Titan Balloon Wind Navigation

Sarah Sherman California Institute of Technology August 21, 2006

Returning to Titan

New discoveries of surface features
To further explore, need:

longer observation time and range than Huygens probe
closer proximity than Cassini to see through haze

Current Status

Current Status

<text><text><text><text></text></text></text></text>					
JUNE 25 - 26, 2006	Atmospheric Science - Constant Altitude	Atmosphe ric Science - Variable Altitude	Surface Imaging Capability	Surface Sample Acquisitio n	Site Selection Capability
Self-propelled airship	Yes	Yes	Yes	Yes	Yes
Drifting light gas balloon	Yes	No	Yes	No	No
Drifting RTG Montgolfiere balloon	Yes	Yes	Yes	Maybe	No

Montolfière Balloon

- Satisfies long range, long duration and low altitude
- Variable altitude between 1 km to 20 km
- Independent enough for autonomy

Three Navigation Goals

 Wind assisted site-selection -stable longitude -stable altitude -recovery Ground collision avoidance Optimization of flight path

Three Navigation Goals

 Wind assisted site-selection -stable longitude -stable altitude -recovery Ground collision avoidance Optimization of flight path

Two Wind Models

	LMD	Tokano	
Accuracy Range	> 40 km	< 40 km	
Predominant Winds	Westerly	Westerly	
Low Altitude Retrograde Wind	Sparse	Prevalent	

Tokano Model

- Movie of latitudinal contour plot in Huygens season
- Wind speeds shown at different longitudes (x) and time (t)
- Prograde / Retrograde

Utilization of Wind

"Free" prograde ride at 10 km
Descend by decreasing buoyancy
Backtrack in retrograde wind to selected sites

Utilization of Wind: Demonstration

Prograde
Descent
Retrograde
Ascent

Utilization of Wind: Demonstration

Prograde Altitude

- Icing above 20 km
 Maximum above 20 km
- Maximum prograde wind between 5 and 15 km
- Optimum prograde altitude is 10 km

Descent

Realistic altitude control from 10 km to 1.5 km

• Max. vertical supplied velocity is 0.5 m/s

 PID controller - combination of proportional, integral and derivative controls

• Halts descent at 1.5 km

Descent

Before PID Controller

After PID Controller

Retrograde Altitude

Gradual topography, less than I km
Retrograde wind reaches 2 km
Optimum retrograde altitude is 1.5 km

Three Navigation Goals

 Wind assisted site-selection -stable longitude -stable altitude -recovery Ground collision avoidance Optimization of flight path

Ground Collision Avoidance

Downward gusts into ground
Sense altitude AGL with radar
Compute vertical change in velocity
Implement 0.5 m/s escape climb

Ground Collision Avoidance

- Sustained flight at
 I.5 km
- Error +/- 0.3 km
- No lower than 1.2 km

Three Navigation Goals

 Wind assisted site-selection -stable longitude -stable altitude -recovery Ground collision avoidance Optimization of flight path

Optimization

SQP method - only in x, z coordinate plane
Know longitude, altitude of target
Begin with rough path

Optimization

Minimize zc^Tzc, or vertical control
Wind data given
Results in vector zc, most efficient trajectory
Only theoretical

Summary

Started with Titan wind data model
Vertical control enables site selection
Safeguards avoid ground collision
Optimized path to selected site

Further Research Ideas

Latitudinal control

 Find launch time to optimize retrograde wind

Complete autonomy controls

Acknowledgements

Prof. Jerrold Marsden, California Institute of Technology, Mentor
Dr. Virendra Sarohia, NASA/JPL, Sponsor
Philip Du Toit, CDS, California Institute of Technology
Claire Newman, GPS, California Institute of Technology
Dr. Tetsuya Tokano, Institute of Geophysics and Meteorology, University of Cologne

