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N = 72: Human polyoma virus (icosahedral symmetry)

X-ray diffraction imaging

edge with a twofold rotational symmetry. Similarly, on j 2 3 4 at each vertex, we
find one square on a fourfold axis of symmetry, one triangle on a trigonal axis, a
digon and three other triangles. One may also include in this scheme the snub
tetrahedron j 2 3 3, which is in fact an icosahedron, having five triangular faces at
each vertex. As it is well known, the 20 faces of an icosahedron fall into five sets
of four triangles, each set being coplanar with a tetrahedron. If we take two such
sets and mark one set red, say, and the other green (R and G in figure 2c), then it
will be found that at each vertex of j 2 3 3 there is one red triangle, one green
triangle, a digon and three other triangles sometimes called the ‘snub triangles’.

If we wish, we may consider the regular octahedron, with four triangular faces
at each vertex, as a ‘snub’, j 2 3 2, derived from the degenerate regular
polyhedron consisting of two coincident triangular faces joined together by
three digons; or from its inverse, three coincident digons joined at two points.

Finally, the tetrahedron may be considered as a snub, j 2 2 2, derived from the
degenerate polyhedron consisting of two coincident digons meeting at two
vertices. This ‘polyhedron’ is its own reciprocal. Some metrical properties of the
snub polyhedra are cited in table 1.

Returning to the non-degenerate cases, we may note that the word snub
essentially means ‘short and blunt in shape’ (Oxford English Dictionary 1993 ed.).
This conveys the idea of being more spherical. Speaking quantitatively, we can say
that among the Archimedean polyhedra of a given symmetry group it is the snubs
that have the greatest ratio of edge length l to circumradius r. Suppose that at each
vertex of an Archimedean solid we draw a small circle, with centre at that vertex, on
the circumscribing sphere, all the circles being of equal radii. Then, let us enlarge
each circle until it touches its neighbours, as in figure 3a. We find that it is the snub
polyhedra that correspond to the most complete coverage of the sphere. For, as

Figure 1. Stereo pair of micrographs of human polyoma virus particles, suggesting that they have
the symmetry of a snub dodecahedron (from Klug & Finch 1965).

M. S. Longuet-Higgins2

Proc. R. Soc. A

Klug & Finch (1965)
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Snub dodecahedral (N = 60) structure
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Can we get to N = 72? Is it a ‘best’ packing?
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J.J Thomson’s plum-pudding model of the atom (1904)
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An open problem1 in constrained optimization

• Find extremizers for the Riesz-s energy Es :

Es =
N∑

i=1

N∑
j=1

′|xi − xj |−s , s > 0

• ∇Es is the ‘interaction-energy’ of the particle system
• s → 0 : E0 logarithmic (point vortex)
• s = 1 : E1 Coulomb
• s →∞: Spherical packing problem (Tammes)
• Euler constraint: F − E + V = 2

1Proofs of global minimum or best packing only for N = 2− 12 and N = 24
P.K. Newton Equilibria assembly on a sphere
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The interesting issues

• Structure of equilibria
• Growth/Formation/Assembly
• Stability/Robustness
• Control/Intervention
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Motivations
Particles on a sphere
Hamiltonian and other conserved quantities
Low N → High N

2 The singular value spectrum of a configuration
The fixed point equation
The configuration matrix approach
The singular value distribution

3 Some examples: Coxeter polyhedra

4 Numerical schemes that ‘assemble’ the equilibria
The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme
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A charged particle
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elliptic point 
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Spherical coordinates

• Field has no azimuthal dependence.

• Strength drops off monotonically with distance.

θ̇ = 0

φ̇ =
Γ

2πL2 =
Γ

4π(1− cos θ)
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Cartesian coordinates

~̇x =
Γβ
4π

~xβ × ~x
(1− ~x · ~xβ)

~xβ = (0,0,1); ‖~x‖ = 1

~x = (sin θ cosφ, sin θ sinφ, cos θ)
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• Linear superposition:

~̇x =
N∑
β=1

Γβ
4π

~xβ × ~x
(1− ~x · ~xβ)

Γβ ∈ R

• Each particle moves with the local velocity it feels due to all

the others:

~̇xα =
N∑
β=1

′ Γβ
4π

~xβ × ~xα
(1− ~xα · ~xβ)

(α = 1, ...,N)

P.K. Newton Equilibria assembly on a sphere
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The interacting particle system on a surface

~̇xα =
N∑
β=1

′ Γβ
4π

n̂β × (~xα − ~xβ)

l 2
αβ

l 2
αβ = |~xα − ~xβ|2 = 2(1− ~xα · ~xβ)

P.K. Newton Equilibria assembly on a sphere
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The Utah teapot (Chouraqui & Elber 1996)Figure 5. A surface with elliptic as well as hyperbolic regions approximated using uniform (in para- 
metric space) grid sampling (a), spring-mass relaxation (b), and electrostatically charged particle 
system (c). 

Figure 6. The Utah teapot approximated using uniform (in parametric space) grid sampling (a), spring- 
mass relaxation (b), and electrostatically charged particle system (c). 

152 

(a) Uniform sampling; (b) Spring-mass relaxation; (c) Charged
particle equilibria
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The Hamiltonian system

H = − 1
4π

∑
α<β

ΓαΓβ log(l 2
αβ)

Pα ≡
√
|Γα| cos(θα); Qα ≡

√
|Γα|φα

Ṗα =
∂H
∂Qα

, Q̇α = − ∂H
∂Pα

P.K. Newton Equilibria assembly on a sphere
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Other conserved quantities

~J ≡ (Jx , Jy , Jz )

Jx =
N∑
α=1

Γαxα =
N∑
α=1

Γα sin(θα) cos(φα)

Jy =
N∑
α=1

Γαyα =
N∑
α=1

Γα sin(θα) sin(φα)

Jz =
N∑
α=1

Γαzα =
N∑
α=1

Γα cos(θα)

P.K. Newton Equilibria assembly on a sphere
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Wales & Ulker (2006)

on polygons that partition the surface into regions where
each point is closest to a given ion. Our results are broadly in
agreement with trends predicted in previous work.10,30–33

However, we have characterized several new defect motifs,
and can now provide accurate energetics for the favored
structures.

Minima with point groups O, D4d, D2d, and C2v usually
contain defects other than fivefold disclinations. For ex-
ample, the pentagonal icositetrahedron found for N=24 has a
Voronoi representation consisting of “tetrapentagon patches”
arranged to give O symmetry �Fig. 1�. Here the Voronoi pen-
tagons are colored red and the hexagons green. These
Voronoi constructions include four-connected vertices, and

correspond to a face dual polyhedron with one or more
square faces. Hence the topological charge calculated by
summing the number of pentagonal faces is not equal to 12.

For larger systems we identify a defect based upon a 3
�3 square of ions; examples occur for N=141, 166, 169,
170, 172, and 179 �Fig. 2�. For this 3�3 defect the Voronoi
assignment around the central ion is very sensitive to small
changes in the geometry, and a real-space view may be more
appropriate �Fig. 2�. The heptagons shaded in blue for N
=126 have two very short edges, which is why they look
more like pentagons in the figure. This Voronoi construction
has only three-connected vertices, and therefore corresponds
to a topological charge of 12. There are two
3�3 defects, each with a overall charge of two, plus eight
additional isolated pentagonal faces. For N=141 and
N=172 the Voronoi representations include four-connected
vertices, and Q�12.

The next defect we identify can be described as an ex-
tended dislocation, or scar,31 and consists of a heptagon and
two adjacent pentagons in the Voronoi representation. This
defect carries a net topological charge of 1, and has been

TABLE I. Improved global minima for the Thomson problem at
selected sizes. The number of polygons refers to faces with 5, 6, and
7 sides in the corresponding Voronoi construction.

N
Energy

�atomic units�
�2E−N2�

N3/2

Point
group

Polygons

5 6 7

188 16249.2226789 −1.103901 D2 12 176 0

206 19585.9558565 −1.103980 C2 12 194 0

218 21985.2639489 −1.103998 C2 12 206 0

229 24307.5993133 −1.104000 C1 13 215 1

234 25401.9317866 −1.104099 C2 12 222 0

241 26975.1902840 −1.104052 C3 12 229 0

246 28128.0514643 −1.104070 D2 12 234 0

252 29543.5228681 −1.104135 C2 12 240 0

258 30994.2135775 −1.104119 C2 12 246 0

264 32479.9081412 −1.104136 D2 12 252 0

269 33744.8007328 −1.104143 C1 12 257 0

312 45629.3138040 −1.104219 C2 12 300 0

327 50199.5714196 −1.104287 C2 12 315 0

362 61719.0519098 −1.104301 C1 17 340 5

432 88353.7096820 −1.104425 D3 24 396 12

482 110317.9966044 −1.104511 C2 22 450 10

492 115005.0932623 −1.104528 C2 24 456 12

522 129655.3224067 −1.104563 C2 24 486 12

572 156036.2192910 −1.104626 D3 24 536 12

612 178909.7952490 −1.104647 C1 24 576 12

632 190936.2620761 −1.104684 T 24 596 12

642 197097.1993002 −1.104679 C1 24 606 12

672 216169.9939945 −1.104693 C1 24 636 12

732 256972.4358872 −1.104748 T 24 696 12

752 271360.9889196 −1.104754 C2 24 716 12

762 278703.0608815 −1.104750 C2 24 726 12

792 301319.8733917 −1.104779 T 24 756 12

812 316890.4580541 −1.104789 C2 24 776 12

842 340985.6576387 −1.104785 C1 24 806 12

912 400657.6165027 −1.104821 C1 33 858 21

932 418594.2339500 −1.104834 C1 35 874 23

972 455651.0809351 −1.104867 Th 36 912 24

FIG. 1. �Color online� Voronoi representations of global minima
for selected sizes that exhibit pentagon patches. N=47 also has a
pentagon pair defect.

FIG. 2. �Color online� Global minima for selected sizes that
exhibit the 3�3 defect. Both the Voronoi construction and a real-
space view are shown for N=172.
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Buckyball: N = 60

• C60 carbon molecule (Curl, Kroto, Smalley (1985))
• Truncated icosahedral structure
• 20 hexagons, 12 pentagons
• No two pentagons share an edge
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Defects: ‘scars’

observed before in local minima.19,31 In the global minima
reported here, such features are prevalent for intermediate
sizes, in agreement with recent predictions from a continuum
elastic model.31 The structures with 24 pentagons and 12
heptagons in Table I all feature this defect. Selected ex-
amples are illustrated in Fig. 3, including N=71, where ad-
ditional pentagons are present and the two extended defects
may be viewed in terms of distorted 3�3 patches. Our re-
sults indicate that extended dislocations are generally pre-
ferred over heptagon+pentagon pairs for most of the size
range considered.

Extended dislocations could also be viewed as embryonic
grain boundaries, which consist of pentagon-heptagon-
pentagon-¯ repeats.32,33 The smallest size considered in the
present study that exhibits a longer grain boundary is
N=792, where pentagon pair defects and extended disloca-
tions are also present �Fig. 4�. All the larger global minima
contain such features, but we also note the appearance of an
alternative “twinned” defect �with a local mirror plane� in
N=912, 932, and 972. Here two heptagons share an edge in
the Voronoi construction, with three pentagons on the periph-
ery. Each of these defects carries a net topological charge of
1. In previous experiments, grain-boundary scars were ob-
served for self-assembled beads containing more than around

360 particles.4 For the Thomson problem our results suggest
that extended dislocations of the pentagon-heptagon-
pentagon variety are still favorable in this size range, and
that grain boundaries and twinned grain boundaries become
the preferred defects for N�400. Systematic global optimi-
zation therefore complements continuum models by provid-
ing accurate data for the defect energetics, and by revealing
structures such as the 3�3 patches and twinned grain
boundaries.

To characterize rearrangements between different local
minima we have calculated transition states using hybrid
eigenvector-following techniques,34,35 as implemented in the
OPTIM program.28 Two examples are illustrated in Fig. 5 for
migration of an extended dislocation in N=732 and intercon-
version of twinned and conventional grain boundaries in
N=972. Our results indicate that low-lying minima for the
Thomson problem can generally interconvert via relatively
facile defect rearrangements. We therefore conclude that me-
soscopic systems exhibiting coarse-grained structure corre-
sponding to the Thomson problem could exhibit significant
fluxionality. Hence suitable annealing could produce materi-
als with uniform properties, a key goal of nanotechnology.
The mesoscopic systems that might be relevant here would
involve building blocks interacting via relatively isotropic
forces, which might include multielectron bubbles in super-
fluid helium,5,36 cell surface layers in prokaryotic
organisms,6,37 “colloidosomes,”4,7,38 colloidal silica
microspheres,8 superconducting films,10,39 and lipid rafts de-
posited on vesicles.9 Rearrangements between fullerene
cages, which have a dual topology to the Thomson problem
and involve strong anisotropic covalent bonds, are known to
have relatively high barriers.40–42 Nevertheless, the organiza-
tion of the energy landscape42–44 is such that even here
suitable annealing can produce a specific structure, i.e.,

FIG. 3. �Color online� Global minima for selected sizes that
exhibit extended dislocations consisting of a heptagon and two
pentagons.

FIG. 4. �Color online� Global minima for selected sizes that
exhibit grain boundaries and twinned grain boundaries.

FIG. 5. �Color online� Defect migrations linking the global
minimum to a low-lying local minimum for N=732 �top� and two
low-lying minima for N=972 �bottom�. The forward and reverse
barriers in atomic units are 6.60�10−4 and 4.22�10−4 for
N=732 and 4.24�10−3 and 1.04�10−3 for N=972.

BRIEF REPORTS PHYSICAL REVIEW B 74, 212101 �2006�

212101-3

Blue: septagons

P.K. Newton Equilibria assembly on a sphere



Equations of motion
The singular value spectrum of a configuration

Some examples: Coxeter polyhedra
Numerical schemes that ‘assemble’ the equilibria

Summary
References

Motivations
Particles on a sphere
Hamiltonian and other conserved quantities
Low N → High N

Very delicate dynamics: migration over ‘barriers’

Evolution through ‘transition’ states
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Variational formulation

Variational approach has worked well for:
• Relatively small N and homogeneous particles
• Patterns exhibiting discrete symmetries
• Stable patterns

But not well for:
• Large N and mixed populations of particles
• Patterns with defects and asymmetries
• Unstable patterns, issues of assembly and formation
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Variational formulation

Variational approach has worked well for:
• Relatively small N and homogeneous particles
• Patterns exhibiting discrete symmetries
• Stable patterns

But not well for:
• Large N and mixed populations of particles
• Patterns with defects and asymmetries
• Unstable patterns, issues of assembly and formation
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The fixed point equation
The configuration matrix approach
The singular value distribution

Equilibria as fixed points: l 2
αγ ≡ ‖~xα − ~xγ‖2

The fixed point equation

d
dt

(l 2
αγ) =

N∑
β=1

′′ΓβVαβγ

[
1
l 2
βα

− 1
l 2
βγ

]
= 0

• Evolution equation for each line segment connecting pairs.
• Vαβγ is the volume subtended by the points xα, xβ, xγ .

P.K. Newton Equilibria assembly on a sphere
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The configuration matrix

A~Γ = 0, A ∈ RM×N

M =

(
N
2

)
~Γ ∈ RN

AAT 6= AT A (non-normal)

• Entries of A are the terms: ΓβVαβγ

[
1

l2
βα

− 1
l2
βγ

]
P.K. Newton Equilibria assembly on a sphere
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Existence of relative equilibria

det(AT A) = 0

Rank(A) < N
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Uniqueness

Nullspace(A) = 1

Rank(A) = N − 1

P.K. Newton Equilibria assembly on a sphere
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Classification of equilibria via SVD

AT A~v (i) = (σ(i))2~v (i) AAT~u(i) = (σ(i))2~u(i)

σ(1) ≥ . . . ≥ σ(k ) > 0 rank
σ(k +1) = . . . = σ(N) = 0 nullspace
~v (i) = ~Γ(i), (i = k + 1, . . . ,N) basis

P.K. Newton Equilibria assembly on a sphere
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Splitting of spectrum

N − k = Nullspace (A) Degeneracy

k = Rank (A)

• Is ~Γ = (1,1, . . . ,1) ∈ Nullspace(A)?

P.K. Newton Equilibria assembly on a sphere
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Rank(A)

• Normalized eigenvalues of the covariance
matrix AT A:

λ̂(i) = λ(i)/
k∑

j=1

λ(j)

can be interpreted as probabilities Pi = λ̂(i)

• The set of numbers Pi (i = 1, ..., k ) can be
thought of as a discrete distribution that
characterizes the pattern

P.K. Newton Equilibria assembly on a sphere
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Spectral signature of the pattern

Shannon entropy

H = −
k∑

i=1

Pi ln Pi (0 ≤ H ≤ ln k )

Measures how sharply the spectrum drops off
from max to min.

P.K. Newton Equilibria assembly on a sphere
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Minimum entropy

• If the distribution clustered in one state:

P1 = 1; Pi = 0 (i > 1)

H = 0

1 2 3 4 5 6 7 8 9 10 N

λ
(i)

1

minimum entropy distribution

P.K. Newton Equilibria assembly on a sphere
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Maximum entropy

• Equal probabilities:

Pi =
1
N

(i = 1, ...,N)

H = ln N

1 2 3 4 5 6 7 8 9 10 N

λ
(i)

1

0.1

maximum entropy distribution

P.K. Newton Equilibria assembly on a sphere
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Typical distribution

1 2 3 4 5 6 7 8 9 10 N

λ
(i)

1

0.1

• Distributions that drop-off sharply from the maximum are
lower entropy configurations than those that are relatively
flat around the maximum.

P.K. Newton Equilibria assembly on a sphere
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The 5 Platonic and 13 Archimedean solids

UNIFORM POLYHEDRA 
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FIGURES 15 to 32. The Platonic and Archimedean solids. 
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Coxeter classification
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Cube

Figure 3: Cube
P.K. Newton Equilibria assembly on a sphere
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Skewed cube

Figure 6: Skewed cube
P.K. Newton Equilibria assembly on a sphere
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Icosahedron

Figure 4: Icosahedron
P.K. Newton Equilibria assembly on a sphere
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Cuboctahedron

Figure 8: Cuboctahedron
P.K. Newton Equilibria assembly on a sphere
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Icosidodecahedron

Figure 14: Icosidodecahedron
P.K. Newton Equilibria assembly on a sphere
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Only superposition of two or more solids with big nullity and
small number of vortices gives rise of new equilibria. Also
there might be different equilibria depending on how we
merge two solids.
Example: superposition of octahedron and cube.

Figure 20: Octahedron + Cube
P.K. Newton Equilibria assembly on a sphere
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Cube + Icosahedron

Figure 21: Cube + Icosahedron
P.K. Newton Equilibria assembly on a sphere
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Buckyball
Not all configurations have nontrivial nullspaces

Truncated icosahedron or buckyball
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Truncated icosahedron or buckyball

Figure 16: Truncated icosahedron or buckyball
P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Ingredients for ‘self-assembly’

• Systems are Hamiltonian, hence won’t
naturally evolve to an equilibrium for generic
initial conditions

• Need some ‘self-assembly’ mechanism
• Random fluctuations
• Gradient flow

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

(i) The Brownian ratchet

T:0

T:4000

T:8000

T:20000

Relies on random walk method on sphere and fast SVD solver

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

The ratchet scheme

• Randomly deposit N points on sphere
• Compute the singular values of A
• If smallest singular value is not below pre-determined

convergence threshold, allow each particle to execute a
random walk step (scaled with smallest singular value)

• Keep the new arrangement if the minimal singular value
decreases from that of the previous step. Otherwise
discard.

• Repeat
• When the smallest singular value drops below a

pre-determined threshold, the algorithm has converged to
an equilibrium

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Convergence
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Random walk to final state
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Constrained: ratchet a defect

Asymmetric configurations

Symmetric
configurations

Superpositions

Asymmetric
configurations

17 / 21

Asymmetric equilibria. Starting configuration - tetrahedron.
Random walk of 2 vortices.

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Unconstrained: asymmetric equilibria

N=10 (01)(01)(01)(01)(01)(01)(01)(01)(01)(01)

(02)(02)(02)(02)(02)(02)(02)(02)(02)(02)

(03)(03)(03)(03)(03)(03)(03)(03)(03)(03)

(04)(04)(04)(04)(04)(04)(04)(04)(04)(04)

(05)(05)(05)(05)(05)(05)(05)(05)(05)(05)

(06)(06)(06)(06)(06)(06)(06)(06)(06)(06)

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Ensemble averaged singular value distribution
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N=10

Asymmetric equilibria, on average, have higher Shannon entropy than
symmetric ones

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

(ii) Gradient flow

A. Barreiro, J. Bronski & P.K. Newton (2009)

Spectral gradient flow

At = −∇A det(AT A)

unconstrained: A~Γ = 0
constrained: ~Γ = (1, ...,1)

P.K. Newton Equilibria assembly on a sphere
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Spectral gradient flow
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The Brownian ratchet scheme
Spectral gradient flow
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

(iii) Yin-Yang scheme (Longuet-Higgins (2009))

Yin: Randomly perturb each center, calculate θmin

Random placement of 12 equal circles on the sphere

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Yang: δ∗ → δ + F ·
(1

2θmin − δ
)

Convergence to icosahedron

• δ is dimensionless ratio of cap-radius to sphere-radius
• ‘Yang’ step can be thought of as ‘shrinking’ the sphere (outer protein

sheath) instead of growing δ

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

δ = arcsin(τ + 2)−1/2 = 0.55357
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

For N = 60, snub dodecahedron is not the best
packing and has empty nullspace

Less symmetric arrangement gives better packing

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

For N = 72, method generally does not converge to
snub dodecahedron + 12

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

How to get there? ‘Multi-stage assembly’ + Yin-Yang

Growth: Flower petal structure (12× 6)

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Convergence

60 units surrounded by 6 12 units surrounded by 5

P.K. Newton Equilibria assembly on a sphere
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Packing not as tight as snub dodecahedron
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The Brownian ratchet scheme
Spectral gradient flow
Yin-Yang scheme

Stability theory

• Just starting! (Vitalii Ostrovskyi - USC Math)
• Based on

H = − 1
4π

∑
α<β

ΓαΓβ log(l2
αβ); ~J = const.

• And on expansion of fixed point system:

d
dt

(~l0 + ε~l1 + . . .) = (A0 + εA1 + . . .)~Γ

d
dt

(~l0) = A0~Γ = 0;
d
dt

(~l1) = A1~Γ

P.K. Newton Equilibria assembly on a sphere
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Summary

• Equilibria as fixed points instead of
extremizers

• Spectral decomposition of the configuration
matrix

• Degeneracy (nullspace)
• Entropy

• Numerical schemes that also model physics
• Brownian ratchet schemes
• Spectral gradient schemes
• Yin-Yang + Multi-stage assembly

P.K. Newton Equilibria assembly on a sphere
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