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Abstract

Freidlin-Wentzell theory tells the probability of a given trajectory
in a stochastic dynamical system. The most probable transition
path between arbitrary configurations is obtained by minimizing
rate functional under constraints. An analytical solver, as well as
a semi-analytical general solver based on a newly proposed dis-
crete Freidlin-Wentzell theory, are presented. Langevin system in
which noise is degenerate is specifically investigated.

1. Freidlin-Wentzell Theory

FREIDLIN-WENTZELL THEORY is a Large Deviation Theory on
path space [1] briefly reviewed as following:

Given a stochastic dynamical system

dXε(t) = b(Xε)dt + ε1/2σ(Xε)dW (t), (1)

there is a rate functional over Cn[0, T ] defined as follows:

I(φ) =

∫ T

0
J(φ(t), φ̇(t))dt, (2)

where φ(0) = x, and

J(x,y) =
1

2
(y − b(x))TA−1(x)(y − b(x)), (3)

assuming diffusion matrix A = σσT is uniformly positive definite.
The rate functional describes the asymptotic behavior of large

deviation, in the sense that, given Xε(t) being the solution propa-
gated from Xε(0) = x,

P ( sup
0≤t≤T

|Xε(t)− φ(t)| < δ) ∼ exp(−ε−1I(φ)), ε→ 0 (4)

for any small δ > 0.
Therefore, one seeks for a φ(t) in certain path space which mini-

mizes the rate functional as the most probable path. If one is inter-
ested in transition between configurations, the path space could
be {φ ∈ C[0, T ]|φ(0) = A, φ(T ) = B} or

⋃
T>0{φ ∈ C[0, T ]|φ(0) =

A, φ(T ) = B}.

2. Langevin System

Approaches based F-W Theory such as String Method [2] solve
for most probable transition path in system where the noise is
non-degenerate. On the other hand, systems such as Langevin
incorporate the effect of noise in such a way that noise is degen-
erate:

dq = pdt (5)

mdp = −∇V (q)dt− cpdt + ε1/2σdW (6)

The temperature T of this system satisfies 2c
εσ2 = 1

kT . Therefore,
F-W Theory describes only the asymptotics at T → 0. However,
the discrete Freidlin-Wentzell we proposed applies for any tem-
perature.

The corresponding integrand of rate functional I could be shown
by Large Deviation Theory as

J(q,p) =
1

2
(mṗ + cp +∇V (q))2, if p = q̇

=∞, otherwise (7)

Therefore we study the following constrained variational problem
for the most probable transition:

δI = 0

I =

∫ T

0

1

2
(mṗ + cp +∇V (q))2dt

p = q̇

q(0) = A,

q(T ) = B (8)

In molecular dynamics, for example, one is actually more inter-
ested in an alternative version which takes the Gibbs-Boltzmann
distribution of kinetic energy into account, because otherwise the
solution will always be the Newtonian path whose initial velocity
is big enough to overcome all energy barrier on its way, and it
will render I() zero. Instead of ”minimizing” I, one ”minimizes”
A = I

2ckT +
p(0)Tmp(0)

2kT under same constraints. Notice that the
probability will change as temperature changes but the optimal
path won’t.

3. Analytical Solver

The approach is: fix p(0), solve the variational problem without
end point constraint by Hamilton-Pontryagin principle [3], optimize
among solutions which satisfy end point constraint, optimize w.r.t.
p(0).

Hamilton-Pontryagin introduces a Lagrange multiplier λ on the
cotangent space

0 = δ

∫ T

0

1

2
‖ mṗ +∇V (q) + cp ‖22 +λ(p− q̇)dt (9)

It leads to the following ODE system which describes solutions to
the variational problem:

−(mp̈ + cṗ +∇∇V (q)q̇)m + (mṗ + cp +∇V (q))c + λ = 0

(mṗ + cp +∇V (q))∇∇V (q) + λ̇ = 0

p = q̇ (10)

One set of sufficient initial conditions is q(0), q̇(0), q̈(0),
...
q (0), and

q(t) will be a function of them. The first two are known, and the
last two need to satisfy q(T ) = B. One optimizes I under this con-
straint to get the most-probable path given q̇(0), then minimizes A
as a function of q̇(0).

When the potential is quadratic, analytical solution to the ODE
system exists, and the constrained ”minimization” could be solved
analytically.

4. Results and Discussions

It is of interest to understand how a particle under random pertur-
bations goes over a potential barrier. The analytical solver shows
the optimal way is not solely by initial momentum nor solely noise
random perturbation, but instead the joint effort, which is inde-
pendent on temperature, but dependent on inertia, damping co-
efficient and transition time.

(a) m=1 c=1 T=2 (b) m=1 c=1 T=2 q(T)=2

(c) m=0.2 c=1 T=2 (d) m=10 c=1 T=2

(e) m=1 c=5 T=2 (f) m=1 c=1 T=5

Figure 1: Optimal transition paths through 1D quadratic potential
barrier. q(0)=-1, q(T)=1 unless specified.

Many interesting phenomena could be observed from the solu-
tions. For example, larger c leads to more initial random kick,
more global noise contribution, less initial velocity and less initial
kinetic energy; larger m leads to slightly less initial random kick,
slightly more global noise contribution, slightly less initial veloctiy
and more initial kinetic energy, while smaller m makes the veloc-
ity fluctuates more; larger T leads to less initial random kick, less
global noise contribution, less initial velocity and less initial kinetic
energy; q(t) is symmetric if q(0) and q(T) are symmetric, and noise
still pushes the particle forward after getting over the sumit; etc.

Figure 2: Optimal transition paths through 1D quadratic potential
well. q(0)=-1, q(T)=1.

Interestingly, noise still contributes to passing potential well opti-
mally as shown above.

5. Discrete Freidlin-Wentzell and Semi-Analytical Solver

In most situations, the ODE system couldn’t be solved analyt-
ically, and nor could the constrained optimization problem. To
solve it numerically one has to be careful because discretization
scheme matters, and one still wants to use the ”least” action prin-
ciple. How to discretize the action functional or the ODE system
is sophisticated.
We discretize the action intrinsically. The Langevin SDE could be

discretized by Stochastic Variational Integrator [4], and the prob-
ability for any realization of the obtained Stochastic Difference
Equation could hence be written as a discrete (finite dimensional)
action/rate function. The problem turns into minimizing

DOF∑
j=1

[(he
ch
mj
dU

dqj
(q0)− (pj)0 + e

ch
mj
mj

h
((qj)1 − (qj)0))

2+

N−1∑
k=1

(he
ch
mj
dU

dqj
(qk)−

mj

h
((qj)k − (qj)k−1) + e

ch
mj
mj

h
((qj)k+1 − (qj)k))

2]

(11)

as a function of vector q1, ..., qN−1 with p0, q0, qN fixed.
One could use least action principle to turn it into a nonlinear

solving problem. The problem is still hard to solve after this due
to the high nonlinearity. Shooting method and other ways are un-
der investigation to attack this problem.

Figure 3: Toy example: Optimal transition on 2D 4th-order po-
tential landscape (from left to right).
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