Assembly of particle equilibria on a sphere

P.K. Newton

Viterbi School of Engineering
\&
Department of Mathematics University of Southern California

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra
Numerical schemes that 'assemble' the equilibria
Summary
References

$N=72$: Human polyoma virus (icosahedral symmetry)

X-ray diffraction imaging

Klug \& Finch (1965)
P.K. Newton

Equilibria assembly on a sphere

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra
Numerical schemes that 'assemble' the equilibria
Summary References

Snub dodecahedral ($N=60$) structure

Can we get to $N=72$?

Is it a 'best' packing?

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra
Numerical schemes that 'assemble' the equilibria
Summary
References

J.J Thomson's plum-pudding model of the atom (1904)

An open problem ${ }^{1}$ in constrained optimization

- Find extremizers for the Riesz-s energy E_{s} :

$$
E_{s}=\sum_{i=1}^{N} \sum_{j=1}^{N}\left|x_{i}-x_{j}\right|^{-s}, \quad s>0
$$

- ∇E_{s} is the 'interaction-energy' of the particle system
- $s \rightarrow 0: E_{0}$ logarithmic (point vortex)
- $s=1: E_{1}$ Coulomb
- $s \rightarrow \infty$: Spherical packing problem (Tammes)
- Euler constraint: $F-E+V=2$

[^0]
The interesting issues

- Structure of equilibria

Growth/Formation/Assembly

The interesting issues

- Structure of equilibria Growth/Formation/Assembly

Stability/Robustness

The interesting issues

- Structure of equilibria
 - Growth/Formation/Assembly Stability/Robustness

The interesting issues

- Structure of equilibria
 Growth/Formation/Assembly
 - Stability/Robustness
 . Control/Intervention

Outline

Equations of motion

- Motivations
- Particles on a sphere
* Hamiltonian and other conserved quantities
- Low $N \rightarrow$ High N

2 The singular value spectrum of a configuration

- The fixed point equation
* The configuration matrix approach
- The singular value distribution
(3) Some examples: Coxeter polyhedra
(4) Numerical schemes that 'assemble' the equilibria
- The Brownian ratchet scheme
- Spectral gradient flow
- Yin-Yang scheme

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra
Numerical schemes that 'assemble' the equilibria
Summary
References

Motivations

Particles on a sphere
Hamiltonian and other conserved quantities
Low $N \rightarrow$ High N

A charged particle

Spherical coordinates

- Field has no azimuthal dependence.
- Strength drops off monotonically with distance.

$$
\begin{aligned}
& \dot{\theta}=0 \\
& \dot{\phi}=\frac{\Gamma}{2 \pi L^{2}}=\frac{\Gamma}{4 \pi(1-\cos \theta)}
\end{aligned}
$$

Cartesian coordinates

$$
\begin{aligned}
\dot{\vec{x}} & =\frac{\Gamma_{\beta}}{4 \pi} \frac{\vec{x}_{\beta} \times \vec{x}}{\left(1-\vec{x} \cdot \vec{x}_{\beta}\right)} \\
\vec{x}_{\beta} & =(0,0,1) ; \quad\|\vec{x}\|=1 \\
\vec{x} & =(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
\end{aligned}
$$

- Linear superposition:

$$
\dot{\vec{x}}=\sum_{\beta=1}^{N} \frac{\Gamma_{\beta}}{4 \pi} \frac{\vec{x}_{\beta} \times \vec{x}}{\left(1-\vec{x} \cdot \vec{x}_{\beta}\right)} \quad \Gamma_{\beta} \in \mathbb{R}
$$

- Each particle moves with the local velocity it feels due to all the others:

$$
\dot{\vec{x}}_{\alpha}=\sum_{\beta=1}^{N}, \frac{\Gamma_{\beta}}{4 \pi} \frac{\vec{x}_{\beta} \times \vec{x}_{\alpha}}{\left(1-\vec{x}_{\alpha} \cdot \vec{x}_{\beta}\right)} \quad(\alpha=1, \ldots, N)
$$

The interacting particle system on a surface

$$
\begin{aligned}
& \dot{\vec{x}}_{\alpha}=\sum_{\beta=1}^{N} \frac{\Gamma_{\beta}}{4 \pi} \frac{\hat{n}_{\beta} \times\left(\vec{x}_{\alpha}-\vec{x}_{\beta}\right)}{l_{\alpha \beta}^{2}} \\
& I_{\alpha \beta}^{2}=\left|\vec{x}_{\alpha}-\vec{x}_{\beta}\right|^{2}=2\left(1-\vec{x}_{\alpha} \cdot \vec{x}_{\beta}\right)
\end{aligned}
$$

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra Numerical schemes that 'assemble' the equilibria

Summary References

The Utah teapot (Chouraqui \& Elber 1996)

(a) Uniform sampling; (b) Spring-mass relaxation; (c) Charged particle equilibria

The Hamiltonian system

$$
\begin{gathered}
\mathcal{H}=-\frac{1}{4 \pi} \sum_{\alpha<\beta} \Gamma_{\alpha} \Gamma_{\beta} \log \left(l_{\alpha \beta}^{2}\right) \\
P_{\alpha} \equiv \sqrt{\left|\Gamma_{\alpha}\right|} \cos \left(\theta_{\alpha}\right) ; \quad Q_{\alpha} \equiv \sqrt{\left|\Gamma_{\alpha}\right|} \phi_{\alpha} \\
\dot{P}_{\alpha}=\frac{\partial \mathcal{H}}{\partial Q_{\alpha}}, \quad \dot{Q}_{\alpha}=-\frac{\partial \mathcal{H}}{\partial P_{\alpha}}
\end{gathered}
$$

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra
Numerical schemes that 'assemble' the equilibria
Summary
References

Other conserved quantities

$$
\begin{aligned}
& \vec{J}=\left(J_{x}, J_{y}, J_{z}\right) \\
& J_{x}=\sum_{\alpha=1}^{N} \Gamma_{\alpha} x_{\alpha}=\sum_{\alpha=1}^{N} \Gamma_{\alpha} \sin \left(\theta_{\alpha}\right) \cos \left(\phi_{\alpha}\right) \\
& J_{y}=\sum_{\alpha=1}^{N} \Gamma_{\alpha} y_{\alpha}=\sum_{\alpha=1}^{N} \Gamma_{\alpha} \sin \left(\theta_{\alpha}\right) \sin \left(\phi_{\alpha}\right) \\
& J_{z}=\sum_{\alpha=1}^{N} \Gamma_{\alpha} z_{\alpha}=\sum_{\alpha=1}^{N} \Gamma_{\alpha} \cos \left(\theta_{\alpha}\right)
\end{aligned}
$$

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra Numerical schemes that 'assemble' the equilibria

Summary
References

Wales \& Ulker (2006)

Red: pentagons Green: hexagons

Buckyball: $N=60$

- C $_{60}$ carbon molecule (Curl, Kroto, Smalley (1985))
- Truncated icosahedral structure
- 20 hexagons, 12 pentagons
- No two pentagons share an edge

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra Numerical schemes that 'assemble' the equilibria

Summary
References

Motivations
Particles on a sphere
Hamiltonian and other conserved quantities
Low $N \rightarrow$ High N

Defects: 'scars'

Blue: septagons

Equations of motion
The singular value spectrum of a configuration
Some examples: Coxeter polyhedra Numerical schemes that 'assemble' the equilibria

Summary References

Very delicate dynamics: migration over 'barriers'

Evolution through 'transition' states

Variational formulation

Variational approach has worked well for:

- Relatively small N and homogeneous particles
- Patterns exhibiting discrete symmetries
- Stable patterns

Variational formulation

Variational approach has worked well for:

- Relatively small N and homogeneous particles
- Patterns exhibiting discrete symmetries
- Stable patterns

But not well for:

- Large N and mixed populations of particles
- Patterns with defects and asymmetries
- Unstable patterns, issues of assembly and formation

Equilibria as fixed points: $\quad \int_{a \gamma}^{2} \equiv\left\|\vec{x}_{\alpha}-\vec{x}_{\gamma}\right\|^{2}$

The fixed point equation

$$
\frac{d}{d t}\left(l_{\alpha \gamma}^{2}\right)=\sum_{\beta=1}^{N}{ }^{\prime \prime} \Gamma_{\beta} V_{\alpha \beta \gamma}\left[\frac{1}{l_{\beta \alpha}^{2}}-\frac{1}{l_{\beta \gamma}^{2}}\right]=0
$$

- Evolution equation for each line segment connecting pairs.
- $V_{\alpha \beta \gamma}$ is the volume subtended by the points $\mathbf{x}_{\alpha}, \mathbf{x}_{\beta}, \mathbf{x}_{\gamma}$.

The configuration matrix

$$
\begin{aligned}
A \vec{\Gamma} & =0, \quad A \in R^{M \times N} \\
M & =\binom{N}{2} \quad \vec{\Gamma} \in R^{N} \\
A A^{T} & \neq A^{T} A \quad \text { (non-normal) }
\end{aligned}
$$

- Entries of A are the terms: $\Gamma_{\beta} V_{\alpha \beta \gamma}\left[\frac{1}{\Gamma_{\beta \alpha}}-\frac{1}{\rho_{\beta \gamma}^{2}}\right]$

Existence of relative equilibria

$\operatorname{det}\left(A^{T} A\right)=0$

$\operatorname{Rank}(A)<N$

The configuration matrix approach
The singular value distribution

Uniqueness

Nullspace $(A)=1$

$\operatorname{Rank}(A)=N-1$

Classification of equilibria via SVD

$$
\begin{aligned}
A^{T} A \vec{v}^{(i)} & =\left(\sigma^{(i)}\right)^{2} \vec{v}^{(i)} \quad A A^{T} \vec{u}^{(i)}=\left(\sigma^{(i)}\right)^{2} \vec{u}^{(i)} \\
\sigma^{(1)} & \geq \ldots \geq \sigma^{(k)}>0 \quad \text { rank } \\
\sigma^{(k+1)} & =\ldots=\sigma^{(N)}=0 \quad \text { nullspace } \\
\vec{v}^{(i)} & =\vec{\Gamma}(i), \quad(i=k+1, \ldots, N) \text { basis }
\end{aligned}
$$

Splitting of spectrum

$N-k=$ Nullspace (A) Degeneracy

$k=\operatorname{Rank}(\mathrm{A})$

$$
\text { - Is } \vec{\Gamma}=(1,1, \ldots, 1) \in \operatorname{Nullspace}(A) ?
$$

Rank(A)

- Normalized eigenvalues of the covariance matrix $A^{T} A$:

$$
\hat{\lambda}^{(i)}=\lambda^{(i)} / \sum_{j=1}^{k} \lambda^{(j)}
$$

can be interpreted as probabilities $P_{i}=\hat{\lambda}^{(i)}$

- The set of numbers $P_{i}(i=1, \ldots, k)$ can be thought of as a discrete distribution that characterizes the pattern

Spectral signature of the pattern

$$
H=-\sum_{i=1}^{k} P_{i} \ln P_{i} \quad(0 \leq H \leq \ln k)
$$

Measures how sharply the spectrum drops off from max to min .

Minimum entropy

- If the distribution clustered in one state:

$$
\begin{aligned}
P_{1}=1 ; \quad P_{i} & =0 \quad(i>1) \\
H & =0
\end{aligned}
$$

Maximum entropy

- Equal probabilities:

$$
\begin{aligned}
P_{i} & =\frac{1}{N}(i=1, \ldots, N) \\
H & =\ln N
\end{aligned}
$$

Typical distribution

- Distributions that drop-off sharply from the maximum are entropy configurations than those that are relatively flat around the maximum.

The 5 Platonic and 13 Archimedean solids

Coxeter classification

The 5 Platonic solids

$N=20$

The singular value spectrum of a configuration
Some examples: Coxeter polyhedra Numerical schemes that 'assemble' the equilibria

Summary
References

Normalized squares of singular values

Cube($\mathrm{N}=8$),

Null Space Dimension $=5$,
Shannon entropy $=1.0986$,
Compression=47.1679
$\sigma_{8}=8.0708 \mathrm{e}-018$

Nullspace = 5

Skewed cube: higher entropy, lower energy

$N=12:$ Icosahedron

Normalized squares of singular values Icosahedron($\mathrm{N}=12$),
Null Space Dimension = 7, Shannon entropy $=1.6094$, Compression=35.2315

$$
\sigma_{12}=1.1136 \mathrm{e}-016
$$

Icosahedron

Nullspace $=7$

Archimedean: Cuboctahedron

Archimedean: Icosidodecahedron

Superpositions: Cube + Octahedron

Superpositions: Cube + Icosahedron

Buckyball

Not all configurations have nontrivial nullspaces

Ingredients for 'self-assembly'

- Systems are Hamiltonian, hence won't naturally evolve to an equilibrium for generic initial conditions

Need some 'self-assembly' mechanism

Ingredients for 'self-assembly'

- Systems are Hamiltonian, hence won't naturally evolve to an equilibrium for generic initial conditions
- Need some 'self-assembly' mechanism

Ingredients for 'self-assembly'

- Systems are Hamiltonian, hence won't naturally evolve to an equilibrium for generic initial conditions
- Need some 'self-assembly' mechanism
- Random fluctuations

Ingredients for 'self-assembly'

- Systems are Hamiltonian, hence won't naturally evolve to an equilibrium for generic initial conditions
- Need some 'self-assembly' mechanism
- Random fluctuations
- Gradient flow

(i) The Brownian ratchet

Relies on random walk method on sphere and fast SVD solver

The ratchet scheme

- Randomly deposit N points on sphere

- Compute the singular values of A
- If smallest singular value is not below pre-determined convergence threshold, allow each particle to execute a random walk step (scaled with smallest singular value) Keep the new arrangement if the minimal singular value decreases from that of the previous step. Otherwise

The ratchet scheme

- Randomly deposit N points on sphere
- Compute the singular values of A

> If smallest singular value is not below pre-determined convergence threshold, allow each particle to execute a random walk step (scaled with smallest singular value) Keep the new arrangement if the minimal singular value decreases from that of the previous step. Otherwise

The ratchet scheme

- Randomly deposit N points on sphere
- Compute the singular values of A
- If smallest singular value is not below pre-determined convergence threshold, allow each particle to execute a random walk step (scaled with smallest singular value)

The ratchet scheme

- Randomly deposit N points on sphere
- Compute the singular values of A
- If smallest singular value is not below pre-determined convergence threshold, allow each particle to execute a random walk step (scaled with smallest singular value)
- Keep the new arrangement if the minimal singular value decreases from that of the previous step. Otherwise discard.

The ratchet scheme

- Randomly deposit N points on sphere
- Compute the singular values of A
- If smallest singular value is not below pre-determined convergence threshold, allow each particle to execute a random walk step (scaled with smallest singular value)
- Keep the new arrangement if the minimal singular value decreases from that of the previous step. Otherwise discard.
- Repeat

The ratchet scheme

- Randomly deposit N points on sphere
- Compute the singular values of A
- If smallest singular value is not below pre-determined convergence threshold, allow each particle to execute a random walk step (scaled with smallest singular value)
- Keep the new arrangement if the minimal singular value decreases from that of the previous step. Otherwise discard.
- Repeat
- When the smallest singular value drops below a pre-determined threshold, the algorithm has converged to an equilibrium

Convergence

Random walk to final state

The Brownian ratchet scheme

Spectral gradient flow
Yin-Yang scheme

Constrained: ratchet a defect

Unconstrained: asymmetric equilibria

Ensemble averaged singular value distribution

Asymmetric equilibria, on average, have
Shannon entropy than

symmetric ones

(ii) Gradient flow

A. Barreiro, J. Bronski \& P.K. Newton (2009)

Spectral gradient flow

$$
A_{t}=-\nabla_{A} \operatorname{det}\left(A^{T} A\right)
$$

unconstrained:

constrained:

(ii) Gradient flow

A. Barreiro, J. Bronski \& P.K. Newton (2009)

Spectral gradient flow

$$
A_{t}=-\nabla_{A} \operatorname{det}\left(A^{\top} A\right)
$$

unconstrained: $\vec{A} \vec{\Gamma}=0$
constrained:

(ii) Gradient flow

A. Barreiro, J. Bronski \& P.K. Newton (2009)

Spectral gradient flow

$$
A_{t}=-\nabla_{A} \operatorname{det}\left(A^{T} A\right)
$$

unconstrained: $\vec{\Gamma} \vec{\Gamma}=0$
constrained: $\vec{\Gamma}=(1, \ldots, 1)$

Unconstrained

$N=67$

Unconstrained

$N=67$

Constrained

$N=50$

Constrained

$N=50$

(iii) Yin-Yang scheme (Longuet-Higgins (2009))

Yin: Randomly perturb each center, calculate $\theta_{\text {min }}$

Random placement of 12 equal circles on the sphere

$$
\text { Yang: } \delta^{*} \rightarrow \delta+F \cdot\left(\frac{1}{2} \theta_{\min }-\delta\right)
$$

Convergence to icosahedron

- δ is dimensionless ratio of cap-radius to sphere-radius
- 'Yang' step can be thought of as 'shrinking' the sphere (outer protein sheath) instead of growing δ

$\delta=\arcsin (\tau+2)^{-1 / 2}=0.55357$

Best packing for $N=12$ AND nullspace $=7$

For $N=60$, snub dodecahedron is not the best packing and has empty nullspace

Less symmetric arrangement gives better packing

For $N=72$, method generally does not converge to snub dodecahedron + 12

How to get there? 'Multi-stage assembly' + Yin-Yang

Growth: Flower petal structure (12×6)

Convergence

12 units surrounded by 5

Packing not as tight as snub dodecahedron

Longuet-Higgins (2009)

Stability theory

- Just starting! (Vitalii Ostrovskyi - USC Math)
- Based on

$$
\mathcal{H}=-\frac{1}{4 \pi} \sum_{\alpha<\beta} \Gamma_{\alpha} \Gamma_{\beta} \log \left(l_{\alpha \beta}^{2}\right) ; \quad \vec{\jmath}=\text { const. }
$$

Stability theory

- Just starting! (Vitalii Ostrovskyi - USC Math)
- Based on

$$
\mathcal{H}=-\frac{1}{4 \pi} \sum_{\alpha<\beta} \Gamma_{\alpha} \Gamma_{\beta} \log \left(l_{\alpha \beta}^{2}\right) ; \quad \vec{J}=\text { const. }
$$

- And on expansion of fixed point system:

$$
\begin{aligned}
\frac{d}{d t}\left(\overrightarrow{l_{0}}+\epsilon \overrightarrow{l_{1}}+\ldots\right) & =\left(A_{0}+\epsilon A_{1}+\ldots\right) \vec{\Gamma} \\
\frac{d}{d t}\left(\overrightarrow{l_{0}}\right)=A_{0} & =0 ; \quad \frac{d}{d t}\left(\overrightarrow{l_{1}}\right)=A_{1} \vec{\Gamma}
\end{aligned}
$$

Summary

- Equilibria as fixed points instead of extremizers
Spectral decomposition of the configuration matrix

Deaeneracy (nullspace)

Summary

- Equilibria as fixed points instead of extremizers
- Spectral decomposition of the configuration matrix

Summary

- Equilibria as fixed points instead of extremizers
- Spectral decomposition of the configuration matrix
- Degeneracy (nullspace)

Summary

- Equilibria as fixed points instead of extremizers
- Spectral decomposition of the configuration matrix
- Degeneracy (nullspace)
- Entropy

Summary

- Equilibria as fixed points instead of extremizers
- Spectral decomposition of the configuration matrix
- Degeneracy (nullspace)
- Entropy
- Numerical schemes that also model physics

Summary

- Equilibria as fixed points instead of extremizers
- Spectral decomposition of the configuration matrix
- Degeneracy (nullspace)
- Entropy
- Numerical schemes that also model physics
- Brownian ratchet schemes

Summary

- Equilibria as fixed points instead of extremizers
- Spectral decomposition of the configuration matrix
- Degeneracy (nullspace)
- Entropy
- Numerical schemes that also model physics
- Brownian ratchet schemes
- Spectral gradient schemes

Summary

- Equilibria as fixed points instead of extremizers
- Spectral decomposition of the configuration matrix
- Degeneracy (nullspace)
- Entropy
- Numerical schemes that also model physics
- Brownian ratchet schemes
- Spectral gradient schemes
- Yin-Yang + Multi-stage assembly

References

- P.K. Newton, G. Chamoun, Vortex lattice theory: A particle interaction perspective, SIAM Review (2009).
- P.K. Newton, T. Sakajo, Point vortex equilibria on the sphere via Brownian ratchets, Proc. Roy. Soc. A, 465 437-455 (2009).
- A. Barreiro, J. Bronski, P.K. Newton, Spectral gradient flow and equilibrium configurations of point vortices, preprint (2009)
- P.K. Newton, G. Chamoun, Construction of point vortex equilibria via Brownian ratchets, Proc. Roy. Soc. A, 463 1525-1540 (2007).
- M.I. Jamaloodeen, P.K. Newton, The N-vortex problem on a sphere. II. Platonic solid equilibria, Proc. Roy. Soc. A, 462 3277-3299 (2006).
- H. Aref, P.K. Newton, M.A. Stremler, T. Tokieda, D.L. Vainchtein, Vortex crystals, Advances in Applied Mech., 39 1-80, (2003).

[^0]: ${ }^{1}$ Proofs of global minimum or best packing only for $N=2-12$ and $N=24$

