Miyoshi, F., Saito, Y., Kuroki, A., Ishida, T., Iwata, T., Yoneda, M., Kita, M., Yamada, Y., Wang, E.|
Seno, S., Okayama, M., Kinoshita, A., Fujita, Y., Matsuo, R., Yanagihara, T., Watari, D., Ishinahe, S.,
and Mivamoto, S. (2001). E-Cell. Available via the World Wide Web at http://www.e-cell.org/.

37

W3C (2000a). Naming and addressing: URIs, URLs, ... Available via the World Wide Weh at http:
//vww.w3. org/Addressing/.

W3C (2000b). W3C’s math home page. Available via the World Wide Web at http://www.w3.org/Math/.

38

