Moser-Veselov Integrators for a Geometrically Exact Rod Model

Matthew Dixon¹

¹Department of Computer Science, UC Davis.

Geometric Integrators for Continuum Dynamics, Ph.D. thesis, Department of Mathematics, Imperial College, 2007. Advisors: D.D. Holm and S. Reich

The 5th Annual Structured Integration Workshop, 8th of May '09, Caltech

Talk Outline

- A brief description of the geometrically exact elastic rod model
- II A review of Moser-Veselov integrators for the body and spatial representations of the free rigid body
- III Derivation of an adaptive discrete Moser-Veselov (DMV) algorithm
- IV Application to the discrete geometrically exact elastic rod model

Background

- Holm, D.D., Marsden, J.E. and Ratiu, T.S. [1986], The Hamiltonian Structure of Continuum Mechanics in the Material, Inverse Material, Spatial and convected Representations, Montreal university lectures notes.
- Simo, J.C., Krishnaprasad, P.S. and Marsden, J.E. [1988], *The Hamiltonian Structure of Nonlinear Elasticity: The convected Representation. of Solids, Rods, and Plates*, Arch. Rat. Mech.
- J. Moser and A.P. Veselov [1991], *Discrete Version of Some Classical Integrable Systems and Factorization of Matrix Polynomials*, Comm. Math. Phys.
- Lewis, D. and Simo J.C. [1994], Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlinear Sci.
- West, M. [2004], Variational Integrators, Ph.D. thesis, Caltech.
- Cotter, C.J. and Holm D.D. [2007], *Continuous and discrete Clebsch variational principles*, Found. Comp. Math.

The Geometrically Exact Elastic Rod [SKM88]

The Configuration Space

• There exists a unique orthogonal transformation

$$\Lambda_t: [0,L] \to \mathsf{SO}(3) \quad : d_i(\mathsf{S},t) = \Lambda_t(\mathsf{S})\mathsf{E}_i(\mathsf{S},t), \ i := 1 \to 3,$$

from the inertial frame $\{E_i\}_{i=1\rightarrow 3}$ to the set of directors.

• The configuration space is

$$\mathcal{C} := \{\Psi := \{\phi, \Lambda\} \mid [0, L] \to \mathbf{R}^3 \times \mathsf{SO}(3)\}$$

Notational overview

	Material axial	Convected angular
Velocity	$\mathcal{V}(\mathbf{S},t) := \Lambda^{\mathcal{T}}(\mathbf{S},t)\dot{\phi}(\mathbf{S},t)$	$\Omega(\mathbf{S},t) := \Lambda^{T}(\mathbf{S},t)\dot{\Lambda}(\mathbf{S},t)$
Strain	$\Gamma(\mathbf{S},t) := \Lambda^{T}(\mathbf{S},t)(\phi'(\mathbf{S},t) - d_{3}(\mathbf{S},t))$	$\hat{\Omega}(\mathbf{S},t) := \Lambda^{T}(\mathbf{S},t)\Lambda'(\mathbf{S},t)$
Momentum	$\mathfrak{m}(\mathbf{S},t) := \rho_0 A \mathcal{V}(\mathbf{S},t)$	$M(S,t) := I_0 \Omega(S,t)$
Dual of strain	$\mathfrak{n}(S,t) := C_0 \Gamma(S,t)$	$N(S,T) := C_0 \hat{\Omega}(S,t)$

The Geometrically Exact Elastic Rod Model

In the convected representation, the Lagrangian $L: SO(3)/TC \rightarrow \mathbf{R}$ takes the form

$$\mathsf{L}\left((\phi, \Lambda), (\mathcal{V}, \Omega); (\Gamma, \hat{\Omega})\right) = \frac{1}{2} \int_{0}^{L} \langle \mathfrak{m}, \mathcal{V} \rangle + \langle \boldsymbol{M}, \Omega \rangle d\boldsymbol{S} - \frac{1}{2} \int_{0}^{L} \langle \mathfrak{n}, \Gamma \rangle + \langle \boldsymbol{N}, \hat{\Omega} \rangle d\boldsymbol{S}$$

The equations of motion

$$\begin{split} \dot{\mathfrak{m}} &= \mathfrak{n}' + \hat{\Omega} \times \mathfrak{n} - \Omega \times \mathfrak{m} \\ \dot{M} &= M' + \hat{\Omega} \times M + \Gamma \times N - \Omega \times M \\ \dot{\Gamma} &= \mathcal{V}' + \hat{\Omega} \times \mathcal{V} - \Omega \times \Gamma \\ \dot{\hat{\Omega}} &= \Omega' + \hat{\Omega} \times \Omega \end{split}$$

axial momentum

convected angular momentum axial strain

convected angular strain

Preliminaries of Continuum Dynamics

 The *motion* of a material point ℓ ∈ B is a time dependent curve g_t ∈ Diff(B) defining a trajectory of the material point in the container C

Forward Map: $\mathbf{x}(t, \ell) = g_t \cdot \ell, \quad \ell \in \mathbb{B}$

 The motion of a (fixed) spatial point x ∈ C, is a time dependent curve g_t⁻¹ ∈ Diff(C) defining a trajectory of the spatial point in the reference space

Inverse Map:
$$\ell(t) = g_t^{-1} \cdot \mathbf{x}, \quad \mathbf{x} \in C$$

The Forward and Inverse Maps

Spatial and convected Velocities

• The *spatial velocity* is the time derivative of the motion evaluated at a fixed spatial point and takes the right invariant form

$$\mathbf{u}(\mathbf{x},t) = \dot{g}_t g_t^{-1} \cdot \mathbf{x}$$

• The *convected velocity* is the time derivative of the motion of a spatial point, evaluated at a fixed material coordinate and takes the left invariant form

$$V(\ell, t) = -g_t^{-1} \dot{g}_t \cdot \ell$$

 Holm, Marsden and Ratiu [1986] show that the convected and spatial representations of Hamiltonian dynamics correspond to the body and spatial representations of free rigid body dynamics.

Discrete Motion of the Rigid Body [MR99]

The configuration of a body B may be identified with the matrix SO(3) and the k ∈ Z⁺ parameterised sequence of spatial points in R³ is given by

$$\mathbf{x}_k = \Lambda_k \ell, \ \ \Lambda_k := \Lambda(t_k) \in \mathsf{SO}(3).$$

where Λ_k is the *attitude* of the body at time t_k .

- Spatial coordinates are the components of the spatial points relative to the fixed Eulerian frame (e₁, e₂, e₃)
- Body coordinates are the components of the material points relative to the frame attached to the body $(\xi_1^k, \xi_2^k, \xi_3^k)$ as given by

$$\xi_i^k = \Lambda_k \mathbf{E}_i, \ i := \mathbf{1} \to \mathbf{3}.$$

Discrete Body and Spatial Discrete Velocities

Define the recursive relations

$$\ell_{k+1} = \Omega_{k+1}^T \ell_k,$$

and

$$\mathbf{x}_{k+1} = \omega_{k+1} \mathbf{x}_k.$$

- $\Omega_{k+1} := \Lambda_k^T \Lambda_{k+1}$ is referred to by Moser and Veselov [MV91] as the discrete body angular 'velocity'.
- $\omega_{k+1} := \Lambda_{k+1} \Lambda_k^T$ is the discrete spatial angular 'velocity'. The two discrete velocities are related to each other by

$$\Omega_{k+1} = \Lambda_k^T \omega_{k+1} \Lambda_k.$$

Discrete Action Principle for the Rigid Body

[MV91] consider a discrete action principle

$$S_d = \sum_k \mathcal{L}(\Lambda_k, \Lambda_{k+1}),$$

• The discrete time Lagrangian $\mathcal{L}:SO(3)\times SO(3)\to \mathbb{R}$ is a smooth function defined as

$$\mathcal{L}(\Lambda_k,\Lambda_{k+1})=\mathit{Tr}(\Lambda_k I_0\Lambda_{k+1}^T),$$

• Io is a positive definite, symmetric and constant matrix and

Symmetry Reduction to the Body Representation

Definition

The (left) **diagonal action** of G on $G \times G$ is defined as $\Psi_f : G \times (G \times G) \rightarrow G \times G \mid \Psi(f, (g, h)) = f \cdot (g, h) = (fg, fh).$

- The discrete time Lagrangian *L* is invariant under the (left) action of Ψ.
- Reduce the Lagrangian on SO(3) × SO(3) by Ψ to obtain the reduced Lagrangian I : SO(3) → ℝ given in body variables by

$$\mathbf{I}(\Omega_{k+1}) = Tr(\Omega_{k+1}I_0), \qquad \Omega_{k+1} := \Lambda_k^T \Lambda_{k+1}.$$

 The principal ● G-Bundle (G × G, G, π) and natural projection π : G × G → G × G/G furnish the description of discrete symmetry reduction to the body representation. **Constrained Lagrangian Dynamics in Vector Spaces**

- Marsden and Wendlandt (1997) embed SO(3) in the linear space V of real 3 × 3 matrices, the symmetric part of which is denoted V.
- Define the reduced discrete Lagrangian *I* : V → ℝ (in body variables) which takes the form

$$I^{c}(\Omega_{k+1}) = Tr(\Omega_{k+1}I_{0}) - Tr\left(\Theta_{k+1}(\Omega_{k+1}\Omega_{k+1}^{T} - I_{d})\right)$$

The matrix Lagrange multipliers Θ_{k+1} ∈ V* constrain the family of curves extremising δS_d = ∑_k δI^c(Ω_{k+1}) to SO(3).

Clebsch Potentials and Momentum Maps

• (Cotter and Holm 2007) Clebsch potentials are added to I^c

$$\tilde{I}^{k+1} = I^{c}(\Omega_{k+1}) + Tr\left(P_{k+1}^{T}(\Lambda_{k+1} - \Lambda_{k}\Omega_{k+1})\right)$$

• Extremising $\delta S_d = \sum_k \delta \tilde{l}^{k+1}$ gives the discrete symplectic flow

$$\mathbf{z}_{k+1} = \Phi'_{\Omega_{k+1}}(\mathbf{z}_k), \ \mathbf{z}_k := [\Lambda_k, \ P_k]$$

The right
 momentum map J^R_{k+1} : T*G → g* for cotangent lifted actions of G on T*G is

$$J_{k+1}^R(z_k) = P_k \diamond \Lambda_k$$

where $\diamond: \mathcal{V}^* \times \mathcal{V} \to \mathfrak{g}^*$ is defined by the pairing

$$\langle \boldsymbol{P}_{\boldsymbol{k}} \diamond \boldsymbol{\Lambda}_{\boldsymbol{k}}, \zeta \rangle = \langle \boldsymbol{P}_{\boldsymbol{k}}, \zeta \boldsymbol{\Lambda}_{\boldsymbol{k}} \rangle.$$

Clebsch Potentials and Momentum Maps

 Under the symplectic flow, the pre-image of the momentum map is updated by

$$\Lambda_k^T \boldsymbol{P}_k = \Omega_k^T \Lambda_{k-1}^T \boldsymbol{P}_{k-1} \Omega_k.$$

J^R_{k+1} projects the skew-symmetric component of this equation onto so(3)* to give the Moser-Veselov integrator

$$M_{k+1} = Ad_{\Omega_k}^* M_k, \quad M_{k+1} = I_0 \Omega_{k+1}^T - \Omega_{k+1} I_0,$$

where the body angular momentum $M_{k+1} \in \mathfrak{so}(3)^*$ is defined as

$$M_{k+1} := 2skew(\nabla_{\Omega_{k+1}}I^k\Omega_{k+1}^T).$$

The Body Representation in Continuous and Discrete Time

Property	Continuous	Discrete	
Body attitude	$\Lambda(t)\in SO(N)$	$\Lambda_k \in SO(N)$	
Angular velocity	$\Omega = \Lambda^T \dot{\Lambda} = -\Omega^T$	$\Omega_{k+1} = \Lambda_k^T \Lambda_{k+1}$	
Angular momentum	$M = I_0 \Omega - \Omega^T I_0$	$M_k = I_0 \Omega_k^{T} - \Omega_k I_0$	
Equations of motion	$\dot{M} = a d^*_\Omega M$	$M_{k+1} = Ad_{\Omega_k}^* M_k$	
Right momentum map	$J_R = P \diamond \Lambda$	$J_R^{k+1} = P_k \diamond \Lambda_k$	

Equivariant MV integrators for body and spatial representations of the rigid body

$$\begin{split} \dot{M} &= ad_{\Omega}^{*}M & \stackrel{Ad_{\Lambda^{-1}}^{*}(m,l)}{\underset{\Lambda}{\overset{\leftarrow}{\longrightarrow}}} & \dot{m} = ad_{\omega}^{*}m + \nabla_{l}l_{l} \diamond l, \ \dot{l} = [\omega, I] \\ \downarrow \Omega &\approx \frac{\Lambda_{k}^{T}}{h}(\Lambda_{k+1} - \Lambda_{k}) & \omega \approx (\Lambda_{k+1} - \Lambda_{k})\frac{\Lambda_{k}^{T}}{h} \downarrow \\ M_{k+1} &= Ad_{\Omega_{k}}^{*}M_{k} & \stackrel{Ad_{(\Lambda_{k})^{-1}}^{*}(m_{k}, l_{k})}{\underset{\Lambda}{\overset{\Lambda}{\overset{\leftarrow}{\longrightarrow}}} & m_{k+1} = Ad_{\omega_{k+1}}^{*}(m_{k} + 2\nabla_{l_{k}}l_{l_{k}} \diamond l_{k}) \\ Ad_{(\Lambda_{k})}^{*}(M_{k}, l_{0}) & l_{k+1} = \omega_{k+1}l_{k}\omega_{k+1}^{T} \end{split}$$
Body

Homogeneous Elasticity: Ellipsoidal Motion

 Consider the Lagrangian of the continuous time ellipsoidal motion

$$L = \frac{1}{2} \int_{\mathcal{B}} \rho(\ell) \langle \dot{Q} \cdot \ell, C_0 \dot{Q} \cdot \ell \rangle d^n \ell = \frac{1}{2} \operatorname{Tr} \left(C_0 \dot{Q} I_0 \dot{Q}^T \right),$$

- where C₀ ∈ V is the Cauchy-Green metric defining the shape of the container, I₀ ∈ V* : (I₀)_{ab} = ∫_B ρ(ℓ)ℓ^aℓ^bdⁿℓ is the shape matrix of the body.
- The deformation gradient ∂xⁱ/∂ℓ_j = Q_{ij}(t) ∈ GL⁺(n) is spatially invariant.

The Isotropic Pseudo-Rigid Body

 As a special case, consider the continuous time Lagrangian defined on *TGL*(3)⁺ of the form

$$L = rac{Tr}{2}(\dot{Q}\dot{Q}^T), \quad Q \in GL(3)^+$$

- Polar decompose Q = R^TDS where R, S ∈ SO(3) and D is a diagonal matrix with positive determinant.
- Rewrite the Lagrangian in terms of the angular velocities $\Omega := RR^T$ and $\mathfrak{s} = SS^T$ to give

$$I = \frac{Tr}{2} \left(-\Omega^2 D^2 - \mathfrak{s}^2 D^2 + 2\Omega D\mathfrak{s} D + \dot{D}^2 \right), \quad \Omega = \dot{R} R^T, \quad \mathfrak{s} = \dot{S} S^T$$

The discrete Isotropic Pseudo-Rigid Body

 The discrete action principle for the isotropic pseudo-rigid body

$$S_{d} = \sum_{k} \operatorname{Tr} \left(\Omega_{k+1}^{T} \mathfrak{s}_{k+1} \right) - \frac{\operatorname{Tr}}{2} \left(P_{k+1}^{T} (Q_{k+1} - \mathfrak{u}_{k+1} Q_{k}) \right) - \operatorname{Tr} \left(\Theta_{k+1}^{R} (\Omega_{k+1} \Omega_{k+1}^{T} - I_{d}) \right) - \operatorname{Tr} \left(\Theta_{k+1}^{S} (\mathfrak{s}_{k+1} \mathfrak{s}_{k+1}^{T} - I_{d}) \right)$$

$$\Omega_{k+1} := R_{k+1}R_k^T, \mathfrak{s}_{k+1} := S_{k+1}S_k^T \text{ and } \mathfrak{u}_{k+1} := Q_{k+1}Q_k^T$$

Variations in Q_k and P_k give the symplectic equations

$$\begin{aligned} P_{k+1} &= \mathfrak{u}_{k+1} P_k, \\ Q_{k+1} &= \mathfrak{u}_{k+1} Q_k, \end{aligned}$$

The Discrete Lagrangian for a Mooney-Rivlin Pseudo-Rigid Body

• Adding a Mooney-Rivlin potential $W(D_k)$,

$$\begin{split} & J_{k}^{c} = \frac{Tr}{2} \{ (4(\Omega_{k+1} + \mathfrak{s}_{k+1}) - 6I_{d}) D_{k}^{2} \\ & - 2\Omega_{k+1} D_{k} \mathfrak{s}_{k+1} D_{k} - (D_{k+1} - D_{k})^{2} \} \\ & - \frac{Tr}{2} \left(\Theta_{k+1}^{S} (\mathfrak{s}_{k+1} \mathfrak{s}_{k+1}^{T} - I_{d}) \right) \\ & - \frac{Tr}{2} \left(\Theta_{k+1}^{R} (\Omega_{k+1} \Omega_{k+1}^{T} - I_{d}) \right) - h^{2} W(D_{k}) \end{split}$$

where

$$W(D_k) = a I_1(D_k^2) + b I_2(D_k^2) + c |D_k|^2 - dLog(|D_k|), \ a, b, c, d > 0.$$

Elastic Motion of a Mooney-Rivlin Pseudo-Rigid Body

The two momentum maps take the form

$$M_{k+1} := J(\mathfrak{s}_{k+1})\Omega_{k+1}^{T} - \Omega_{k+1}J^{T}(\mathfrak{s}_{k+1}) = P_{k+1}^{R}R_{k+1}^{T},$$

$$N_{k+1} := J(\Omega_{k+1})\mathfrak{s}_{k+1}^{T} - \mathfrak{s}_{k+1}J^{T}(\Omega_{k+1}) = P_{k+1}^{S}S_{k+1}^{T}.$$

Momentum updates of the rotational components

$$\mathcal{Ad}^*_{\Omega_{k+1}}\mathcal{M}_{k+1}=\mathcal{M}_k,\ \mathcal{Ad}^*_{\mathfrak{s}_{k+1}}\mathcal{N}_{k+1}=\mathcal{N}_k.$$

Additive update of the stretching component

$$D_{k+1} = -4\pi_D(-\Omega_{k+1} + 2I_d - \mathfrak{s}_{k+1})D_k + \pi_D(\Omega_{k+1}D_k\mathfrak{s}_{k+1} + \mathfrak{s}_{k+1}D_k\Omega_{k+1}) - D_{k-1} + h^2\nabla_{D_k}W(D_k).$$

A Mooney-Rivlin Pseudo-Rigid Body: angular momentum and vorticity

 $\Delta t = 0.05$, $(d_1 = 1, d_2 = 0.8, d_3 = 1/0.8)$ and the Mooney-Rivlin parameters are a = 0.1, b = 10, c = 10, d = 50.

A Mooney-Rivlin Pseudo-Rigid Body: energy, angular momentum and vorticity error

 $\Delta t = 0.05$, $(d_1 = 1, d_2 = 0.8, d_3 = 1/0.8)$ and the Mooney-Rivlin parameters are a = 0.1, b = 10, c = 10, d = 50.

The Eigenvalues of a Mooney-Rivlin Pseudo-Rigid Body

 $\Delta t = 0.05$, $(d_1 = 1, d_2 = 0.8, d_3 = 1/0.8)$ and the Mooney-Rivlin parameters are a = 0.1, b = 10, c = 10, d = 50.

Uniqueness of Orthogonal Solutions

• Solve for
$$\Omega \in SO(3)$$

$$M = I_0 \Omega^T - \Omega I_0$$

• Quadratic in
$$W = I_0 \Omega^T$$

$$W^2 - WM - I_0^2 = 0, \qquad WW^T = I_0^2$$

$$det(\lambda^2 I - \lambda M - I_0^2) = 0,$$

• or in matrix form $det(A - \lambda I) = 0$,

$$\mathsf{A} = \begin{bmatrix} \mathsf{0} & \mathsf{I} \\ \mathsf{I}_0^2 & \mathsf{M} \end{bmatrix}$$

• [MV91] showed that a unique solution *W* exists if the real part of any root does not vanish.

Reduction to an Algebraic Riccati Equation

Theorem (Cardoso and Leite, 2001)

 Ω is an orthogonal solution if and only if $S = sym(I_0 \Omega^T)$ is a symmetric solution of the a.r.e.

$$S^{2} + S(M/2) + (M/2)^{T}S - (M^{2}/4 + I_{0}^{2}) = 0.$$

Hamiltonian matrix

$$H = \begin{bmatrix} M/2 & I \\ M/2 + I_0^2 & M \end{bmatrix}$$

S is found by orthogonalizing the eigenspace of H (Schur form)

Solution of the Algebraic Riccati Equation

③ Find the eigenvectors
$$v \in V$$
 of \mathcal{H}

$$\mathcal{H}\mathbf{v} = \lambda\mathbf{v}$$

decompose V = QR
Q= $\begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix}$ S = Q₂₁Q₁₂⁻¹
Ω = (S + M/2)I₀⁻¹

The DMV algorithm [McLachlan and Zanna]

Algorithm

• Set
$$M_0^h = M_0 \Delta t$$

• For $k := 0 \to N - 1$
• $\Omega_k^h = (S_k^h + M_k^h/2)I_0^{-1}$
• $\Omega_N^h = (S_N^h + M_N^h/2)I_0^{-1}$
• $M_N = M_N^h/\Delta t.$

• Ω_k^h is the unique orthogonal solution of

$$M_k^h = I_0 \Omega_k^{h^T} - \Omega_k^h I_0 = M(t_k) \Delta t$$

•
$$\Delta t < \Delta t_k^s$$

Unique Solution Time-step Constraint

• The characteristic polynomial of A

$$P(\lambda) = det(\lambda^2 I - \lambda M \Delta t_{\rm s} - I_0^2) = 0$$

• Since $P(\lambda) = P(-\lambda)$, set $z = \lambda^2$ to give the cubic equation^a

$$z^3 + a_2 z^2 + a_1 z + a_0 = 0.$$

• When $q^3 + r^2 = 0$ the real components of *z* are zero,

$$q = \frac{\frac{1}{3}a_1(\Delta t_s) - \frac{1}{9}a_2^2(\Delta t_s)}{r = \frac{1}{6}(a_1(\Delta t_s)a_2(\Delta t_s) - 3a_0) - \frac{1}{27}a_2^3(\Delta t_s)}$$

• Solve for Δt_s as a function of $|\mathbf{M}(t)|$ and H(t)

 ${}^{a}a_{2}(\Delta t_{S})=\Delta t_{S}^{2}|\boldsymbol{M}|^{2}-\textit{Tr}(l_{0}^{2}),\;a_{1}(\Delta t_{S})=(l_{1}^{2}l_{2}^{2}+l_{2}^{2}l_{3}^{2}+l_{3}^{2}l_{1}^{2}-2\textit{H}\Delta t_{S}^{2})\;\text{and}\;a_{0}=-\textit{det}|l_{0}^{2}|.$

Roots of the Characteristic Equation $l_1 = l_2 < l_3$

Figure: $I_1 = 1$, $I_2 = 1$, $I_3 = 2$, $M_1(0) = 0.1$, $M_2(0) = 0$, $M_3(0) = 1$.

Roots of the Characteristic Equation $l_1 = l_3 > l_2$

Figure: $l_1 = 2$, $l_2 = 1$, $l_3 = 2$, $M_1(0) = 0.1$, $M_2(0) = 0$, $M_3(0) = 1$.

Roots of the Characteristic Equation $l_1 < l_2 < l_3$

Figure: $l_1 = 1$, $l_2 = 2$, $l_3 = 2$, $M_1(0) = 0.1$, $M_2(0) = 0$, $M_3(0) = 1$.

An Adaptive DMV Algorithm

Algorithm

For
$$k := 0 \rightarrow N - 1$$

 $\Omega_k = (S_k + M_k/2)I_0^{-1}$

Determine $\Delta t_k^s = f(||\Omega_k M_k \Omega_k^T||, H_{k+1})$

Set $\Delta t = min(\Delta t, \Delta t_k^s)$
 $\Omega_k^h = (S_k^h + \frac{M_k}{2\Delta t_k})I_0^{-1}$

 $M_{k+1} = \Omega_k^h M_k \Omega_k^{h^T}$
Summary of Moser-Veselov Integrators

- Discrete Clebsch potentials give momentum maps which encode MV integrators for body and spatial representations of rigid body motions
- A free rigid body DMV algorithm [McLachlan and Zanna] finds the unique symmetric solution to a corresponding algebraic Riccati equation
- An adaptive variant of the DMV algorithm is applicable to coupled rigid body motions

The Discrete Kirchhoff Kinetic Analogy

Kirchhoff rod

Analogy between the Static Elastic Rod and the Lagrange Top

Kirchhoff rod			Lagrange top		Ē
	Discrete angular strain at S_{α}	$\hat{\Omega}_{\alpha}$	Discrete body angular velocity at time t_k	Ω_k	Ē
	Stiffness matrix	C_0	Inertia matrix	I ₀	l
	Rod tension	p 0	Position of centre of mass	χ0	
	Tangent vector at S_{α}	\mathbf{t}_{α}	Orientation of gravity vector at time t_k	Γ _k	

Preliminaries

Definition (Discrete Ribbon)

A discrete ribbon is a space curve $\{\phi(S_{\alpha})\}$ parameterised by arc-length $S_{\alpha} \in \{\alpha \Delta S, \alpha := 0 \rightarrow N\}$ with three smooth orthonormal unit vectors $\{d_1, d_2, d_3\}(S_{\alpha})$.

- The discrete angular strain $\hat{\Omega}_{\alpha+1} := \Lambda_{\alpha}^{T} \Lambda_{\alpha+1}$
- \mathbf{p}_0 enforces the inextensibility constraint $\phi(S_N) \phi(S_1) = \sum_{\alpha} \mathbf{t}(S_{\alpha}).$

Preliminaries

Definition (Discrete Elastic Rod)

A discrete elastic rod is an arc-length S_{α} parameterised ribbon of fixed length L extremizing the functional

$$F_{d} = \sum_{\alpha=1}^{N} I_{c}(\hat{\Omega}_{\alpha}) = \underbrace{\sum_{\alpha=1^{N}} \langle C_{0}, \hat{\Omega}_{\alpha+1} \rangle}_{elastic \ energy} - \underbrace{\langle \mathbf{p}_{0}, \mathbf{t}_{\alpha} \rangle}_{inextensibility \ constraint}$$

The Discrete Elastic Rod

The Moser-Veselov integrator is

$$\begin{split} N_{\alpha+1} &= \mathcal{A} \mathcal{d}_{\hat{\Omega}_{\alpha}^{T}}^{*} N_{\alpha} + 2 \nabla_{\mathbf{t}_{\alpha}} \mathbf{h}_{\alpha} \diamond \mathbf{t}_{\alpha}, \\ \mathbf{t}_{\alpha+1} &= \hat{\Omega}_{\alpha} \mathbf{t}_{\alpha}. \end{split}$$

- The dual to the angular strain *N* is given by $N_{\alpha} := \frac{2}{h^2} skew\left((\nabla_{\hat{\Omega}_{\alpha+1}} I_c)^T \hat{\Omega}_{\alpha+1} \right)$ and
- t_α := t(S_α) is the unit tangent vector to the curve at S_α.
- The map $(N_{\alpha}, \mathbf{t}_{\alpha}) \mapsto (N_{\alpha+1}, \mathbf{t}_{\alpha+1}) \in \mathfrak{g}^* \times (\mathbb{R}^3)$, is Poisson w.r.t. to the (\pm) Lie-Poisson brackets on $\mathfrak{s}^* = \mathfrak{g}^* \otimes \mathbb{R}^3$.

The Dynamic Discrete Elastic Rod

The discrete Lagrangian takes the form

$$I_{c} = \sum_{\alpha=1}^{N} \underbrace{Tr(\Omega_{\alpha+1}^{k}{}^{T}I_{0})}_{\text{kinetic energy}} + \underbrace{Tr(\hat{\Omega}_{\alpha+1}^{k}{}^{T}C_{0})}_{\text{elastic potential energy}} - \underbrace{\langle \mathbf{p}_{0}, \mathbf{t}_{\alpha}^{k} \rangle}_{\text{extensibility constraint}}$$

The Moser-Veselov integrator is

$$\begin{split} M_{\alpha}^{k+1} &= A d_{\Omega_{\alpha}^{k}}^{*} M_{\alpha}^{k} + A d_{\widehat{\Omega}_{\alpha}^{k}}^{*} N_{\alpha}^{k} - N_{\alpha+1}^{k} + 2 \nabla_{\mathbf{t}_{\alpha}^{k}} \mathbf{I}_{\alpha}^{k} \diamond \mathbf{t}_{\alpha}^{k}, \\ \mathbf{t}_{\alpha}^{k+1} &= \Omega_{\alpha}^{k} \mathbf{t}_{\alpha}^{k}. \end{split}$$

•
$$M := \frac{2}{h^2} skew\left((\nabla_{\Omega_{\alpha}^{k+1}} I_c)^T \Omega_{\alpha}^{k+1} \right)$$
 and
 $N := \frac{2}{h^2} skew\left((\nabla_{\widehat{\Omega}_{\alpha+1}^k} I_c)^T \widehat{\Omega}_{\alpha+1}^k \right).$

The Dynamic Discrete Elastic Rod

Property (Discrete compatibility equation)

The time evolution of the discrete angular strain can be expressed interms of discrete angular velocities at consecutive spatial points through the relation

$$\hat{\Omega}_{\alpha+1}^{k+1} = \Omega_{\alpha+1}^{k+1} \hat{\Omega}_{\alpha+1}^{k} \Omega_{\alpha}^{k+1}$$

The Geometrically Exact Elastic Rod [SKM88]

• The discrete Lagrangian for an *extensible* and *shearable* rod

$$I_{c} = \sum_{\alpha=1}^{N} \underbrace{\frac{\rho_{0}}{2} A |\mathcal{V}_{\alpha}^{k}|^{2} + Tr(I_{0}\Omega_{\alpha}^{k+1\,T})}_{\text{kinetic energy}} - \underbrace{Tr(C_{0}^{\Lambda}\hat{\Omega}_{\alpha+1}^{k,T}) - \langle \Gamma_{\alpha}^{k}, C_{0}^{\phi}\Gamma_{\alpha}^{k} \rangle}_{\text{potential energy}}$$

 Two momentum equations in the convected representation are

$$\begin{split} \mathfrak{m}_{\alpha}^{k+1} &= \Omega_{\alpha}^{k\,\mathsf{T}}\mathfrak{m}_{\alpha}^{k} - \mathfrak{n}_{\alpha+1}^{k} + \hat{\Omega}_{\alpha}^{k\,\mathsf{T}}\mathfrak{n}_{\alpha}^{k}, \\ M_{\alpha}^{k+1} &= \mathcal{A} \mathcal{d}_{\Omega_{\alpha}^{k\,\mathsf{T}}}^{*}\mathcal{M}_{\alpha}^{k} + \mathcal{A} \mathcal{d}_{\hat{\Omega}_{\alpha}^{k\,\mathsf{T}}}^{*}\mathcal{N}_{\alpha}^{k} - \mathcal{N}_{\alpha+1}^{k} + 2\nabla_{\Gamma_{\alpha}^{k}}\mathcal{I}_{\Gamma_{\alpha}^{k}} \diamond \Gamma_{\alpha}^{k} \end{split}$$

• The total spatial angular momentum and linear material momentum are conserved.

The Geometrically Exact Elastic Rod

	Axial material	Convected angular
Velocity	$\mathcal{V}^{k}_{lpha} := rac{\Lambda^{k au}_{lpha}{}^{T}}{h_{-}}(\phi^{k+1}_{lpha} - \phi^{k}_{lpha})$	$\Omega^{k+1}_{\alpha} := \Lambda^{kT}_{\alpha} \Lambda^{k+1}_{\alpha}$
Strain	$\Gamma_{\alpha}^{k} := \frac{\Lambda_{\alpha}^{kT}}{h} (\phi_{\alpha+1}^{k} - \phi_{\alpha}^{k} - h(\mathbf{d}_{3})_{\alpha}^{k})$	$\hat{\Omega}_{\alpha+1}^{k} := \Lambda_{\alpha}^{kT} \Lambda_{\alpha+1}^{k}$
Momentum	$\mathfrak{m}^k_{lpha} := ho_0 \mathcal{AV}^k_{lpha}$	$M^k_{lpha} := I_0 \Omega^{kT}_{lpha} - \Omega^k_{lpha} I_0$
Dual of strain	$\mathfrak{n}^k_lpha:=oldsymbol{C}_0 {\sf \Gamma}^k_lpha$	$N^k_{lpha} := C_0 \hat{\Omega}^{kT}_{lpha} - \hat{\Omega}^k_{lpha} C_0$
	Diagram	

Experiment 1: Initial Conditions

Figure: $\Delta t = 0.01$, N = 50 and $\phi_i(t_0) = \{0, 0, a_0 \sin(\frac{2\pi}{L}S_i)\}$, $a_0 = 2\pi \times 10^{-2}$ and $\Lambda_1^k = \Lambda_N^k = I_d$, $\forall k$.

Numerical Simulation: Shearing motion

^aColormap variable: $|\phi' - d_3|$ is a measure of shear.

Numerical Simulation: Angular Momentum Distribution

Figure: $\Delta t = 0.01, N = 50 \text{ and } \phi_i(t_0) = \{0, 0, a_0 \sin(\frac{2\pi}{L}S_i)\}, a_0 = 2\pi \times 10^{-2} \text{ and } \Lambda_1^k = \Lambda_N^k = I_d, \forall k.$

Numerical Simulation: Time constraint

animate^a

^{*a*}Colormap variable is t_k^s .

Experiment 2: Energy Conservation

Figure: $\Delta t = 0.1, N = 50 \text{ and } \phi_i(t_0) = 0.1\{sin(\frac{\pi}{2}S_i), 0, sin(\frac{\pi}{2}S_i)\}$

Numerical Results: Linear Momentum Conservation

Figure: $\Delta t = 0.1, N \in \{12, 25, 50, 100\}$ and $\phi_i(t_0) = 0.1\{sin(\frac{\pi}{2}S_i), 0, sin(\frac{\pi}{2}S_i)\}$

Numerical Results: Angular Momentum Conservation

Figure: $\Delta t = 0.1, N \in \{5, 25, 50\}$ and $\phi_i(t_0) = 0.1\{sin(\frac{\pi}{2}S_i), 0, sin(\frac{\pi}{2}S_i)\}$

Summary

- Used a discrete Kirchhoff analogy to extend MV integrators to elastic rod motions
- Adaptive time stepping is the key to running high resolution long-time simulations
- The MV integrator remains robust under large shearing and bending potential gradients across the geometrically exact rod model without adding numerical dissipation
- The MV integrator for the geometrically exact rod preserves energy to O(Δt) and angular and linear momentum to numerical round-off

- Future work to apply a SU(2) DMV algorithm to the quaternionic formulation of the rod model
- Extend the approach to geometrically exact thin shells and plate models ^a
- Apply MV integrators to study the dynamics of charged molecular strands^b

^aJ.C. Simo, P.S. Krishnaprasad and J.E. Marsden [1988], *The Hamiltonian Structure of Nonlinear Elasticity: The convected Representation of Solids, Rods, and Plates*, Arch. Rat. Mech.

^bD. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu [2009], *Dynamics of charged molecular strands*, arXiv.org:0901.2959

Material, Body and Spatial Coordinates

Aside: The Principal G-Bundle[LMW04]

Back

The principle G-bundle consists of a bundle space $Q = G \times G$, a shape space $S = G \simeq G \times G/G$ (not shown on the Figure) and a projection $\pi : Q \to S$ which is isomorphic to the natural projection $\pi_{Q/G} = Q \to G \times G/G$. At time t_k , this natural projection is defined by the diagonal action of Λ_k^T on $(\Lambda_k, \Lambda_{k+1})$ and is illustrated by the two curved arrows.

Definition (Momentum Map (MR99))

Let G act canonically on a Poisson manifold P. A momentum map for this action is a map $J : P \to \mathfrak{g}^*$ such that the map

$$J_{\zeta}: \mathcal{P}
ightarrow \mathfrak{F}(\mathcal{P}) : J_{\zeta}(\mathbf{z}) = \langle J(\mathbf{z}), \zeta
angle$$

satisfies

$$X_{J_{\zeta}} = \zeta_P, \ \forall \zeta.$$

Symmetry Reduction to the Spatial Representation

Back

• Consider the Lagrangian defined on the *augmented* space,

$$L_{I_0}: \mathsf{SO}(3) \times \mathsf{SO}(3) \times \mathsf{V}^* \to \mathbb{R} \mid L_{I_0}(\Lambda_k, \Lambda_{k+1}, I_0) = \mathit{Tr}(\Lambda_k \mathit{I}_0 \Lambda_{k+1}^{\mathsf{T}})$$

Definition

The (right) **augmented diagonal action** of G on $G \times G \times V^*$ is defined as $\hat{\Psi}_f : (G \times G \times V^*) \times G \rightarrow G \times G \times V^* \mid \hat{\Psi}((g, h, a), f) = (g, h, a) \cdot f = (gf, hf, f^{-1}af^{-T}).$

• Reduce *L* by $\hat{\Psi}$ to give

$$I_{I_k}(\omega_{k+1},I_k)=Tr(\omega_{k+1}I_k).$$

• ω_{k+1} is the (right invariant) spatial angular "velocity" and I_k is the inertia matrix in the spatial frame.

Clebsch Potentials and Momentum Maps

 The spatial representation of the Lagrangian with Clebsch potentials is

$$\begin{split} \tilde{l}_{l_{k}} &:= \operatorname{Tr}\left(l_{k}\omega_{k+1}\right) + \underbrace{\frac{\operatorname{Tr}}{2}(P_{k+1}^{T}(\Lambda_{k+1} - \omega_{k+1}\Lambda_{k}))}_{\text{Clebsch constraint for }\Lambda_{k}} \\ &+ \underbrace{\frac{\operatorname{Tr}}{2}(J_{k+1}(I_{k+1} - \omega_{k+1}I_{k}\omega_{k+1}^{T}))}_{\text{Clebsch constraint for }I_{k}} - \operatorname{Tr}\left(\Theta_{k+1}(\omega_{k+1}\omega_{k+1}^{T} - I_{d})\right). \end{split}$$

Clebsch Potentials and Momentum Maps

 Extremising the discrete action principle gives the recursion relations

$$\begin{aligned} \boldsymbol{P}_{k+1} &= \boldsymbol{\omega}_{k+1}^{-T} \boldsymbol{P}_{k}, \\ \boldsymbol{J}_{k+1} &= \boldsymbol{\omega}_{k+1} (2 \nabla_{I_{k}} I_{I_{k}} + \boldsymbol{J}_{k}) \boldsymbol{\omega}_{k+1}^{T}. \end{aligned}$$

The infinitesimally equivariant *left* momentum map of the general form

$$J_{k+1}^L = \Lambda_k \diamond P_k + J_k \diamond I_k,$$

for cotangent lifted actions of $\zeta \in \mathfrak{g}$ on the augmented cotangent bundle $T^*(G \times V^*)$.

The Spatial Moser-Veselov Integrator

• The spatial Moser-Veselov integrator

$$\begin{aligned} \mathsf{Ad}^*_{\omega_{k+1}} m_{k+1} &= m_k + 2 \nabla_{I_k} I_{I_k} \diamond I_k, \\ I_{k+1} &= \phi_{\omega_{k+1}} (I_k), \end{aligned}$$

where $\diamond: V \times V^* \to \mathfrak{so}(3)^*$.

- Spatial angular momentum is conserved $m_{k+1} = m_k$.
- Equivalent to the discrete Euler-Poincaré equations with an advected quantity (Bobenko and Suris, 1999).

Semi-direct Product Lie-Poisson Structure

The map

$$(m_k, I_k) \mapsto (m_{k+1}, I_{k+1}) \in \mathfrak{g}^* \times V^*$$

is Poisson with respect to the Lie-Poisson bracket on $[\mathfrak{s}^*=\mathfrak{g}^*\textcircled{S}V^*]_\pm$

 $\{F_1, F_2\}_{\pm}(m, I)$ = $\pm \langle m, [\nabla_m F_1, \nabla_m F_2] \rangle \pm \langle I, \nabla_m F_1 \cdot \nabla_I F_2 - \nabla_m F_2 \cdot \nabla_I F_1 \rangle.$

• det(I) and $||I||_2$ are Casimirs of this Lie-Poisson bracket.

The Spatial Representation in Continuous and Discrete Time Alack

Property	Continuous	Discrete
Body attitude	$\Lambda(t)\in SO(N)$	$\Lambda_k \in SO(N)$
Angular velocity	$\omega = \dot{\Lambda}\Lambda^T = -\omega^T$	$\omega_{k+1} = \Lambda_{k+1} \Lambda_k^T$
Inertia Matrix	$I = \Lambda I_0 \Lambda^T$	$I_k = \Lambda_k I_0 \Lambda_k^T$
Angular momentum	$m = I\omega - \omega^T I$	$m_k = I_k \omega_k^T - \omega_k I_k$
Equations of motion	$\dot{m} = a d_{\omega}^* m - \nabla_I L \diamond I = 0,$	$m_{k+1} = Ad_{\omega_k^T}^* m_k + 2\nabla_{I_k} I_{I_k} \diamond I_{k+1},$
	$\dot{I} = [\omega, I]$	$I_{k+1} = \omega_{k+1} \hat{I}_k \omega_{k+1}^T$
Left momentum map	$J_L = P \diamond \Lambda + J \diamond I$	$J_L^{k+1} = P_k \diamond \Lambda_k + G_k \diamond I_k$

Numerical Results: $l_1 = l_2 > l_3$

Figure: $l_1 = 2$, $l_2 = 2$, $l_3 = 1$, $M_1(0) = 0.1$, $M_2(0) = 0$, $M_3(0) = 1$ and $\Delta t = 0.1$.

Back

Numerical Results: $l_1 > l_2 > l_3$

10⁻⁵ 10⁻¹⁰ E-E`/∕E` 10^{-1.} 10⁻²⁰ 2000 0 4000 6000 8000 10000 time steps 10⁻¹⁰ 10⁻¹² ||m-m₀||₂ Spatial DMV 10^{-1} Body DMV - Ode45 10⁻¹⁶ 0 2000 4000 6000 8000 10000 time steps

Figure: $l_1 = 3.5$, $l_2 = 2.5$, $l_3 = 2$, $M_1(0) = -0.5$, $M_2(0) = 0$, $M_3(0) = 1$ and $\Delta t = 0.1$.

CPU Time

Convective and Spatial Representations of Ellipsoidal Motion

In convective variables

$$I_{C_t}(\Gamma) = I(\Gamma, C_t) = \frac{1}{2} \operatorname{Tr}(\Gamma I_0 \Gamma^T C_t),$$

where $\Gamma := Q^{-1}\dot{Q}$ is (minus) the left Q invariant *convective velocity*.

In spatial variables

$$I_{I_t}(\gamma) = I(\Gamma, I_t) = \frac{1}{2} \operatorname{Tr}(\gamma I_t \gamma^T C_0),$$

where $\gamma := \dot{Q}Q^{-1}$ is the right Q invariant spatial velocity.

Convective and Spatial Representations of Ellipsoidal Motion

Convective:

$$Ad_{\Gamma_{k}^{-1}}^{*}M_{k+1} = M_{k} + C_{k-1} \diamond \nabla_{C_{k-1}} I_{C_{k-1}},$$

$$C_{k} = \phi_{\Gamma_{k}}^{*}(C_{k-1}),$$
 (1)

• Spatial:

$$Ad_{\gamma_{k}}^{*}m_{k+1} = m_{k} + 2\nabla_{I_{k-1}}I_{I_{k-1}},$$

$$I_{k} = \phi_{\gamma_{k}}(I_{k-1}),$$
(2)

Momentum maps for the discrete Isotropic Pseudo-Rigid Body

• The momentum map $M_{k+1}: T^*SO(3) \to \mathfrak{so}(3)^*$ takes the form

$$M_{k+1} := \mathfrak{s}_{k+1}\Omega_{k+1}^T - \Omega_{k+1}\mathfrak{s}_{k+1}^T = S_{k+1}(Q_k^T P_k - P_k^T Q_k)S_{k+1}^T,$$

- The angular momentum $m_{k+1} = R_{k+1}^T M_{k+1} R_{k+1}$ is conserved.
- The momentum map $N_{k+1} : T^*SO(3) \to \mathfrak{so}(3)^*$ takes the form

$$N_{k+1} := \Omega_{k+1}\mathfrak{s}_{k+1}^T - \mathfrak{s}_{k+1}\Omega_{k+1}^T = \mathfrak{s}_{k+1}R_k(Q_kP_k^T - P_kQ_k^T)R_k^T\mathfrak{s}_{k+1}^T.$$

The vorticity $n_{k+1} = S_{k+1}^T N_{k+1} S_{k+1}$ is conserved.

A Discrete Kelvin Circulation Theorem

Theorem (Discrete time Kelvin circulation)

The change in the exterior derivative of the circulation one-form about a closed loop $c(\mathbf{x}_{k+1})$ is

$$\Delta_t d(\mathbf{x}_{k+1} \cdot d\mathbf{x}_k) = 0$$
 along $\mathbf{x}_{k+1} = \mathfrak{u}_k \mathbf{x}_k$.

Proof

Substituting the reconstruction formula $\mathbf{x}_{k+1} = u_{k+1}\mathbf{x}_k$ into the differential two-form gives

$$egin{aligned} d(\mathfrak{u}_{k+1}\mathbf{x}_k\cdot d\mathbf{x}_k) &= (\mathcal{Q}_{k+1}\mathcal{Q}_k^{-1})_{ij}dx_k^j\wedge dx_k^i \ &= rac{1}{2}(\mathcal{Q}_{k+1}^T\mathcal{Q}_k - \mathcal{Q}_k^T\mathcal{Q}_{k+1})_{ab}d\ell^a\wedge d\ell^b. \end{aligned}$$
A DMV Algorithm for the Pseudo-Rigid Body

The coupled MV integrator for the momentum components takes the form

$$\begin{split} M_1 &= M_1' + J(\Omega_2)\Omega_1^T - \Omega_1 J(\Omega_2)^T, \\ M_2 &= M_2' + J(\Omega_1)\Omega_2^T - \Omega_2 J(\Omega_1)^T, \end{split}$$

Introduce a splitting

$$M_1 = M'_1 + J(\tilde{\Omega}_2)\Omega_1^T - \Omega_1 J(\tilde{\Omega}_2)^T,$$

$$M_2 = M'_2 + J(\tilde{\Omega}_1)\Omega_2^T - \Omega_2 J(\tilde{\Omega}_1)^T,$$

MV integrators for the Cayley-Klein Parameterisation of Rigid Body Motion

 Define the discrete Lagrangian I^k : SU(2) × SU(2) → ℝ given by

$$\mathbf{I}^{k} = Tr\left(\Omega_{k+1}^{\dagger}\mathbb{J}(\Omega_{k+1})\right).$$

Back

where
$$\mathbb{J}(\Omega_{k+1}) = I_d - (1 - I_i)\Omega_{k+1} \operatorname{Tr}^2\left(\tilde{E}_i^{\dagger}\Omega_{k+1}\right).$$

• The *tilde map* ~ is given by

$$\mathbf{x}\mapsto \tilde{\mathbf{x}}=\frac{1}{2\imath}\sigma_j x_j,$$

where $\frac{\sigma_j}{2i}$ are the Pauli spin matrices which form the basis of $\mathfrak{su}(2)$.

Cayley-Klein Parameterisation and Quaternionic formulation of Rigid Body Motion • Back

Property	SU(2) = h(Q)	Q	ſ
Body attitude	$\Lambda_k \in SU(2)$	$q_k \in Q$	ſ
Angular 'velocity'	$\Omega_{k+1} = \Lambda_k^{\dagger} \Lambda_{k+1}$	$\Omega_{k+1} = ar{q}_k * q_{k+1}$	Ĺ
Moments of inertia	$I_j, j := 1 \rightarrow 3$		Ĺ
Inertia matrix	$A_{k} = I_{d} - I_{i} \operatorname{Tr} \left(\Omega_{k}^{\dagger} \widetilde{E}_{i} \right) \widetilde{E}_{i}$	$A_k = [1, \mathbf{A}_v(t_k)]$	Ĺ
		$\mathbf{A}_{v} = \imath_{j} I_{j} \Omega(t_{k})_{j}$	Ĺ
Angular momentum	$M_{k+1} = A_{k+1}\Omega_{k+1}^{\dagger} - \Omega_{k+1}A_{k+1}^{\dagger}$	$M_{k+1} = \frac{1}{2}A_{k+1} * \bar{\Omega}_{k+1} - \frac{1}{2}\Omega_{k+1} * \bar{A}_{k+1}$	L
Equations of motion	$M_{k+1} = Ad_{\Omega^T}^*M_k$	$M_{k+1} = \bar{\Omega}_k * M_k * \bar{\Omega}_k$	L
Right mom. map	$J_R^{k+1} = P_k \diamond \stackrel{^{\kappa}}{\wedge}_k$	$J_R^{k+1} = p_k \diamond q_k$	