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Introduction

� Dirac Structures

• Dirac structures can be viewed as simultaneous generalizations of
symplectic and Poisson structures.

• Implicit Lagrangian and Hamiltonian systems1 provide a unified
geometric framework for studying degenerate, interconnected, and
nonholonomic Lagrangian and Hamiltonian mechanics.

1H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part I: Implicit Lagrangian systems,
J. of Geometry and Physics, 57, 133–156, 2006.
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Introduction

� Variational Principles

• The Hamilton–Pontryagin principle2 on the Pontryagin bundle
TQ ⊕ T ∗Q, unifies Hamilton’s principle, Hamilton’s phase space
principle, and the Lagrange–d’Alembert principle.

• Provides a variational characterization of implicit Lagrangian and
Hamiltonian systems.

2H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part II: Variational structures, J. of
Geometry and Physics, 57, 209–250, 2006.
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Introduction

� Discrete Dirac Structures

• Continuous Dirac structures are constructed by considering the
geometry of symplectic vector fields and their associated Hamilto-
nians.

• By analogy, we construct discrete Dirac structures by considering
the geometry of symplectic maps and their associated generating
functions.

• Provides a unified treatment of implicit discrete Lagrangian and
Hamiltonian mechanics in the presence of discrete Dirac constraints.
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Introduction

� Discrete Hamilton–Pontryagin principle

•We define a discrete Hamilton–Pontryagin principle on the discrete
Pontryagin bundle (Q×Q)⊕ T ∗Q.

• Obtained from the discrete Hamilton’s principle by imposing the
discrete second-order curve condition using Lagrange multipliers.

• Provides an alternative derivation of implicit discrete Lagrangian
and Hamiltonian mechanics.

• In the absence of constraints, implicit discrete Hamiltonian me-
chanics reduce to the usual definition of discrete Hamiltonian me-
chanics3 obtained using duality in the sense of optimization.

3S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A 39(19), 5509–5519, 2006.
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Dirac Structures on Vector Spaces

� Properties

• Given a n-dimensional vector space V , consider the pairing 〈〈 · , · 〉〉
on V ⊕ V ∗ given by

〈〈(v, α), (ṽ, α̃)〉〉 = 〈α, ṽ〉 + 〈α̃, v〉,
where 〈 · , · 〉 is the natural pairing between covectors and vectors.

• A Dirac Structure is a subspace D ⊂ V ⊕ V ∗, such that

D = D⊥.

• In particular, D ⊂ V ⊕ V ∗ is a Dirac structure iff

dimD = n

and
〈α, ṽ〉 + 〈α̃, v〉 = 0,

for all (v, α), (ṽ, α̃) ∈ D.
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Dirac Structures on Manifolds

� Properties

• An almost Dirac Structure on a manifold M is a subbundle
D ⊂ TM⊕T ∗M such thatDq ⊂ TqM⊕T ∗qM is a Dirac structure.

• A Dirac structure on a manifold is an almost Dirac structure
such that

〈£X1
α2, X3〉 + 〈£X2

α3, X1〉 + 〈£X3
α1, X2〉 = 0,

for all pairs of vector fields and one-forms

(X1, α1), (X2, α2), (X3, α3) ∈ D,
and where £X is the Lie derivative along the vector field X .

• This is a generalization of the condition that the symplectic two-
form is closed, or that the Poisson bracket satisfies Jacobi’s identity.
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Dirac Structures on Manifolds

� Generalizing Symplectic and Poisson Structures

• Let M = T ∗Q.

• The graph of the symplectic two-form Ω : TM×TM → R, viewed
as a map TM → T ∗M ,

vz 7→ Ω(vz, ·),
is a Dirac structure.

• Similarly, the graph of the Poisson structure B : T ∗M × T ∗M →
R, viewed as a map T ∗M to T ∗∗M ∼= TM ,

αz 7→ B(αz, ·),
is a Dirac structure.

• Furthermore, if the symplectic form and the Poisson structure are
related, they induce the same Dirac structure on TM ⊕ T ∗M .



9

Motivating Example: Electrical Circuits

� Configuration space and constraints

• The configuration q ∈ E of the electrical circuit is given by
specifying the current in each branch of the electrical circuit.

• Not all configurations are admissible, due to Kirchhoff’s Cur-
rent Laws:

the sum of currents at a junction is zero.

This induce a constraint KCL space ∆ ⊂ TE.

• Its annihilator space ∆◦ ⊂ T ∗E is defined by

∆◦q = {e ∈ T ∗qE | 〈e, f〉 = 0 for all f ∈ ∆q},
which can be identified with the set of branch voltages, and
encodes the Kirchhoff’s Voltage Laws:

the sum of voltages about a closed loop is zero.
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Motivating Example: Electrical Circuits

� Dirac structures and Tellegen’s theorem

• Given ∆ ⊂ TE and ∆◦ ⊂ T ∗E which encode the Kirchhoff’s
current and voltage laws,

DE = ∆⊕∆◦ ⊂ TE ⊕ T ∗E
is a Dirac structure on E.

• Since D = D⊥, we have that for each (f, e) ∈ DE,

〈e, f〉 = 0.

This is a statement of Tellegen’s theorem, which is an impor-
tant result in the network theory of circuits.
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Motivating Example: Electrical Circuits

� Lagrangian for LC-circuits

•Dirac’s theory of constraints was concerned with degenerate
Lagrangians where the set of primary constraints, the image
P ⊂ T ∗Q of the Legendre transformation, is not the whole space.

• The magnetic energy is given by

T (f ) =
∑ 1

2
Lif

2
Li
.

• The electric potential energy is

V (q) =
∑ 1

2

q2
Ci

Ci
.

• The Lagrangian of the LC circuit is given by

L(q, f ) = T (f )− V (q).
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Variational Principles
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Continuous Hamilton–Pontryagin principle

� Pontryagin bundle and Hamilton–Pontryagin principle

• Consider the Pontryagin bundle TQ ⊕ T ∗Q, which has local
coordinates (q, v, p).

• The Hamilton–Pontryagin principle is given by

δ

∫
[L(q, v)− p(v − q̇)] = 0,

where we impose the second-order curve condition, v = q̇ using
Lagrange multipliers p.
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Continuous Hamilton–Pontryagin principle

� Implicit Lagrangian systems

• Taking variations in q, v, and p yield

δ

∫
[L(q, v)− p(v − q̇)]dt

=

∫ [
∂L

∂q
δq +

(
∂L

∂v
− p
)
δv − (v − q̇)δp + pδq̇

]
dt

=

∫ [(
∂L

∂q
− ṗ
)
δq +

(
∂L

∂v
− p
)
δv − (v − q̇)δp

]
dt

where we used integration by parts, and the fact that the variation
δq vanishes at the endpoints.

• This recovers the implicit Euler–Lagrange equations,

ṗ =
∂L

∂q
, p =

∂L

∂v
, v = q̇.
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Continuous Hamilton–Pontryagin principle

� Hamilton’s phase space principle

• By taking variations with respect to v, we obtain the Legendre
transform,

∂L

∂v
(q, v)− p = 0.

• The Hamiltonian, H : T ∗Q→ R, is defined to be,

H(q, p) = ext
v

(
pv − L(q, v)

)
= pv − L(q, v)|p=∂L/∂v(q,v) .

• The Hamilton–Pontryagin principle reduces to,

δ

∫
[pq̇ −H(q, p)] = 0,

which is the Hamilton’s principle in phase space.
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Continuous Hamilton–Pontryagin principle

� Lagrange–d’Alembert–Pontryagin principle

• Consider a constraint distribution ∆Q ⊂ TQ.

• The Lagrange–d’Alembert–Pontryagin principle is given
by

δ

∫
L(q, v)− p(v − q̇)dt = 0,

for fixed endpoints, and variations (δq, δv, δp) of (q, v, p) ∈ TQ⊕
T ∗Q, such that (δq, δv) ∈ (TτQ)−1(∆Q), where τQ : TQ→ Q.



17

Discrete Hamilton–Pontryagin principle

� Discrete Pontryagin bundle and Hamilton–Pontryagin
principle

• Consider the discrete Pontryagin bundle (Q × Q) ⊕ T ∗Q,
which has local coordinates (q0

k, q
1
k, pk).

• The discrete Hamilton–Pontryagin principle is given by

δ
∑[

Ld(q
0
k, q

1
k)− pk+1(q1

k − q
0
k+1)

]
= 0,

where we impose the second-order curve condition, q1
k = q0

k+1 using
Lagrange multipliers pk+1
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Discrete Hamilton–Pontryagin principle

� Implicit discrete Lagrangian systems

• Taking variations in q0
k, q1

k, and pk yield

δ
∑[

Ld(q
0
k, q

1
k)− pk+1(q1

k − q
0
k+1)

]
=
∑{

[D1Ld(q
0
k, q

1
k) + pk]δq0

k

−[q1
k − q

0
k+1]δpk+1 + [D2Ld(q

0
k, q

1
k)− pk+1]δq1

k

}
.

• This recovers the implicit discrete Euler–Lagrange equa-
tions,

pk = −D1Ld(q
0
k, q

1
k), pk+1 = D2Ld(q

0
k, q

1
k), q1

k = q0
k+1.
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Discrete Hamilton–Pontryagin principle

� Discrete Hamilton’s phase space principle

• By taking variations with respect to q1
k, we obtain the discrete

Legendre transform,

D2Ld(q
0
k, q

1
k)− pk+1 = 0

• The discrete Hamiltonian, Hd+ : H+→ R, is defined to be,

Hd+(q0
k, pk+1) = ext

q1
k

pk+1q
1
k − Ld(q

0
k, q

1
k)

= pk+1q
1
k − Ld(q

0
k, q

1
k)
∣∣∣
pk+1=D2Ld(q0

k,q
1
k)
.

• The discrete Hamilton–Pontryagin principle reduces to,

δ
∑

[pk+1qk+1 −Hd+(qk, pk+1)] = 0,

which is the discrete Hamilton’s principle in phase space.
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Discrete Lagrange–d’Alembert–Pontryagin principle

� Continuous constraints from discrete constraints

• Given ∆d
Q ⊂ Q×Q, consider compatible curves on Q,

C
∆d
Q

:= {ϕ ∈ C∞([−1, 1], Q)| ∃ε > 0,

∀τ ∈ (0, ε), (ϕ(−τ ), ϕ(0)), (ϕ(0), ϕ(τ )) ∈ ∆d
Q}.

• Identify vq ∈ TqQ with [ϕ], the equivalence class of curves
where ϕ(0) = q, and Dϕ(0) = v, and define ∆Q ⊂ TQ,

ϕ ∈ C
∆d
Q

=⇒ [ϕ] ∈ ∆Q.
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Discrete Lagrange–d’Alembert–Pontryagin principle

� Discrete Lagrange–d’Alembert–Pontryagin principle

• The Discrete Lagrange–d’Alembert–Pontryagin princi-
ple is given by

δ
∑[

Ld(q
0
k, q

1
k)− pk+1(q1

k − q
0
k+1)

]
= 0,

for fixed endpoints q0
0 and q0

N , and variations (δq0
k, δq

1
k, δpk) of

(q0
k, q

1
k, pk) ∈ (Q × Q) ⊕ T ∗Q such that δq0

k ∈ ∆Q(q0
k), δq1

k ∈
∆Q(q1

k), and (q0
k, q

1
k) ∈ ∆d

Q.
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Dirac Structures
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Continuous Dirac Mechanics

� The Big Diagram

T ∗T ∗Q

πT∗Q

""D
DDDDDDDDDDDDDDDDDDDDD

π2

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV TT ∗QΩ[oo
κQ

//

τT∗Q

||zzzzzzzzzzzzzzzzzzzzzz

TπQ

""D
DDDDDDDDDDDDDDDDDDDDD

ρTT∗Q

��

T ∗TQ

π1

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

πTQ

||zzzzzzzzzzzzzzzzzzzzzz

γQ

rr

T ∗Q TQ⊕ T ∗Qpr2
oo

pr1
// TQ

(q, p,−δp, δq)

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
D

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
(q, p, δq, δp)oo //

||zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
D

��

(q, δq, δp, p)

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

||zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz

rr

(q, p) (q, δq)⊕ (q, p)oo // (q, δq)
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Continuous Dirac Mechanics

� Dirac Structures and Constraints

• A constraint distribution ∆Q ⊂ TQ induces a Dirac structure
on T ∗Q,

D∆Q
(z) :=

{
(vz, αz) ∈ TzT ∗Q× T ∗z T ∗Q

∣∣∣
vz ∈ ∆T ∗Q(z), αz− Ω[(vz) ∈ ∆◦T ∗Q(z)

}
where ∆T ∗Q := (TπQ)−1(∆Q) ⊂ TT ∗Q.

• Holonomic and nonholonomic constraints, as well as constraints
arising from interconnections can be incorporated into the Dirac
structure.
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Continuous Dirac Mechanics

� Implicit Lagrangian Systems

• Let γQ := Ω[ ◦ (κQ)−1 : T ∗TQ→ T ∗T ∗Q.

• Given a Lagrangian L : TQ→ R, define DL := γQ ◦ dL.

• An implicit Lagrangian system (L,∆Q, X) is,

(X,DL) ∈ D∆Q
,

where X ∈ X(T ∗Q).

• This gives the implicit Euler–Lagrange equations,

q̇ = v ∈ ∆Q(q), p =
∂L

∂v
, ṗ− ∂L

∂q
∈ ∆◦Q(q).

• In the special case ∆Q = TQ, we obtain,

q̇ = v, ṗ =
∂L

∂q
, p =

∂L

∂v
.
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Continuous Dirac Mechanics

� Implicit Hamiltonian Systems

• Given a Hamiltonian H : T ∗Q→ R, an implicit Hamiltonian
system (H,∆Q, X) is,

(X, dH) ∈ D∆Q
,

which gives the implicit Hamilton’s equations,

q̇ =
∂H

∂p
∈ ∆Q(q), ṗ +

∂H

∂q
∈ ∆◦Q(q).

• In the special case ∆Q = TQ, we recover the standard Hamilton’s
equations,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.
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The Geometry of Symplectic Flows

� Hamiltonian Flows and the Ω[ map

• The flow FX of a vector field X ∈ X(T ∗Q) is symplectic if locally,

iXΩ = dH, for some function H : T ∗Q→ R.

•We require that the following diagram commutes,

TT ∗Q Ω[ // T ∗T ∗Q

T ∗Q

X

__???????????????
dH

??���������������

(q, p, q̇, ṗ) // (q, p, ∂H/∂q, ∂H/∂p)

(q, p)

__??????????????

??��������������

• This gives rise to the map Ω[ : TT ∗Q→ T ∗T ∗Q,

Ω[ : (q, p, δq, δp) 7→ (q, p,−δp, δq).
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The Geometry of Symplectic Flows

� Lagrangian Flows and the κQ map

• The second-order vector field XL ∈ X(TQ) preserves the La-
grangian symplectic form if, £XLΩL = 0.

• Consider the Lagrange one-form, given by,

ΘL = (FL)∗Θ =
∂L

∂v
dq.

• Since £XLΘL is closed, by the Poincaré lemma, we have a local
function L : TQ→ R such that,

£XLΘL = dL,

which is the intrinsic Euler–Lagrange equation.

• In terms of the FL-related vector field X ∈ X(T ∗Q), we have,

p =
∂L

∂v
, q̇ = v, ṗ =

∂L

∂q
.
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The Geometry of Symplectic Flows

� Lagrangian Flows and the κQ map

•We require that the following diagram commutes,

TT ∗Q

κQ

++

TTQTFLoo T ∗TQ

T ∗Q

X

OO

TQ

XL

OO

FL
oo

dL

66mmmmmmmmmmmmmmmmmmmmmmm

(q, p, q̇, ṗ)
++

(q, v, q̇, v̇)oo (q, v, ∂L/∂q, ∂L/∂v)

(q, p)

OO

(q, v)oo

OO 66mmmmmmmmmmmmmmmmmmmmm

• This gives rise to the map κQ,

κQ : (q, p, δq, δp) 7→ (q, δq, δp, p).
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The Geometry of Symplectic Maps

� Generating Functions

• The Lagrangian and the Hamiltonian induce a Lagrangian and
Hamiltonian vector field.

• In discrete time, the analogue would be the generating functions of
a symplectic map.

• In particular, a discrete Lagrangian is a Type I generating function,
and discrete Hamiltonians are Type II or III generating functions.
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The Geometry of Generating Functions

� Generating Functions of Type I and the κdQ map

• The flow F on T ∗Q is symplectic iff there exists S1 : Q×Q→ R,

(i
Q×Q
F )∗ΘT ∗Q×T ∗Q = dS1.

which gives
p0 = −D1S1, p1 = D2S1.

•We require that the following diagram commutes,

T ∗Q× T ∗Q
κdQ

// T ∗(Q×Q)

Q×Q
i
Q×Q
F

ccGGGGGGGGGGGG dS1

;;wwwwwwwwwww

((q0, p0), (q1, p1)) // (q0, q1, D1S1, D2S1)

(q0, q1)

ccGGGGGGGGGGG

;;wwwwwwwwwww

• This gives rise to a map κdQ : T ∗Q× T ∗Q→ T ∗(Q×Q)

κdQ : ((q0, p0), (q1, p1)) 7→ (q0, q1,−p0, p1).
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The Geometry of Generating Functions

� Generating Functions of Type II

• Consider H+, whose local coordinates are (q0, p1).

• Then the flow F on T ∗Q is symplectic if and only if there exists
S2 : H+→ R such that

(i
H+
F )∗Θ(2)

T ∗Q×T ∗Q = dS2,

which gives
p0 = D1S2, q1 = D2S2.
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The Geometry of Generating Functions

� Generating Functions of Type II and the Ω[d+ map

•We require that the following diagram commutes,

T ∗Q× T ∗Q
Ω[d+ // T ∗H+

H+

i
H+
F

__???????????????
dS2

??���������������

((q0, p0), (q1, p1)) // (q0, p1, D1S2, D2S2)

(q0, p1)

__??????????????

??��������������

• This gives rise to a map Ω[d+ : T ∗Q× T ∗Q→ T ∗H+

Ω[d+ : ((q0, p0), (q1, p1)) 7→ (q0, p1, p0, q1).
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(+)-Discrete Dirac Mechanics

� The Big Diagram

T ∗H+

πH+

""E
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE
E

π2
d+

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV T ∗Q× T ∗Q
Ω[d+oo

κdQ
//

τH+

||yy
yy

yy
yy

yy
yy

yy
yy

yy
yy

yy

πQ×πQ
""E

EE
EE

EE
EE

EE
EE

EE
EE

EE
EE

E

ρd+
(T∗Q)2

��

T ∗(Q×Q)

π1
d+

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

πQ×Q

||yyyyyyyyyyyyyyyyyyyyy

γd+
Q

rr

H+ (Q×Q)⊕H+
prd+

2

oo

prd+
1

//Q×Q

(q0, p1, p0, q1)

""E
EEEEEEEEEEEEEEEEEEEE

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
((q0, p0), (q1, p1))oo //

||yyyyyyyyyyyyyyyyyyyyy

""E
EEEEEEEEEEEEEEEEEEEE

��

(q0, q1,−p0, p1)

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

||yyyyyyyyyyyyyyyyyyyyy

rr

(q0, p1) (q0, q1)⊕ (q0, p1)oo // (q0, q1)
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(+)-Discrete Dirac Mechanics

� Discrete Dirac Structures and Discrete Constraints

• A discrete constraint distribution ∆d
Q ⊂ Q×Q induces a contin-

uous constraint distribution ∆Q ⊂ TQ.

• These two distributions yield a discrete Dirac structure,

Dd+
∆Q

(z) :=
{

((z, z1), αz+) ∈ ({z} × T ∗Q)× T ∗z+
H+

∣∣∣(
z, z1

)
∈ ∆d

T ∗Q, αz+− Ω[d+

(
(z, z1)

)
∈ ∆◦H+

}
,

where

∆d
T ∗Q :=(πQ × πQ)−1(∆d

Q) ⊂ T ∗Q× T ∗Q,

∆◦H+
:=
(

Ω[d+

)(
∆◦Q ×∆◦Q

)
⊂ T ∗H+.
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(+)-Discrete Dirac Mechanics

� Implicit Discrete Lagrangian Systems

• Let γd+
Q

:= Ω[d+ ◦ (κdQ)−1 : T ∗(Q×Q)→ T ∗H+.

• Given a discrete Lagrangian Ld : Q × Q → R, define D+Ld :=

γd+
Q ◦ dLd.

• An implicit discrete Lagrangian system is given by(
Xk
d ,D

+Ld(q
0
k, q

1
k)
)
∈ Dd+

∆Q
,

where Xk
d = ((q0

k, p
0
k), (q0

k+1, p
0
k+1)) ∈ T ∗Q× T ∗Q.

• This gives the implicit discrete Euler–Lagrange equations,

p0
k+1 = D2Ld(q

0
k, q

1
k) ∈ ∆◦Q(q1

k), p0
k+D1Ld(q

0
k, q

1
k) ∈ ∆◦Q(q0

k),

q1
k = q0

k+1, (q0
k, q

0
k+1) ∈ ∆d

Q.
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(+)-Discrete Dirac Mechanics

� Implicit Discrete Hamiltonian Systems

• Given a discrete Hamiltonian Hd+ : H+ → R, an implicit dis-

crete Hamiltonian system (Hd+,∆
d
Q, Xd) is,(

Xk
d , dHd+(q0

k, p
1
k)
)
∈ Dd+

∆Q
,

which gives the implicit discrete Hamilton’s equations,

p0
k −D1Hd+(q0

k, p
1
k) ∈ ∆◦Q(q0

k), q0
k+1 = D2Hd+(q0

k, p
1
k),

p1
k − p

0
k+1 ∈ ∆◦Q(q1

k), (q0
k, q

0
k+1) ∈ ∆d

Q,
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Extensions to Groupoids, Algebroids, and Field Theories
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Generalization to Lie Groupoids

� Discrete Dirac Mechanics on Lie Groupoids

• Provides a category which is closed under reduction, with a view
towards developing discrete reduction by stages.

• Given an element g of a groupoid Γ, and the set Sg of admissible
sequences ga, . . . , gb with values in Γ, such that,

ga · · · gb = g.

• Then, Hamilton’s principle on groupoids4, is given by

δL(g) = δ

b∑
j=a

L(gj) = 0.

4A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Comm. 7 (1996) 207–231.
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Generalization to Lie Groupoids

� Discrete Dirac Mechanics on Lie Groupoids

• The condition,
ga · · · gb = g,

encodes both the fixed endpoint condition, and the second-order
curve condition.

• The second-order curve condition can also be explicitly stated in
terms of the source and target maps,

α(gk+1) = β(gk).

• Alternatively, one can consider the groupoid analogue of the Tul-
czyjew’s triple on Lie algebroids, in order to construct a groupoid
analogue of a Dirac structure.
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Connections to Mechanics on Lie algebroids

� Tulczyjew’s triple on Lie algebroids

(Lτ∗E)∗

(τ τ
∗
)∗

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
D

Lτ∗E ≡ ρ∗(TE∗)
[E∗oo

AE //

τ τ
∗

||zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz

pr1

""D
DDDDDDDDDDDDDDDDDDDDD

(LτE)∗

(τ τ )∗

||zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
z

E∗ E

� Tulczyjew’s triple on tangent bundles

T ∗T ∗Q

πT∗Q

""D
DDDDDDDDDDDDDDDDDDDDD

TT ∗QΩ[oo
κQ

//

τT∗Q

||zzzzzzzzzzzzzzzzzzzzzz

TπQ

""D
DDDDDDDDDDDDDDDDDDDDD

T ∗TQ

πTQ

||zzzzzzzzzzzzzzzzzzzzzz

T ∗Q TQ
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Connections to Mechanics on Lie algebroids

� Dirac Mechanics on Lie algebroids

• Introduce the Lie algebroid analogue of the Pontryagin bundle,

E ⊕ E∗.

• Construct the Lie algebroid analogue of the Dirac structure by
using the two vector bundle isomorphisms,

AE : ρ∗(TE∗)→ (LτE)∗

[E∗ : Lτ
∗
E → (Lτ

∗
E)∗

• Generalizes Dirac mechanics to Lie algebroids, thereby unifying
Lagrangian and Hamiltonian mechanics on Lie algebroids.

• Interesting to consider the Lie groupoid analogue of the Tulczyjew’s
triple, viewed as a generalization of discrete Dirac mechanics.
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Connections to Multisymplectic Classical Field Theories

� Tulczyjew’s triple in classical field theories

• Bundle πXY : Y → X .

• Lagrangian density L : Z → Λn+1X , for first-order field theories
Z = J1Y .

•We have the following Tulczyjew’s triple,

Λn+1
2 Z∗

π
Z∗Λn+1

2 Z∗

""D
DDDDDDDDDDDDDDDDDDDDD J̃1Z∗
β̃

oo α̃ //

ρ̃

||zzzzzzzzzzzzzzzzzzzzzz

˜j1πY Z∗

""D
DDDDDDDDDDDDDDDDDDDDD

Λn+1
2 Z

π
ZΛn+1

2 Z

||zzzzzzzzzzzzzzzzzzzzzz

Z∗ Z

• Provides a means of developing multisymplectic Dirac mechanics
for classical field theories.
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Conclusion

� Discrete Dirac Structures

•We have constructed a discrete analogue of a Dirac structure by
considering the geometry of generating functions of symplectic maps.

• Unifies geometric integrators for degenerate, interconnected, and
nonholonomic Lagrangian and Hamiltonian systems.

• Provides a characterization of the discrete geometric structure as-
sociated with Hamilton–Pontryagin integrators.

� Discrete Hamilton–Pontryagin principle

• Provides a unified discrete variational principle that recovers both
the discrete Hamilton’s principle, and the discrete Hamilton’s phase
space principle.

• Is sufficiently general to characterize all near to identity Dirac maps.
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Conclusion

� Current Work and Future Directions

• Discrete Dirac structures are intimately related to the geometry of
Lagrangian submanifolds and the Hamilton–Jacobi equation.

• Derive the Dirac analogue of the Hamilton–Jacobi equation, with
nonholonomic Hamilton–Jacobi theory as a special case.

• Continuous and discrete Dirac mechanics on Lie algebroids and Lie
groupoids.

• Continuous and discrete multisymplectic Dirac mechanics.
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Poster Advertisements

� Discrete Hamilton–Jacobi Theory (Tomoki Ohsawa)

• Provides a discrete analogue of Hamilton–Jacobi theory in the con-
text of discrete Hamiltonian systems.

• Can be viewed as a composition theorem for discrete Hamiltonians.

� The Hamilton’s Principle in Phase Space (Jingjing Zhang)

• Provides a characterization of Hamiltonian variational integrators
that does not rely on going through the Lagrangian side.

• Potential applications to degenerate Hamiltonian systems.
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