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Overview

Talk Outline

I A brief description of the geometrically exact elastic rod
model

Il A review of Moser-Veselov integrators for the body and
spatial representations of the free rigid body

[II Derivation of an adaptive discrete Moser-Veselov (DMV)
algorithm

IV Application to the discrete geometrically exact elastic rod
model
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The Geometrically Exact Elastic Rod

The Geometrically Exact Elastic Rod [SKM88]
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The Geometrically Exact Elastic Rod

The Configuration Space

@ There exists a unique orthogonal transformation
At 1 [0,L] — SO(3) :di(S,t) =Ai(S)Ei(S,t),i:=1— 3,

from the inertial frame {E; };._1_.3 to the set of directors.
@ The configuration space is

C:={V:={¢,A}|[0,L] — R®x SO(3)}



The Geometrically Exact Elastic Rod

Notational overview

Material axial Convected angular
Velocity V(S,t) := AT(S,1)¢(S,t) Q(S,t) := AT(S,t)A(S, 1)
Strain r(S,t) :=AT(S,t)(¢'(S,t) — da(S,1)) Q(S,t) == AT(S,H)N(S,t)
Momentum m(S,t) := poAV(S, 1) M(S,t) :=1pQ(S, 1)
Dual of strain | n(S,t) := Col(S,t) N(S,T) := CoQ(S,t)




The Geometrically Exact Elastic Rod

The Geometrically Exact Elastic Rod Model

In the convected representation, the Lagrangian
L:SO(3)/TC — R takes the form

L((0.1), (v, Q) (1, Q) = 3 5 (m, V) + (M. Q)dS — § [5(n, 1) + (N, ©)dS

The equations of motion

m o=+0Qxn—Qxm axial momentum
M =M+QxM+TxN-QxM convected angular momentum
F =V +Qxvy-QxrT axial strain

QO =0+0xQ convected angular strain




MV integrators revisited

Preliminaries of Continuum Dynamics

@ The motion of a material point ¢ € B is a time dependent
curve g; € Diff(B) defining a trajectory of the material point
in the container C

Forward Map: X(t,0)=0gt-¢, (€B

@ The motion of a (fixed) spatial point x € C, is a time
dependent curve g(l € Diff(C) defining a trajectory of the
spatial point in the reference space

Inverse Map:  £(t)=g;'-x, x€C



MV integrators revisited

The Forward and Inverse Maps




MV integrators revisited

Spatial and convected Velocities

@ The spatial velocity is the time derivative of the motion
evaluated at a fixed spatial point and takes the right
invariant form

u(x,t) = grg; - x
@ The convected velocity is the time derivative of the motion

of a spatial point, evaluated at a fixed material coordinate
and takes the left invariant form

V(lt) = —g; g - ¢

@ Holm, Marsden and Ratiu [1986] show that the convected
and spatial representations of Hamiltonian dynamics
correspond to the body and spatial representations of free
rigid body dynamics.



MV integrators revisited

Discrete Motion of the Rigid Body [MR99]

@ The configuration of a body B may be identified with the
matrix SO(3) and the k € Z* parameterised sequence of
spatial points in R2 is given by

Xk = Nel, N¢ = /\(tk) € 50(3)

where Ay is the attitude of the body at time ty.

) coordinates are the components of the spatial
points relative to the fixed Eulerian frame (eq, e, €3)

@ Body coordinates are the components of the material
points relative to the frame attached to the body (¢, &5, €X)
as given by

&K =NMEj, 1:=1-3.



MV integrators revisited

Discrete Body and Spatial Discrete Velocities

@ Define the recursive relations
T
berr = Qb
and

Xk4+1 = Wk+1Xk-

@ Qg = /\I Ak 41 is referred to by Moser and Veselov
[MV91] as the discrete body angular 'velocity'.

Q wyi1 = /\k+1/\1 is the discrete spatial angular 'velocity’.
The two discrete velocities are related to each other by

.
Q11 = N wkp1 k-



MV integrators revisited

Discrete Action Principle for the Rigid Body

@ [MV91] consider a discrete action principle

Sd = Z ‘C(Akal\k-i-l)a
k

@ The discrete time Lagrangian £ : SO(3) x SO(3) — Ris a
smooth function defined as

LM, Mera) = Tr (Mo Ly),

@ |p is a positive definite, symmetric and constant matrix and



MV integrators revisited

Symmetry Reduction to the Body Representation

Definition
The (left) diagonal action of G on G x G is defined as
Vi :Gx(GxG)—GxG | V¥(f,(g,h)) =f-(g,h) = (fg, fh).

@ The discrete time Lagrangian £ is invariant under the (left)
action of V.

@ Reduce the Lagrangian on SO(3) x SO(3) by V to obtain
the reduced Lagrangian | : SO(3) — R given in body
variables by

1(Qu+1) = Tr(x+1lo), Qg1 = M Neqr

@ The principal (G x G, G, ) and natural projection
m: G x G — G x G/G furnish the description of discrete
symmetry reduction to the body representation.



MV integrators revisited

Constrained Lagrangian Dynamics in Vector Spaces

@ Marsden and Wendlandt (1997) embed SO(3) in the linear
space V of real 3 x 3 matrices, the symmetric part of which
is denoted V.

@ Define the reduced discrete Lagrangian | : V — R (in body
variables) which takes the form

1°(Qu41) = Tr(Qcyalo) = Tr (@k+1(Qk+1QI+1 - Id))

@ The matrix Lagrange multipliers ©y,1 € V* constrain the
family of curves extremising 6Sg = ), 01°(2x+1) to SO(3).



MV integrators revisited

Clebsch Potentials and Momentum Maps

@ (Cotter and Holm 2007) Clebsch potentials are added to I©
T = 18(Quya) + T (P.Ll(/\m - /\ka+1))

@ Extremising 6Sq = ), s1+1 gives the discrete symplectic
flow
Zkp1 = P4, (2k), Zk = [Ax, Pl

@ The right JR.1: T*G — g* for cotangent lifted
actionsof GonT*G is

J|(R+1(Zk) = Py ¢ A
where ¢ : V* x V — g* is defined by the pairing
<Pk <>/\ka C> = <Pka C/\k>



MV integrators revisited

Clebsch Potentials and Momentum Maps

@ Under the symplectic flow, the pre-image of the momentum
map is updated by

AP = QLA Pe_19.

-] JEH projects the skew-symmetric component of this
equation onto so(3)* to give the Moser-Veselov integrator

.
M1 = Adg Mk, Miya = 102y g — Qi yalo,

where the body angular momentum My ; € so(3)* is
defined as

Mi1 = 2skew (Vo ,1*QF. 1).



MV integrators revisited

The Body Representation in Continuous and Discrete Time

Property

Continuous

Discrete

Body attitude

Angular velocity
Angular momentum
Equations of motion
Right momentum map

At) € SO(N)
Q=ATA=-QT

M=1Q2-QTl
M = adsM
Jr=PoA

A € SO(N)
Qg1 = A Asa
My = 109} — Q«lo
Mi41 = Adg, M
JEH = Py o A




MV integrators revisited

Equivariant MV integrators for body and spatial representa tions of the
rigid body

Adr_,(m,1)

M = adiM — m=adm+ Vol I|=][wl]
Ad; (M, o)

AL N
122 5 (M1 — ) w (A — M) E L
Ad(*;\k)—l(mk7 Ik)
Mk+1 = AdskMk - Mgy1 = Ad:;— (mk + 2V|k||k < Ik)
+1
Adgi, 3 (Mi; o) k1 = wrpalwg

Body



MV integrators revisited

Homogeneous Elasticity: Ellipsoidal Motion

@ Consider the Lagrangian of the continuous time ellipsoidal
motion

1 . . 1 L
L= /B PO(Q - £,CoQ - )d"™ = ZTr (CoQIoQT ).

@ where Cy € V is the Cauchy-Green metric defining the
shape of the container, lo € V* : (lp)ab = [ p(0)2Pd" is
the shape matrix of the body.

@ The deformation gradient 9x'/9¢; = Q;(t) € GL*(n) is
spatially invariant.



MV integrators revisited

The Isotropic Pseudo-Rigid Body

@ As a special case, consider the continuous time
Lagrangian defined on TGL(3)* of the form

T ..
-5 (QQ"), QeGLE)

@ Polar decompose Q = RTDS where R, S € SO(3) and D
is a diagonal matrix with positive determinant.
@ Rewrite the Lagrangian in terms of the angular velocities
Q:=RRT and s = SST to give
Tr

| — 2( 0?D? — 2D2+29DsD+D2), Q=RRT, s=8sT
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MV integrators revisited

The discrete Isotropic Pseudo-Rigid Body

@ The discrete action principle for the isotropic pseudo-rigid
body

Sg=)_Tr (QLlﬁkH) - g (PlLrl(QkH - uk+1Qk))
k

—Tr <@5+1(Qk+191+1 - 'd)) —Tr <@E+1(sk+1sl+1 - 'd))

Qi1 = Riy1RY L skt = Sk4aSy and uyq := Q1 Qy
@ Variations in Qi and Py give the symplectic equations

P41 = ug4+1Px,
Qk+1 = uk+1Qx,



MV integrators revisited

The Discrete Lagrangian for a Mooney-Rivlin Pseudo-Rigid Body

@ Adding a Mooney-Rivlin potential W (D),

e = {( (1 + Sk41) — 6lg)DE

— ZQk+1Dk5k+1Dk — (Dk41 — Dk)?}

Tr
.y (ek+1(5k+l5k+1 lg ))

Tr
— = (ORa(Qus2 01 —10)) — hPW (D)

where

W (D) = aly(D2)+bly(DZ)+c|Dg|>~dLog(|Dy|), a,b,c,d > 0.



MV integrators revisited

Elastic Motion of a Mooney-Rivlin Pseudo-Rigid Body

@ The two momentum maps take the form
Micr1 == I (8k41) Q41 — 19" (skr1) = PR 41,
Nicr1 = J(Qur1)sg41 — Sk1d " (1) = PR Sia-
@ Momentum updates of the rotational components

Adg, M1 = My,
AdZ  Niyr = Ny

@ Additive update of the stretching component

Dk+1 = —4mp(— Q41 + 2lg — 5k+1)Dk
+ 75 (Q+1Dksk 41 + 5k+1Dk Q1) — Dk—1 + h?Vp, W (Dy).



MV integrators revisited

A Mooney-Rivlin Pseudo-Rigid Body: angular momentum and
vorticity
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MV integrators revisited

A Mooney-Rivlin Pseudo-Rigid Body: energy, angular momentum
and vorticity error
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The Eigenvalues of a Mooney-Rivlin Pseudo-Rigid Body
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MV integrators revisited

Uniqueness of Orthogonal Solutions

@ Solve for Q € SO(3)
M = 1Q" — QI
@ Quadratic in W = 1pQ7
W2 —WM — 13 =0, wwT =2
@ For any eigenvalue A of W
det(\?l — AM —12) =0,

@ or in matrix form det(A — Al) =0,

<[]

@ [MV91] showed that a unique solution W exists if the real
part of any root does not vanish.



MV integrators revisited

Reduction to an Algebraic Riccati Equation

Theorem (Cardoso and Leite, 2001)

Q is an orthogonal solution if and only if S = sym(IoQ7) is a
symmetric solution of the a.r.e.

S24+S(M/2)+(M/2)TS — (M?/4 +13) = 0.

Hamiltonian matrix

S is found by orthogonalizing the eigenspace of H (Schur form)



MV integrators revisited

Solution of the Algebraic Riccati Equation

© Find the eigenvectors v € V of H
HV = AV

© decompose V = QR

® o[ 3]

0 S = Q21Q;|Tzl
Q@ Q=(S+M/2),*



MV integrators revisited

The DMV algorithm [McLachlan and Zanna |

Algorithm

@ Set M) = MoAt
@ Fork . =0—-N -1
Q of = () +M{/2)l;*
Q M, = apmPey
° Oy = (SR +Mfi/2)l,"
@ My = M{i/At.

o QE is the unique orthogonal solution of
MP = 1020 — QI = M(t, ) At

o At < At



MV integrators revisited

Unique Solution Time-step Constraint

@ The characteristic polynomial of A
P()\) = det(\°l — AMAts —13) =0

@ Since P()\) = P(—)), set z = \? to give the cubic equation®
2%+ a,z° + a;z + a9 = 0.

@ When g2 + r? = 0 the real components of z are zero,

q= %al(AtS) - %a%(Ats),
r= g(ai(Ats)az(Ats) — 3ag) — 57a3(Ats)

@ Solve for At as a function of |[M(t)| and H(t)

Bay(Ats) = ARIMPZ = Tr(12), ag(Ats) = (1212 + 1212 + 1212 — 2HAL2) and ag = —det|12].



MV integrators revisited

Roots of the Characteristic Equation 1, =1, < I3
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Figure: Ip =1, I =1, I3 = 2, My(0) = 0.1, M»(0) = 0, M3(0) = 1.



MV integrators revisited

Roots of the Characteristic Equation 1, =13 > I,

Figure: Ip =2, I, =1, I3 = 2, My(0) = 0.1, M»(0) = 0, M3(0) = 1.



MV integrators revisited

Roots of the Characteristic Equation 1} <1, < I3
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Figure: Iy =1, I, =2, I3 = 2, My(0) = 0.1, M»(0) = 0, M3(0) = 1.
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An Adaptive DMV Algorithm

Algorithm

Fork .=0—-N -1

Q O = (Sk +My/2)ly*

© Determine At = f(||%uMk %], Hkr1)
© Set At = min(At, At?)

Q Of = (S + 2l

O My = QEMKQET




MV integrators revisited

Summary of Moser-Veselov Integrators

@ Discrete Clebsch potentials give momentum maps which
encode MV integrators for body and spatial
representations of rigid body motions

@ A free rigid body DMV algorithm [McLachlan and Zanna]
finds the uniqgue symmetric solution to a corresponding
algebraic Riccati equation

@ An adaptive variant of the DMV algorithm is applicable to
coupled rigid body motions



Discrete elastic rods

The Discrete Kirchhoff Kinetic Analogy

Kirchhoff rod

Frame 2 Frame 4

Frame 1

Frame 3 "
&

Heavy top




Discrete elastic rods

Analogy between the Static Elastic Rod and the Lagrange Top

Kirchhoff rod Lagrange top
Discrete angular strain at S, Q. Discrete body angular velocity at time t Qx
Stiffness matrix Co Inertia matrix lo
Rod tension Po Position of centre of mass Xo
Tangent vector at S, ta Orientation of gravity vector at time t, e




Discrete elastic rods

Preliminaries

Definition (Discrete Ribbon)

A discrete ribbon is a space curve {¢(S,)} parameterised by
arc-length S, € {aAS, a := 0 — N} with three smooth
orthonormal unit vectors {d;,d,,d3}(Ss).

@ The discrete angular strain QQH = /\l/\aH
@ po enforces the inextensibility constraint

P(Sn) — &(S1) = X0 t(Sa)-



Discrete elastic rods

Preliminaries

Definition (Discrete Elastic Rod)

A discrete elastic rod is an arc-length S, parameterised ribbon
of fixed length L extremizing the functional

Fa = Z IC a) Z <C07 a+1> - <p07toz>

N . A .
a=1 inextensibility constraint

elastic energy




Discrete elastic rods

The Discrete Elastic Rod

@ The Moser-Veselov integrator is

Npt1 = Adé-l— Nq + 2Vta|ta ota,

ta+1 - ﬁata.

@ The dual to the angular strain N is given by
Ng := Zskew ((VQQHIC)TQMO and
@ t, := t(S,) is the unit tangent vector to the curve at S,,.

@ The map (Ng,ts) — (Nay1,tar1) € g* x (R®), is Poisson
w.r.t. to the (+) Lie-Poisson brackets on s* = g*@R3.



Discrete elastic rods

The Dynamic Discrete Elastic Rod

@ The discrete Lagrangian takes the form

N
lc = ZT"(QE+1TIO) + Tr(ﬁlé+1TC0) - (po, t&)

a=1

kinetic energy elastic potential energy ~ extensibility constraint

@ The Moser-Veselov integrator is

tk+1 thk

o M: 2skew ((Vﬁgﬂl )TQk+1> and
N = Zskew (Ve 1e)TOK,,).



Discrete elastic rods

The Dynamic Discrete Elastic Rod

Property (Discrete compatibility equation)

The time evolution of the discrete angular strain can be
expressed interms of discrete angular velocities at consecutive
spatial points through the relation

Ak+1 _ ok+1Ak k+1
Qa—l—l - Qa—l—lQaJrlQa




Discrete elastic rods

The Geometrically Exact Elastic Rod [SKM88]

@ The discrete Lagrangian for an extensible and shearable
rod

N
o= D0 EOAIVK + T (10 H2T) — Tr(CHK,, ) — (T, cgr)
a=1

~~

kinetic energy potential energy

@ Two momentum equations in the convected representation
are

k

)

kT NS — N&4q + 2Vl © re

= 08Tl + 08T

MK+ — Adg*zkaTMé +Adg

@ The total spatial angular momentum and linear material
momentum are conserved.



Discrete elastic rods

The Geometrically Exact Elastic Rod

Axial material

Convected angular

Velocity
Strain
Momentum
Dual of strain

V= B0kt - k)

k= 2 (gl ! — 5 —h(da)§) | Ok,

mk = pgAVK
nk = Col'k

Qk+1 /\kTAk+1

— /\kTAk

Mk —| QkT le
N}; =C QgT Qgc




Numerical Experiments

Experiment 1: Initial Conditions

0.2

0.15

0.1

-0.05

-0.1

-0.15

Figure: at=0.01,N =50 and ;(to) = {0,0, 3gsin(2ZS)}, ag = 2 x 10~ 2 and A¥ = A = Iy, vk.



Numerical Experiments

Numerical Simulation: Shearing motion

t=1.9

#Colormap variable: |¢" — ds| is a measure of shear.
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Numerical Experiments

Numerical Simulation: Angular Momentum Distribution
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Figure: at=0.01,N = 50and ¢;(to) = {0,0, agsin(2= S;)}, ag = 2 x 10~ 2 and Ak = AK = Iy, Vk.
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Numerical Experiments

Numerical Simulation: Time constraint

2Colormap variable is tg.
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Numerical Experiments

Experiment 2: Energy Conservation
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Figure: at=0.1,N = 50and ¢(to) = 0.1{sin(Z ), 0, sin($S;)}



Numerical Experiments

Numerical Results: Linear Momentum Conservation
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Figure: At =0.1,N € {12, 25,50, 100} and &;(tp) = 0.1{sin(5 S;), 0,sin(5 S;)}
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Numerical Results: Angular Momentum Conservation
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Figure: at=0.1,N € {5,25,50} and ¢;(to) = 0.1{sin(£S;), 0, sin($S;)}



Numerical Experiments

Summary

@ Used a discrete Kirchhoff analogy to extend MV integrators
to elastic rod motions

@ Adaptive time stepping is the key to running high resolution
long-time simulations

@ The MV integrator remains robust under large shearing
and bending potential gradients across the geometrically
exact rod model without adding numerical dissipation

@ The MV integrator for the geometrically exact rod
preserves energy to O(At) and angular and linear
momentum to numerical round-off



Numerical Experiments

Future Work

@ Future work to apply a DMV algorithm to the
guaternionic formulation of the rod model

@ Extend the approach to geometrically exact thin shells and
plate models @

@ Apply MV integrators to study the dynamics of charged
molecular strandsP

2J.C. Simo, P.S. Krishnaprasad and J.E. Marsden [1988], The Hamiltonian
Structure of Nonlinear Elasticity: The convected Representation of Solids,
Rods, and Plates, Arch. Rat. Mech.

®D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu
[2009], Dynamics of charged molecular strands, arXiv.org:0901.2959



Numerical Experiments

Extra frames



Numerical Experiments

Material, Body and Spatial Coordinates

E;

1"
A space fixed frame
A body fixed frame




Numerical Experiments

The Principal G-Bundle [LMWO04]

G=80(3)

The principle G-bundle consists of a bundle space Q = G x G, ashape space S = G ~ G x G/G (not shown on
the Figure) and a projection  : Q — S which is isomorphic to the natural projection TQ/G = Q — G x G/G. At
time ty, this natural projection is defined by the diagonal action of /\I on (Ay, Ag4+1) and is illustrated by the two

curved arrows.



Numerical Experiments

Momentum Map

Definition (Momentum Map (MR99))

Let G act canonically on a Poisson manifold P. A momentum
map for this action is a map J : P — g* such that the map

Je P =3(P) 1 J(2) = J(2), O)

satisfies
Xy =Gpy VC.




Numerical Experiments

Symmetry Reduction to the Spatial Representation

@ Consider the Lagrangian defined on the augmented space,

Li, : SO(3)xSO(3)xV* = R Liy(A; Akt lo) = Tr (Ao 1)

Definition

The (right) e}ugmented diagonal action ofGonG x G x V*is
defined as Vs : (G x G x V*) x G —
G xGxV* | W((g,h,a),f)=(g,h,a) f = (gf,hf,f1afT).

@ Reduce L by ¥ to give
(W1, k) = Tr(werali)-

@ wy 1 Is the (right invariant) spatial angular "velocity" and Iy
is the inertia matrix in the spatial frame.



Numerical Experiments

Clebsch Potentials and Momentum Maps

@ The spatial representation of the Lagrangian with Clebsch
potentials is

. Tr
e == Tr (lkwkq1) + §(P|<T+1(/\k+1 — wk+1/k)

Clebsch constraint for A

Tr
+ 5 Okrallers = wipalkwi1)) —Tr (@k+1(wk+1wl+1 - 'd)) -

Clebsch constraint for Iy



Numerical Experiments

Clebsch Potentials and Momentum Maps

@ Extremising the discrete action principle gives the
recursion relations

Pry1 = Wk_llpka
Jkr1 = wka1 2V + Jk)wg g
@ The infinitesimally equivariant left momentum map of the

general form
Jei1 =Moo Py + ol

for cotangent lifted actions of ¢ € g on the augmented
cotangent bundle T*(G x V*).
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The Spatial Moser-Veselov Integrator

@ The spatial Moser-Veselov integrator

Ad:k+lmk+1 =Mk + ZV|k||k oy,

lk+1 = Py, (),

where ¢ : V x V* — s0(3)*.
@ Spatial angular momentum is conserved my 1 = my.

@ Equivalent to the discrete Euler-Poincaré equations with an
advected quantity (Bobenko and Suris, 1999).
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Semi-direct Product Lie-Poisson Structure

@ The map

(M, k) = (Miy1, k1) €97 x VT
is Poisson with respect to the Lie-Poisson bracket on
[s* = g" GV "]+
{F1,F2}+(m,I)
= i(m, [VmFl, VmF2]> + <|,va1 . V|F2 — Vsz . V|F1>.

@ det(l) and ||I||, are Casimirs of this Lie-Poisson bracket.
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The Spatial Representation in Continuous and Discrete Time

Property Continuous Discrete

Body attitude A(t) € SO(N) A € SO(N)

Angular velocity w=AA\T = —uT wip1 = M

Inertia Matrix I = AlpAT Ik = AloAL

Angular momentum m=lw-—w'l my = lewl — wilk

Equations of motion m=adim— VLol =0, Mgy1 = Ad;kka +2V,, I, o lsa,
I = [w]] k1 = Wk+l|kwi<r+1

Left momentum map J=PoA+Jol IH =Py oA+ Gy ol
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Numerical Results: 1, =1, > I3

. . . .
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Figure: lh =2, 1p =2, I3 =1,My(0) = 0.1, My(0) = 0, M3(0) = 1and At = 0.1.
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Numerical Results: 1, > 1, > I3
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Figure: Iy =3.5, I = 2.5, I3 = 2,M{(0) = —0.5, M5(0) = 0, M3(0) = 1and At = 0.1.
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Convective and Spatial Representations of Ellipsoidal Motion

@ In convective variables

1
le, (M) =1(T,Cy) = ETr(FIOFTCt),

where I := Q—lQ is (minus) the left Q invariant convective
velocity.

@ In spatial variables

() =17 1) = 3T (31T Co)

where v := QQ 1 is the right Q invariant spatial velocity.
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Convective and Spatial Representations of Ellipsoidal Motion

@ Convective;

Ad%leH =M +Cy_10Ve, e, s

* (1)
Ck = ¢r, (Ck-1),
@ Spatial:
Ad;‘kmkﬂ =mg + 2V|k71||k71|k—1’ (2)
Ik = ¢’yk(|k—l)a
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Momentum maps for the discrete Isotropic Pseudo-Rigid Body

@ The momentum map M1 : T*SO(3) — s0(3)* takes the
form

. T T T T T
Myy1 = 5k+1Qk+1 _Qk+15k+1 = Sk+1(Qk Pk — Pk Qk)sk+1=

@ The angular momentum my 1 = RLleHRkH is
conserved.

@ The momentum map Ny : T*SO(3) — so0(3)* takes the
form

. T T T T\oT.T
N1 := Q15611 5k+12 11 = 5k+ 1Rk (QkPyx —Pk Qk )Rk 5k 11-

The vorticity N1 = SLlNkHSkH is conserved.
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A Discrete Kelvin Circulation Theorem

Theorem (Discrete time Kelvin circulation)

The change in the exterior derivative of the circulation one-form
about a closed loop ¢(Xk1) is

Ard(Xks1 -dxg) =0 along Xgi1 = ugX.

Proof

Substituting the reconstruction formula Xy 1 = ug1Xk into the
differential two-form gives

d(uky1Xk - dXg) = (Qk+1Q|<_1)ijdX|j< A dxg

1
= E(QIL—le - Ql-(er+1)abd€a AdeP.
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A DMV Algorithm for the Pseudo-Rigid Body

@ The coupled MV integrator for the momentum components
takes the form
M1 = M; +J(22)Q] — Q13()7,
My = M5 + J(Q1)Q) — Q3()T,
@ Introduce a splitting

M1 = M; +J3(2)Q] — Q13(Q),
My = M5+ J(21)Q) — Q23(()T,
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MV integrators for the Cayley-Klein Parameterisation of Ri gid Body
Motion

@ Define the discrete Lagrangian I¥ : SU(2) x SU(2) — R
given by
=Ty (Q;L +1J(QKH)) .

where J(Qk+1) =lq — (1 — |i)Qk+1Tr2 (EiTQk+1>.
@ The tilde map " is given by

X—=X= Zajxj7
where % are the Pauli spin matrices which form the basis

of su(2).



Cayley-Klein Parameterisation and Quaternionic formulat
Body Motion

Numerical Experiments

ion of Rigid

< Back

Inertia matrix

Angular momentum
Equations of motion

Right mom. map

Ac=lg — IiTr (Qlﬁi) E

M1 = A,y
M1 = Adgll My

JEH = Py o A

- Qk+1Ai+1

Property SU(2) = h(Q) Q
Body attitude A € SU(2) gk €Q

Angular 'velocity’ Qi1 = AN Ay Qus1 = Gk * st
Moments of inertia ,j=1-3

Ax = [1,Av ()]

Av =4liQt); _
Mis1 = 3Aks * Q1 — 341 % A
Mg g1 = Qx * My Q

I =pogy
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