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Objectives

Study flow geometry of unsteady systems in terms of Lagrangian Coherent Structures

(LCS), in a manner analogous studying the geometry of autonomous and periodic systems

in terms of invariant manifolds. Several works have shown the usefulness of Finite-Time

Lyapunov Exponent (FTLE) plots for locating LCS. Goals of this poster are to:

• Provide a precise definition of Lagrangian Coherent Structures

• Overview the Lagrangian properties of such structures

• Demonstrate ideas on a range of applications

Notation and Definitions

Given a time-dependent velocity field v(x, t) defined over a domain D ∈ R
2 or R

3, let

x(t; t0,x0) denote the trajectory that passes through x0 at time t0, with the associated flow

map φt
t0

: x0 7→ φt
t0
(x0) = x(t; t0,x0), where t is fixed.

Let δx(t0) be an infinitesimal perturbation to the point x0 at time t0. After a time interval T ,

where −∞ < T < ∞, this perturbation becomes

δx(t) =
dφt

t0
(x0)

dx0

δx(t0) ,

where t = T + t0 and terms of O(‖δx(t0)‖
2) have been dropped. Using the L2-norm, the

magnitude of the perturbation is given by

‖δx(t)‖ =

√
√
√
√

〈

δx(t0),
dφt

t0
(x0)

dx0

∗
dφt

t0
(x0)
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δx(t0)

〉

where the symmetric matrix

∆ =
dφt

t0
(x0)

dx0

∗
dφt

t0
(x0)

dx0

is a finite-time version of the (right) Cauchy-Green deformation tensor studied in continuum

mechanics .

Maximum stretching occurs when δx(t0) is chosen such that it is aligned with the maximum

eigenvalue direction of ∆. That is, if λmax(∆) is the maximum eigenvalue of ∆, thought of as

an operator, then

max
δx(t0)

‖δx(t)‖ =
√

λmax(∆)
∥
∥δx(t0)

∥
∥ (1)

where δx(t0) is aligned with the eigenvector associated with λmax(∆). Then, Eq. (1) can be

recast as

max
δx(t0)

‖δx(t)‖ = eσ
t0

T
(x0)|T |

∥
∥δx(0)

∥
∥ ,

where

σt0
T (x0) =
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|T |
ln
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(2)

is referred to as the Finite-Time Lyapunov Exponent at point x0 and time t0, with

integration time T .

Flux Across an LCS

Notice
dL

dt
=

∂L

∂x
·
dx

dt
+

∂L

∂xq

·
dxq

dt
.

However,
∂L

∂xq

=
xq − x

L
= −∇L ,

and so
dL

dt
= ∇L ·

(
dx

dt
−

dxq

dt

)

. (3)

On the LCS, the two points x and xq are equal; however, we think of x as being a Lagrangian ,

or material, point while xq is viewed as a point which moves with the LCS. The right-hand side

of Eq. (3) represents the difference in the velocity of the two points, projected in the direction

normal to the LCS, which is precisely what contributes to particles crossing the LCS. Therefore,

the total flux across the LCS is given by

Φ(t) =

∫

LCS

dL

dt
ds , (4)

where the integral is taken over the length of the LCS. Although dL/dt is not directly obtain-

able, the following Theorem provides an estimate for dL/dt based on quantities defining the

FTLE field.

Theorem: For L = 0, we have

dL

dt
=

〈
t̂,∇σ

〉

〈n̂, Σn̂〉
︸ ︷︷ ︸

A

〈

t̂,
∂n̂

∂t
− J n̂

〉

︸ ︷︷ ︸
B

+O

(
1

|T |

)

︸ ︷︷ ︸
C

(5)

where J is the Jacobian (derivative) of the velocity field, and t̂ and n̂ are unit vectors respec-

tively tangent and normal to the LCS.

Turbulent Vortex Flow

Direct Numerical Simulations of fully compressible Navier-Stokes equations were used to gen-

erate the flow field of turbulent vortex rings with disturbances added. As with the laminar

vortex ring experiment discussed in the previous column, capturing the extent and propagation

of the vortex over time is very difficult with traditional methods (i.e. streamlines, vorticity

plots, etc.). However, LCS are able to nicely capture the flow geometry of the vortex dynamics.

Below we show the FTLE fields at two time instances for the turbulent vortex data, with T > 0

(rLCS) for plots on the left and T < 0 (aLCS) for plots on the right.

Current and planned work

• LCS is currently being applied in the Adaptive Sampling And Prediction (ASAP)

program, whose purpose is to research how to deploy, direct and utilize pseudo-autonomous

vehicles most efficiently to sample the ocean, assimilate the data into numerical models in

real or near-real time, and predict future conditions with minimal error.

• We are currently investigating a number of interesting bio-fluid systems such as flow around

a jellyfish and cardiovascular flow.

• We are also involved in applying these technique for studying a range of other applications,

including polar vortex dynamics in the atmosphere, micro-mixing devices, and flow around

flapping wings.
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