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* Analyze numerical methods for ergodic SDES that:

(i) ergodic to exact equilibrium distribution of SDE
on infinite time intervals; and,

(ii) strongly converge to solution of SDE on finite
time intervals.

* Pure sampling methods can accomplish (i), but do not
approximate dynamics

* Integrators can do (ii), but often are divergent on
infinite time intervals or ergodic w.r.t different
equilibrium distribution




Consider a particle diffusing in U(z) = 2*/4 with
inverse temperature (3

* Overdamped dynamics for this system
dY = —Y3dt + +/28-1dW, Y(0) =

e W (t)is one-dimensional Brownian motion

* Solution process ergodic with respect to

p(de) = Z~" exp(—pz* /4)da




Forward-Euler
Xk—|—1 Xk — th + /2 tk_|_1 W(tk)), XO = .

* transition density implies irreducibility

— x + ha?
an(z,y) = (4B~ h) "/ exp . 4{; 1; ‘ )

* however, chain is stochastically unstable

* drift is destabilizing in
By ={z: |1 — hz?| > 1}.

e whenever x € B}, forward euler drift moves
particle to higher energy, unlike continuous drift




* Metropolis-Hastings is a Monte-Carlo method
for sampling from a (known) probability distribution.

* Method generates a Markov chain from a given
proposal chain.

* Algorithm computes a proposal move and accepts

with probability designed to ensure Metropolized chain
samples right distribution.




Metropolized Forward-Euler

e given (Xk, h)
* compute proposal move

Xjp1 = X — hX3 + V287X (W (tk1) — W ()

1f Ck < ah(Xk?‘X,Z—i—l)

otherwise

* straightforward to classify as an ergodic chain




Position

Forward

“~Metropolized
Forward Euler







What effect do rejections have on dynamics!?

Will answer in more general setting

e overdamped dynamics (nonglobally lipschitz case)

dY = —VU(Y)dt + /28~ 1dW

* solution process preserves
m(z) = Z " exp(—pU(x))
* Unadjusted Langevin Algorithm (ULA)
Xpi1 =X — hVU(Xg) + V28~ (W (tgg1) — W(ts))

* discretization is stochastically unstable




Metropolis-Adjusted Langevin Algorithm (MALA)

e given: (X, h)
* compute a proposal move with ULA

Xip1 = Xk — hVU(X k) + V2671 (W (trs1) — W (tg))

* accept or rejection with probability

qn(y, )7 (y)
qn(z, y)m(z)

@h(may) =1A

it Ck < Oéh(Xk,XZ_H)

otherwise

* discretization is stochastically stable




Structural Assumptions.
* Uniformly coercive potential energy

U(x) > K|x|, VaxeR".

* Local Lipschitz property
VU(z) - VU(y)| < K(U(z) +U(y))|x —y|, ¥V yecR"

* one-sided Lipschitz drift
(—VU () +VU(y),z —y) < K|z —y|*, Vz,yecR"
* geometric ergodicity
L{U(x)"} <— 6,U(x)" + My, ¥ x € R".
* srowth conditions on gradient, Hessian, etc.
|D°U(x)|| vV ||D°U(z)|| vV |VU(x)| < K(1+U(z)), ¥VxecR"




Theorem. For all’T" > 0, there exists h. > 0 and
C(T) > Osuch that for all h < h. and t € [0,T]

(BLE= {| X 110 - Y(t)|2})1/2 < C(T)h3/*
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Metropolis-Adjusted Langevin Truncated Algorithm (MALTA)

* modify proposal move

* VU(Z))
Z = Z1.—h 2 —
b1 k IV ANU(Z0) -2 N (W (the1) — W(t))

* when |VU(Z})| < 1/h proposal uses ULA drift
» otherwise drift preserves direction of ULA drift,
but normalizes its amplitude

* can show MALTA is geometrically ergodic

* how is MALTA related to original diffusion?




Theorem. For every T' > 0 and Eo > 0, there exists an
h.(Eg) > 0 and C(T', Ey) > 0, such that for all h < h,

x:U(x) < Eyand t € |0,T
o 1/2 3 /4
(E={|Z1ny Y 0" }) T < C(T, Eo)h*/*.
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Does pathwise accuracy depend on reversibility or nondegeneracy of noise!?

* Inertial Langevin dynamics H € C°°(R*", R)
dY = JVH(Y)dt —yCVH(Y)dt + \/2y3-1CdW

0 I 0 0
J = —I 0f C = 0 I|°
o write: Y (1) = (Q(t), P(t))
* solution process preserves

pu(dg,dp) = Z~ e P @P)dqdp

* assume, for simplicity, separable Hamiltonian

1

H(q,p) = §pTM‘1p Ul(q),




Geometric Langevin Algorithm (GLA)

* Split Langevin into Hamilton’s equations:
dQ = M"'Pdt
dP = -VU(Q)dt

* and, Ornstein-Uhlenbeck equations:

dQ =0
dP = —yM 'Pdt + /23" 1vdW

* Apply variational integrator to approximate solution
of Hamilton’s equations and use the exact flow for
Ornstein-Uhlenbeck.




Variational Integrators

e Given (qy,Pg) and h

Py — _DlLd(q07 qdi, h)7
P1 = DZLd(qu q, h)
* Implicitly defines

Or (CIoapo) — (q17p1)7

* Discrete Lagrangian is self-adjoint if
Ld(q07 qdi, h) — Ld(q17 do; h)

* e.g., Stormer-Verlet discrete Lagrangian

La(qy,q1, ) : (g7 — QO)TM((h —q) — E(U(QO) +U(qy)).
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Ornstein-Uhlenbeck Equations

e Use exact flow

wtk—l-h,tk; :

. tr+h »
(q,p) — (q,e’yM "p + V%‘W/ e Mt th=s) gy ( )) -

7%

* Has the following transition density

1 1 1 T
_ ot - yM™'h ) -1

Xn=p8""(Id—exp(—2yM~'h)) M.
* transition density does not depend on initial or
terminal position




Strang-Type Splitting

Xit1:= (Qpi1, Pri1) = Vo thtrins2 0 0n 0V 1ns2, (Qp, Pr)
e Stormer-Verlet based GLA:

( Qk+1 Q) +hM e 7M" 2 p, ——M vU(Q,)
+h\/26 1 tk+h/2M 1 —7M Y(tr+h/2— AW (s),

Ppiy=e ‘1hP — LM T2 (GU(Qy) + VU Q)

+\/25 vft“h TIMT =) W ().

* For globally Lipschitz potential forces, it is first-
order accurate and geometrically ergodic.

e Otherwise, it is plagued with the same stochastic
instability as forward Euler.




GLA Probability Transition Density
* For any A € B(R*") transition kernel is given by
Qn((gg:po), A) = / on/2(Pos Po) * Ony2(P15P1) * 0, (q0.p2)(dq1, dPT)dPodpy
R27 x A

e Zero of Dirac-delta given by

PS — _DlLd(quqlvh)a
pT — DZLd(quqlah)'
* To make it explicit, perform change of variables.
q}l((qupO)v (q17p1)> —
| det(D12La(go: 41, 1))| - 0n2(Po, —D1Laldg, g1, 1)) - 0ny2(D2La(qo, 41, 1), P1)

* Formula works if variational integrator is implicit.




MAGLA

* compute proposal move

(QZ—Fl? PZ—|—1) — wtk—l—h,tk—kh/Q O eh O wtk—kh/Q,tk (Qk) Pk)

* accept with probability
_ 1A qn((41,P1), (40, —Po))7 (41, P1)

an((q9,Po)s (41,P1))

¢ in other words
X1 = (Qpg1, Prt1) =
{(@:H,P;;m it ¢ < an((Qp, Pr), (@1, Piyr))

an((90,Po), (@1, —P1))7 (4o, Po)

p(Q, Pr) otherwise

e stochastically stable, and straightforward to classify
as an ergodic chain




Momentum Flip

X1 = (Qpy1, Pry1) =

(Qit1 Prit) if (< an((Qr, Pr), (Qhiis Pri1))
p(Q, Pk) otherwise

* momentum flipped twice in the algorithm

|) if proposal rejected momentum is flipped (local accuracy lost)
2) acceptance probability involves momentum flip

* motivation: inertial Langevin dynamics is not
reversible, but composed with a momentum flip is
reversible




Acceptance probability of MAGLA

Lemma. Consider GLA based on a self-adjoint discrete
Lagrangian. Then acceptance probability of MAGLA satisfies

an((qo,Po)s (@1,P1)) = 1 Nexp (—=BAE(qy, q,))

where

1

AFE(qy,q,) = §D2Ld(%a‘hah)TM_1D2Ld(CI07‘I1ah) +U(q,)
1 _
_iDlLd(quqlah)TM 1D1Ld(q07q17h) o U(q())




Theorem. For all’T" > 0, there exists h. > 0 and
C(T) > Osuch that for all h < h. and t € [0,T]

(8,57 {|X s~y 0 "}) <0
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Proof Relies on Two Main Ingredients

(1) Local accuracy of Metropolized Integrator, e.g.,
i { X1 - Y (h)[*} =

2| X7 - Y (B)|" an(, X7)}
-—_—(—- -
Accepted Proposal Move

K & 2 X
+E{|e(x) = Y (R)]" (1 — an(x, X7))}
g —————
Rejected Proposal Move

(2) Bounds on moments of Metropolized integrator
uniform in time




Local accuracy of MALA

* first term bounded by

EIXG Y ()P enle XY < B2 { | X - Y (R)[*} < O(?)

Ve -

Accepted Proposal Move

* second term bounded by

E*{|p(z) - Y ()" (1 — an(z, X7))}

V a

Rejected Proposal Move

<E*{|p(x) = Y ()"} ’E*{(1 — an(e, X7))*}"/?
ﬁ/—/ﬁf—/
O(h) O(h3/2)




Local accuracy of Verlet based MAGLA

* first term bounded by accuracy of GLA

(X7 - v ()P} <om?)

E*{|X] - Y(h)|" an(z, X7)} < E®

-~

Accepted Proposal Move

* second term bounded by

E*{|p(z) - Y ()" (1 — an(z, X7))}

V a

Rejected Proposal Move

<E*{|p(z) - Y (h)|"}'/?

5{(1 - an(w, X1))*}

-

O(1)

O(h3)
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Outlook and Generalizations

Higher-Order Discretizations of Overdamped and Inertial Langevin
* Milstein and Tretyakov [2004]. Stochastic Numerics for Mathematical Physics.
Springer.

Adaptive integrators
e Lamba, Mattingly, and Stuart [2007]. An Adaptive Euler-Maruyama Scheme for
SDEs: Convergence and Stability. IMA |. of Num. Anal.,, 27,479-506.

Multistep integrators

* Lew, Marsden,West, and Ortiz [2003]. Asynchronous Variational Integrators.
Arch. Rat. Mech. Anal., 167, 85-145.

Inertial Langevin with Constraints
* Vanden-Eijnden and Ciccotti [2006]. Second-Order Integrators for Langevin
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Nose-Hoover-Langevin
e Leimkuhler and Reich [2009]. A Metropolis-Ajusted Nose-Hoover
Thermostat. To appear in M2AN.

Energy-Stepping Integrators with Terraced Potential (Ortiz et al.)



