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Computational Context

. .. : du
Incompressible, (Inviscid) Fluids %
0 Lagrangian impractical Vou=0
» meshes get entangled, needing constant remeshing
» particles need constant reseeding
0 Eulerian far from flawless
» numerical viscosity's a plague
0 large timesteps induce huge viscosity
» multiple tools to combat dissipation in practice
0 vorticity confinement: reinjecting vorticity
0 vortex particles or other Lagrangian devices

+(u-Vu= 7%Vp+f

Theoretical Context

Variational Integrators for Discrete Mechanics
0 capture proper dynamics nicely
> [West et al,, Hairer, ...]
0 as well as energy decay for dissipative systems

O Alas, mostly Lagrangian treatment
> FEulerian treatment missing

Quest: Discrete, Fulerian Fluid Mechanics
0 Lie group of volume preserving diffeomorphisms
0 motion = geodesic on this group

> [Lin, Newcomb, Bretherton, Marsden et al.]

Spatial Discretization

Simplicial Meshes
0 or regular grid
» sometimes simpler to explain (or too simple...)
0 over any domain
» topology

Assumption:
'good’ meshes
0 cells C; well shaped J
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Configuration Space (I)

Discrete diffeomorphism

0 let's turn to Koopman for inspiration

> if g vol.-preserv. diffeom. then U, unitary operator on L,

Yp: In —Ig
#e) 4 D).
0 discrete configuration g
> must preserve constants: Vj, Zqij =1
i
» must preserve L, inner product of functions
¢ Qq=Q Q= : ... :
0 - |Cynl

» forming a finite dimensional Lie group

0 regular grids: ¢ is an orthogonal, (doubly) stochastic matrix
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Configuration Space (II)

Two comments:
0 g pushes PWC functions forward
» discrete functions constant per cell C;

a()bo ~ ¢olgr H(z)) = 6(t)

0 from a continuous g how to get q?
» discretize continuous map:
mes(g~1(C;) N C;)
lolij=— 5
mes(Cj)

» then do polar decomposition: g = gs.
O remove Symmetric part
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Eulerian Velocity  w() = gi(s *(0))

Assuming continuous time for now, define:

A = (g (®)
0 Lie algebra of previous Lie group
» inherited properties:

Preservation of volume ATQ +QA=0
Preservation of mass Z Ai = 0
7
A is not div-free velocity per se...

() = A(t)o(t)

0O Ais thus a (negated) discrete Lie derivative L,

Eulerian Velocity (II)

Two comments

0 convergence of A induces convergence of ¢
» see Dmitry's thesis

0 commutator of matrices for Lie bracket
» important for Lin constraints

A—u, B—v = [A,B] = —[u,v]

Constraints on Velocity

Discrete velocity non sparse...
0 norm of vector fields thus containing many terms

0 coeffs of A not intuitive, except for adjacent cells!
» directional transfer densities (per second) from C; to C;
» through Stokes and divergence-freeness, we get:

— -
QiAij = —v(zi) Wij Si; [
> link to existing numerical schemes (Harlow-Welsh, Arakawa, ...)
0 one flux per face— common staggered grids setup

0 Ouch... commutator not satisfying constraints

» non holonomic constraints (NHC)
@\ > will not be that bad....

Variational Picture At a Glance

. . 1 b
Lagrangian L(q,q) ~ 7 < A’ A>
0 on NHC subspace, sum of fluxes squared
Extremization of action
0 Lagrange-d'Alembert's principle
> to deal with non-holonomic constraints
0 DEL equation links two consecutive 's

Apy1
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Discrete Euler Lagrange Eqs

"Right" variational principle (no vakonomics):

1 . . 0q € Sq
6/ Ly(g,d)dt = O with
o 1@ ® {6q<0> = 5q(1) = 0.

. 1 1 Lo
2 Lagrangian:L(4) = 7 <A A>= Z’I‘r(QA”A’)
» induced variation of A "special’
SA=B—[A,B] with B=dqq !
0 B islike a test function
» after integration by parts

Tr((2A°Q + [A°Q, A])B) =0
0 Final DEL:

e ot mig(aiensenn) =

Flat Operator

Transform a vector field into a 1-form
0 we will restrict ourselves to the NHC
0 cannot be trivial (no dynamics otherwise....)
O generalidea: << A", B>>= [(A,B)dV VB
» must paired not only with NHC and [NHC,NHC]
From A;; values
0 define A?j = Q,Aljh,'j/sij, when j € N (i) (think dual 1-form)
0 define 2-away terms such thdA” s vorticity
> see Dmitry's thesis

Example on regular grid:
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Numerics

Update as function of fluxes only:
I,wz+1 _pn

h
> this time, space and time both discrete

Newton's steps

1 1
+ 5Adv(l«‘“)+§Adv(1«‘”+1) = 7*2{1‘21)”%

1 ’ n 1 ) 1 —1
RF,P) = 5 (F = F™) + ZAdv (F™) 4 SAdV (F) + *5 *d5 P
doF'
1 19Adv =1
FId+ 5955 %, - d oF n+1 pntd
h 3 9F *2 43 = —R(F"
(L d 0 > <6P> RO, PRT2)

0 saddle point problem
0 Schur complement and approximated Jacobian
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Note about Extensions

Energy preserving schemes
0 change trapezoidal time update to midpoint
R A [Adv(ﬁ‘“+§> - *51(1’2P“+5}
0 w/ single linear solve [Simo & Armero 94|
%(},-nﬂ C P+ Adv(FH W) = — x5t dtzpn+%

dp Pt =o0.
Navier-Stokes equations
Forl— pn_g [m(}"ﬁ) —wy .{.P"‘"i —mqlﬁqrﬁ]
Upwind Advection
GF:\\U add symmetric part to A to get upwind advection

Connections to Prior Work

DEC-like Calculus Behind the Scenes

0 discrete forms consistent with setup
» O-form: discrete PWC functions
» 1-form: antisymmetric NxN matrices
0 pairs naturally with vector fields A
» k-forms: tensor of order (k+1) antisym. w.r.t. 2 last indices
0 an extension of DEC
> od,* A b iy, Ly

Discrete Kelvin's theorem

0 DEL defines advection of curves (dual 1-chain)
> vorticity transport (circulation preserved along the flow)

0 in Fulerian sense now, unlike our previous integrator

A Few Curves

% total eneegy relative 1o initial conditions

2D Obstacle Course (I)
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2D Obstacle Course (IT)

Taylor vortices at critical distance
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Symmetry and Robustness

Teapot-shaped Taylor vortices....
then taylor vortices again at 2 resolutions
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3D Movie

Another Movie
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Pipe Dream.... Fully variational?

With free surface (using foliation processing)

Future Work

More analysis needed
0 energy cascading, symplecticity, subscale models,...
» shedding light on the numerical blow-up problem?
» see recent work of Tom Hou

Optimal Transport
0O measures instead of functions
> use in image processing (registration)
Magnetohydrodynamics

0 mixing E&M with discrete forms and fluids
» SURFer Evan Gawlik

and more....
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