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Abstract

This study applies variational integrators to the three-body problem, a classic problem from celestial
mechanics that asks for the motion of three masses in space under mutual gravitational interaction. The
use of variational integrators, a class of numerical methods used to simulate mechanical systems, is of
value because they are known to exhibit accurate behavior with respect to the preservation of physical
constants of motion when applied to systems with conserved quantities like energy and momentum. This
contrasts with the performance of other numerical differential equation-solving algorithms like the Runge-
Kutta method, which typically experience artificial dissipation of conserved quantities over successive
iterations. A comparison of the performance of variational integrators versus the fourth-order Runge-
Kutta method applied to the planar circular restricted three-body problem composes the core of this
study. In particular, the algorithms are evaluated based on their ability to accurately model individual
trajectories, conserve integrals of motion, predict statistical quantities like transport rates, and preserve
the structure of Poincaré section plots. In addition to the contributing to the development of numerical
methodology, these investigations have applications to solar system simulations and to the design of
spacecraft mission trajectories.

1 Introduction

Predicting the motion of a set of bodies in space under mutual gravitational interaction is a classic problem in
the study of celestial mechanics. Consider n masses mi whose motions ri(t) are determined by gravitational
forces. From Newton’s laws, the differential equations of motion for these bodies are

mir̈i(t) =
∑
j 6=i

Gmimj

r2
ij

r̂ij , (1)

where G is the universal gravitational constant and rij = rj − ri. The n-body problem entails finding each
body’s position as a function of time given the initial positions and initial velocities of the n masses. For the
case of two masses, a general solution can be found analytically1. For n ≥ 3, the problem permits no general
solution, even in the restricted case of a test mass moving in the orbital plane of two circularly orbiting
primaries (the planar circular restricted three-body problem [PCR3BP])2. It comes as no surprise then that
numerical methods play a vital role in studying celestial mechanical problems. Likewise, the PCR3BP is an
ideal choice for a test bed upon which a comparison of numerical methods can be made, owing to both its
simple formulation and its interesting dynamics.

1.1 Numerical methods

This study focuses on the application of variational integrators to the PCR3BP. The use of variational
integrators, a class of numerical methods used to simulate mechanical systems, is of value because they are
known to exhibit accurate behavior with respect to the preservation of physical constants of motion when
applied to systems with conserved quantities like energy and momentum3. They arise from approaching
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mechanical systems from a variational mechanics standpoint. Particularly, a fundamental principle from
classical mechanics states that a mechanical system will evolve such that the so-called action integral∫ T

0

L(q(t), q̇(t)) dt (2)

is extremized subject to fixed endpoints q(0) and q(T ), where q is a generalized coordinate vector and
L(q(t), q̇(t)) is the system’s kinetic energy minus potential energy at time t. Calculus of variations then
shows that this holds only if q(t) satisfies the Euler-Lagrange equations:

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (3)

As an example, consider a particle moving in R3 in the presence of a potential V (q), where q is the usual
cartesian position vector (x, y, z). Then L = 1

2 q̇T Mq̇ − V (q) and equation (3) reduces to Newton’s second
law, force equals mass times acceleration:

Mq̈ = −∇V (q). (4)

To derive a variational integrator, one discretizes the action integral (2) and uses a discrete version of the
Euler-Lagrange equations (3) to define a map (qk−1, qk) 7→ (qk, qk+1), where qk ≈ q(kh) and h is a time step.
This map is then applied recursively to a set of initial conditions (q0, q1) to produce a discrete curve of points
{qk}T/h

k=0 that approximates q(t) over the time interval [0, T ]. Different variational integrators, possibly with
differing orders of accuracy, can be constructed using different quadrature methods for the discretization of
the action integral (2)4.

Two distinguishing features of constant time-stepping variational integrators applied to conservative
mechanical systems are symplecticity (for systems with one degree of freedom, this property can be realized
as preservation of area in phase space under the discrete Lagrangian map (qk−1, qk) 7→ (qk, qk+1)) and
momentum conservation5.

As a basis for comparison in this study, the results of applying variational integrators to the PCR3BP
are compared with those arrived at through applying the fourth-order Runge-Kutta method6, a popular
numerical algorithm used to integrate ordinary differential equations of the form q̇ = f(q, t). If the function
f is time independent, the Runge-Kutta method takes the form

qk+1 = qk +
1
6
a1 +

1
3
a2 +

1
3
a3 +

1
6
a4, (5)

where

a1 = hf(qk)

a2 = hf(qk +
1
2
a1)

a3 = hf(qk +
1
2
a2)

a4 = hf(qk + a3),

which recursively generates a discrete curve of points {qk}T/h
k=0 ≈ {q(kh)}T/h

k=0 from initial conditions q0.

1.2 The planar circular restricted three-body problem (PCR3BP)

The PCR3BP considers the motion of a test mass m3 = 0 in the presence of the gravitational field of two
primary masses m1 = 1 − µ and m2 = µ in circular orbits about their center of mass. Without loss of
generality, all units are normalized and positions are defined relative to a rotating coordinate frame whose
x-axis coincides with the line joining m1 and m2 and whose origin coincides with the center of mass of m1

and m2, as shown in Fig. 1. The equations of motion for the test particle are then2
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Figure 1: Rotating coordinate system in the planar circular restricted three-body problem. All units are
nondimensionalized. The coordinate frame rotates counterclockwise with unit angular frequency.

ẍ− 2ẏ =
∂Ω
∂x

(6)

ÿ + 2ẋ =
∂Ω
∂y

, (7)

where

Ω(x, y) =
x2 + y2

2
+

1− µ√
(x + µ)2 + y2

+
µ√

(x− 1 + µ)2 + y2
+

1
2
µ(1− µ) (8)

and (x, y) denotes the position of m3 in the rotating frame.
It is straightforward to check through differentiation that

C(x, y, ẋ, ẏ) = 2Ω(x, y)− (ẋ2 + ẏ2) (9)

is a constant of motion for this system. This value C is commonly referred to as the Jacobi integral7. We
shall refer to the constant E = −C/2 as the energy of the system, taking care not to confuse E with the
sum of the test particle’s kinetic and potential energies.

In this study we choose a mass parameter µ = 9.537× 10−4, which corresponds to the mass ratio for the
Sun and Jupiter8. Thus, solving the equations of motion (6-7) can be physically interpreted as simulating
the motion of a small mass (e.g. a spacecraft or a comet) in the presence of the gravitational field of the
Sun-Jupiter system.

2 Results

2.1 Individual trajectories

We begin with an evaluation of the performance of variational integrators and the Runge-Kutta method
applied to calculating individual trajectories. Rather than attempting to survey a wide range of orbits
corresponding to different initial conditions, we focus here an class of interesting trajectories called transit
orbits.

Consider expression (9) for the Jacobi constant C. Since C is constant and (ẋ2 + ẏ2) is a nonnegative
quantity, it immediatelly follows that m3 is restricted to regions of the (x, y) plane where

Ω(x, y) ≥ C/2. (10)

An example of the allowed regions of motion for a system with a given Jacobi constant C and mass parameter
µ is shown in Fig. 2(a). Notice that the example in Fig. 2(a) allows for transit orbits – trajectories that
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(a) (b)

Figure 2: (a) Regions of allowed motion (white areas) in the planar circular restricted three-body problem
with µ = 0.1, C = 3.55. (b) Graph of the negative of the effective potential Ω(x, y).

transition between orbiting outside m2’s orbit (the exterior region) and orbiting inside m2’s orbit (the interior
region). These types of orbits are mimicked in the solar system by comets such as Oterma, whose orbit in
the past century has experienced a resonance transition between an exterior and interior orbit and back with
respect to the Sun-Jupiter system9. An understanding of the dynamics of orbits like these can be applied,
for example, to the design of low-fuel spacecraft mission trajectories10. For a thorough discussion of transit
orbits and procedures for constructing initial conditions that generate transit orbits, see Koon et al.8.

In Appendix Figs. 7 and 8, the results of the integration of two sets of transit orbit initial conditions
obtained from Koon et al.8 are shown. For small time steps, the methods agree on the two trajectories
associated with the initial conditions. For larger time steps, the methods disagree. In the case of Appendix
Fig. 7, the variational integrator predicts an orbit that differs qualitatively from the resolved calculation,
while the Runge-Kutta method generates an orbit consistent with the resolved calculation. In Appendix
Fig. 8, the opposite occurs: the variational integrator follows the benchmark calculation closely, while the
Runge-Kutta method deviates significantly.

In general, comparing individual trajectories reveals few patterns that characterize the performance of
variational integrators versus the Runge-Kutta method applied to the PCR3BP. As we have just observed,
one can find cases in which a variational integrator appears to outperform the Runge-Kutta method in
calculating a trajectory, and vice-versa. In the following two sections, we examine some properties that
distinguish variational integrators from standard numerical methods.

2.2 Energy conservation

Preserving constants of motion in numerical simulations bears importance in a variety of physical situtations.
A frictionless pendulum should oscillate infinitely with constant amplitude; an energy-conserving integrator
will qualitatively reproduce this behavior, whereas a dissipative integrator will predict decaying oscillation.
Naturally, good energy behavior is favorable when one seeks qualitative accuracy over long time spans.

For mechanical systems with conserved quantities that arise from symmetries of the system (e.g. invari-
ance of the Lagrangian under translation or rotation), a discrete version of Noether’s theorem from classical
mechanics that guarantees exact conservation of the corresponding momenta (e.g. linear momentum and
angular momentum) accompanies the use of a variational integrator5. Exact energy conservation, on the
other hand, does not accompany the use of a constant time-stepping variational integrator for most systems
of interest. Nonetheless, variational integrators are known to exhibit excellent energy behavior when applied
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Figure 3: Energy vs. time for a direct (counterclockwise) orbit around m2. E1 and E2 correspond to energy
levels that separate different configurations of the forbidden regions, as shown in Appendix Fig. 6.

to conservative mechanical systems3.
Fig. 3 shows the energy-conserving performance of a variational integrator compared to the Runge-Kutta

algorithm applied to a direct (counterclockwise) orbit about m2 with a time step h = 0.015. For reference,
energy levels that correspond to critical values that separate different configurations of the forbidden regions
are plotted. Notice that while the variational integrator energy oscillates about its initial value, the Runge-
Kutta energy decreases almost linearly. Moreover, the Runge-Kutta method dissipates enough energy to
lead to changes in the configuration of the allowed regions of motion. Appendix Fig. 6 displays the forbidden
region configurations associated with these lower energy levels.

2.3 Poincaré section plots

It was mentioned previously that Koon et al.8 outline a procedure for numerically constructing initial con-
ditions that generate orbits with prescribed itineraries. It turns out that Poincaré sections play a key role in
this process, allowing one to identify regions of phase space associated with selected trajectories. Likewise,
Dellnitz et al.11 demonstrate the power of identifing chaotic regions and resonant regions in phase space
when computing transport rates. Indeed, the ability to obtain accurate pictures of the geometry of phase
space has applications to a variety of celestial mechanical problems.

To construct a Poincaré section plot, we select a two-dimensional region R = {(x, y, ẋ, ẏ) : C(x, y, ẋ, ẏ) =
constant, qi = constant}, where qi ∈ {x, y}. We cover a portion of R with a rectangular grid of points and
then integrate each point forward in time, recording its position in phase space every time it intersects R.
A projection of the recorded positions onto the (y, ẏ) plane for qi = x or the (x, ẋ) plane for qi = y yields
a Poincaré surface-of-section plot that gives information about the structure of phase space in the selected
region.

Appendix Figs. 9-12 show a series of Poincaré section plots generated through the use of variational
and Runge-Kutta algorithms with a range of time steps h. In virtually all cases, the variational integrator
outperforms the Runge-Kutta method in capturing the geometry of phase space. For small time steps,
the methods roughly agree on the structure of the Poincaré section. For larger time steps, resonant tori
deteriorate and the plotted region appears almost entirely chaotic with the use of the Runge-Kutta algorithm.
With the use of a variational integrator, resonant tori persist for large time steps and regions of chaos and
stability are easily distinguishable. Note, however, that in some cases (e.g. Appendix Figs. 10(b) and 11(b))
the resonant regions predicted by the variational integrator differ from those predicted by the resolved
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(a) (b)

Figure 4: (a) Transport rate (interior to exterior) for initial positions uniformly distributed throughout the
interior region with C = 3.004. Initial velocities were selected such that velocity vectors were oriented
counterclockwise at angles nearly perpendicular to their position vectors, with a random deviation angle
δ ∈ [−π

4 , π
4 ] from perpendicular. (b) Transport (interior to exterior) as a function of time for fixed time step

h = 0.01.

calculation in both their appearance and location, even for small time steps.
The success of variational integrators and other symplectic integrators at producing accurate pictures of

the geometry of phase space is not unique to the PCR3BP. Indeed, this phenomenon has been observed for
a variety of systems12,13 and was popularized with a publication by Channel & Scovel14 in 1990. For an
analytical treatment of this topic, see Hairer, Lubich & Wanner12.

2.4 Transport rates

The study of transport in the three-body problem involves scientists in a surprisingly wide range of fields.
For astronomers, an understanding transport phenomena plays a key role in studying asteroid escape rates,
collision probabilities, and transport of material throughout the solar system11,15,16. On a much smaller
scale, transport theory in the three-body problem is of interest to chemists, as it shares an intimate link
with reaction rate theory in molecular dynamics16. With the growing popularity of implementing theoretical
methods to determine transport rates, the need for accurate and computationally inexpensive integration
algorithms that can be used to verify theoretical predictions grows accordingly.

In this study, we consider the transport of particles (that are in counterclockwise orbit about the Sun
and have a specified energy) from the interior region to the exterior region with respect to the Sun-Jupiter
system. As motivation for this analysis, recall from Section 2.3 that for large time steps, the Runge-Kutta
algorithm generally gives spurious results when predicting phase space structures: the method predicts
chaotic seas where benchmark calculations do not. The presence of additional chaotic regions makes plausible
the hypothesis that the Runge-Kutta method is likely to predict excessively high transport rates.

Fig. 4(a) shows the results of Monte-Carlo simulations applied to the above transport problem for various
time steps h. The variational integrator and the Runge-Kutta method give nearly indistinguishable results.
Both methods give unreliable transport rates with large time steps but appear to asymptotically approach
an identical limit. Fixing h and plotting the transport of particles as a function of time (Fig. 4(b)) reveals
little more; the two methods give matching results that differ slightly from the benchmark calculation.

Before discarding the suggestion that Runge-Kutta’s lack of structure preservation might contribute to
erroneous predictions of transport rates, recall that Section 2.2 reveals a case in which Runge-Kutta’s energy
dissipation leads to changes in the configuration of m3’s allowed regions of motion. It may be that numerical
dissipitation is sealing shut the interior region (as shown in Appendix Fig. 6) for some particles in the
Monte-Carlo simulation, counterbalancing the influence of Runge-Kutta’s introduction of artificial chaos.
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3 Conclusions and Further Study

Variational integrators were constructed and compared with the fourth-order Runge-Kutta method via ap-
plication to the PCR3BP. Computational tests verified the superiority of variational integrators over the
Runge-Kutta method in conserving energy and producing accurate Poincarè section plots, but revealed no
significant differences between the two algorithms’ ability to predict individual trajectories and calculate
transport rates.

Several components of this study have immediate possibility for further study. From a computational
standpoint, introducting adaptive time-stepping schemes to the algorithms would be an appropriate comple-
ment to this study. From a celestial mechanical point of view, an extension to three dimensions (removing
the restriction that m3 lie in the orbital plane of the primaries) seems more than fitting. It would also be
of interest to further pursue the issue of transport rate simulations; the hypotheses posed in Section 2.4 are
still open questions.

4 Methods

4.1 Derivation of the PCR3BP equations of motion

Consider Newton’s equations of motion for the full three-body problem in three dimensions:

m1r̈1(t) =
Gm1m2

r2
12

r̂12 +
Gm1m3

r2
13

r̂13 (11)

m2r̈2(t) =
Gm2m1

r2
21

r̂21 +
Gm2m3

r2
23

r̂23 (12)

m3r̈3(t) =
Gm3m1

r2
31

r̂31 +
Gm3m2

r2
32

r̂32. (13)

Dividing the above equations by m1, m2, and m3, respectively, and letting m3 approach zero, the equations
of motion (11-13) approach

r̈1(t) =
Gm2

r2
12

r̂12 (14)

r̈2(t) =
Gm1

r2
21

r̂21 (15)

r̈3(t) =
Gm1

r2
31

r̂31 +
Gm2

r2
32

r̂32. (16)

Notice that (14) and (15) are merely the equations of motion for the two-body problem, which can be solved
analytically1. The problem then reduces to finding the motion of m3 in the presence of two bodies with
prescribed orbits. In particular, if m1 and m2 are in circular orbit about their center of mass and the motion
of m3 is restricted to the plane of their orbit, the problem reduces to one with two degrees of freedom, the
PCR3BP.

To study the PCR3BP, choose units such that m1 + m2 = 1, G = 1, and r12 = 1. Let m2 = µ. Now
define a counterclockwise rotating coordinate frame whose origin is at the center of mass of m1 and m2 and
whose x-axis coincides with the vector r12, with m2 on the positive x-axis. Under the restriction that m1

and m2 have circular orbits, it follows that the angular frequency of this rotating frame is 1 and that the
positions of m1 = 1 − µ and m2 = µ in this coordinate system are (−µ, 0) and (1 − µ, 0), respectively. See
Fig. 1 for a visual aid.

Let (x, y) denote the position of m3 in the rotating frame, and let (x̄, ȳ) denote the position of m3 relative
to an inertial frame whose origin is at the center of mass of m1 and m2 and whose axes coincide with those
of the rotating frame at t = 0. It follows that(

x̄
ȳ

)
=
(

cos t −sin t
sin t cos t

)(
x
y

)
. (17)
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Differentiation with respect to t yields(
˙̄x
˙̄y

)
=
(

ẋ cos t− x sin t− ẏ sin t− y cos t
ẋ sin t + x cos t + ẏ cos t− y sin t

)
. (18)

The kinetic energy of m3 is thus equal to

T (x, y, ẋ, ẏ) =
1
2
(
˙̄x ˙̄y

)(m3 0
0 m3

)(
˙̄x
˙̄y

)
=

1
2

(
ẋ cos t− x sin t− ẏ sin t− y cos t
ẋ sin t + x cos t + ẏ cos t− y sin t

)T (
m3 0
0 m3

)(
ẋ cos t− x sin t− ẏ sin t− y cos t
ẋ sin t + x cos t + ẏ cos t− y sin t

)
=

1
2
m3((ẋ− y)2 + (ẏ + x)2). (19)

The potential energy of m3 is equal to

V (x, y) = −Gm1m3

r13
− Gm2m3

r23

= − m3(1− µ)√
(x + µ)2 + y2

− m3 µ√
(x− 1 + µ)2 + y2

. (20)

Substituting L = T −V into the Euler-Lagrange equations (3) and simplifying, we arrive at the equations
of motion for m3:

ẍ− 2ẏ = x− (1− µ)(x + µ)
((x + µ)2 + y2)3/2

− µ(x− 1 + µ)
((x− 1 + µ)2 + y2)3/2

(21)

ÿ + 2ẋ = y − (1− µ)y
((x + µ)2 + y2)3/2

− µ y

((x− 1 + µ)2 + y2)3/2
. (22)

The right-hand side of equations (21) and (22) can be written as the gradient of an effective potential Ω(x, y),
where1

Ω =
x2 + y2

2
+

1− µ√
(x + µ)2 + y2

+
µ√

(x− 1 + µ)2 + y2
+

1
2
µ(1− µ). (23)

The equations of motion (21-22) for the PCR3BP are then equivalent to (6-7).

4.2 Construction of variatational integrators

To construct a variational integrator that models a mechanical system, we write down an expression L(q(t), q̇(t))
that equals the difference between kinetic and potential energies of the system in terms of a set of coordi-
nates q. Variational mechanics tells us that q(t) must extremize the integral

∫ T

0
L(q(t), q̇(t)) dt subject to

fixed endpoints q(0) and q(T ) if it is a solution trajectory of the system. From a discrete standpoint, this is
equivalent to extremizing the sum

N−1∑
k=0

Ld(qk, qk+1, h) (24)

subject to fixed endpoints q0 and qN , where {qk}N
k=0 is a discrete curve of points that approximates the exact

solution q(t), h is a time step, and Ld(qk, qk+1, h) is an approximation of the action integral over the time
interval [k, (k + 1)h]:

Ld(qk, qk+1, h) ≈
∫ (k+1)h

kh

L(q(t), q̇(t)) dt. (25)

It can then be shown3 that this sum is extremized if

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) = 0 (26)
1By convention, the constant 1

2
µ(1− µ) is added to the effective potential Ω(x, y) so that a particle at rest at either of the

equilateral Lagrange points (equilibrium points in the PCR3BP) has a Jacobi constant C = 3.
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for every k, where Di symbolizes the derivative of Ld with respect to the ith argument of Ld. These results,
analogous to the Euler-Lagrange equations from variational calculus, are appropriately named the discrete
Euler-Lagrange equations. They define a recursive relation for finding qk from a set of initial conditions
(q0, q1) that can be used to construct algorithms that model mechanical systems.

To integrate the equations of motion (6-7), three variational integrators were constructed using the
discrete least action principle described above. Before detailing their structure, note that the use of a
rotating coordinate system generates ambiguity with respect to initial conditions. We shall assume that all
initial conditions are given in the form (x̄(0), ȳ(0), ˙̄x(0), ˙̄y(0)), i.e. relative to an inertial frame whose axes
coincide with the rotating frame at t = 0. For algorithms that require initial conditions in the rotating frame
format (x(0), y(0), ẋ(0), ẏ(0)), the following relation is used:

(x̄(0), ȳ(0), ˙̄x(0), ˙̄y(0)) = (x, y, ẋ− y, ẏ + x). (27)

This equation can be derived by evaluating (17) and (18) at t = 0. For algorithms requiring initial conditions
with velocities replaced by momenta, we multiply ˙̄x(0) and ˙̄y(0) by m3. Note, however, that in all of the
algorithms that follow, no recursive relations contain m3 upon simplification and cancellation of common
factors.

The first two programs constructed use explicit variational integrator algorithms derived from the use of
a rectangular and trapezoidal quadrature rules. In the PCR3BP, the Lagrangian has the form

L(x, y, ẋ, ẏ) =
1
2
m3((ẋ− y)2 + (ẏ + x)2) +

m3(1− µ)√
(x + µ)2 + y2

+
m3 µ√

(x− 1 + µ)2 + y2
. (28)

To implement a rectangle rule variational inegrator, we choose a discrete Lagrangian that approximates
(ẋ, ẏ) with ( qk+1−qk

h ) = (xk+1−xk

h , yk+1−yk

h ) and then approximate
∫ (k+1)h

kh
L(q, q̇) dt with the length of the

time interval times L evaluated at the left endpoint of the interval:

Lr
d(qk, qk+1, h) = h L

(
qk,

qk+1 − qk

h

)
= h

(
1
2
m3

(
xk+1 − xk

h
− yk

)2

+
1
2
m3

(
yk+1 − yk

h
+ xk

)2

− V (xk, yk)

)
. (29)

Here, q is the position vector (x, y). Before proceeding to substitute Lr
d into the discrete Euler-Lagrange

equations (26), expand (26) into its component form:

∂

∂xk
Ld(qk−1, qk, h) +

∂

∂xk
Ld(qk, qk+1, h) = 0 (30)

∂

∂yk
Ld(qk−1, qk, h) +

∂

∂yk
Ld(qk, qk+1, h) = 0. (31)

Then define the x-component of m3’s momentum at step k as

px
k =

∂

∂xk
Lr

d(qk−1, qk, h) (32)

= m3

(
xk − xk−1

h

)
− yk−1. (33)

Using (30), we can rewrite (32) as

px
k = − ∂

∂xk
Lr

d(qk, qk+1, h). (34)

Changing the indices in (32), we can write

px
k+1 =

∂

∂xk+1
Lr

d(qk, qk+1, h). (35)
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Equations (34-35) and their y-component anologues

py
k = − ∂

∂yk
Lr

d(qk, qk+1, h) (36)

py
k+1 =

∂

∂yk+1
Lr

d(qk, qk+1, h) (37)

form a set of recursive relations that can be used to calculate a trajectory from initial conditions
(x(0), y(0), px(0), py(0)). Specifically, we solve the simultaneous equations (34) and (36) for xk+1 and yk+1,
use equations (35) and (37) to compute px

k+1 and py
k+1, and repeat for the desired number of iterations.

The curve of points {qk}
tf /h
k=0 calculated in this fashion automatically satisfies the discrete Euler-Lagrange

equations (30-31) by virtue of the manner in which px
k and py

k were defined.
To implement a trapezoidal rule variational inegrator, we choose a discrete Lagrangian which approxi-

mates (ẋ, ẏ) with qk+1−qk

h = (xk+1−xk

h , yk+1−yk

h ) and take a weighted sum of L(qk, qk+1−qk

h ) and L(qk+1,
qk+1−qk

h ):

Ltr
d (qk, qk+1, h) =

h

2
L

(
qk,

qk+1 − qk

h

)
+

h

2
L

(
qk+1,

qk+1 − qk

h

)
=

h

2

(
1
2
m3

(
xk+1 − xk

h
− yk+1

)2

+
1
2
m3

(
yk+1 − yk

h
+ xk+1

)2

− V (xk+1, yk+1)

)

+
h

2

(
1
2
m3

(
xk+1 − xk

h
− yk

)2

+
1
2
m3

(
yk+1 − yk

h
+ xk

)2

− V (xk, yk)

)
. (38)

We then use equations (34-37) (replacing Lr
d with Ltr

d ) to calculate a trajectory in the manner described in
the previous paragraph.

The final variational integrator constructed uses a midpoint quadrature rule for a discrete Lagrangian
defined as follows:

Lmp
d (qk, qk+1, h) = h L

(
qk + qk+1

2
,
qk+1 − qk

h

)
= h

(
1
2
m3

(
xk+1 − xk

h
− yk + yk+1

2

)2

+
1
2
m3

(
yk+1 − yk

h
+

xk + xk+1

2

)2
)

−h V

(
xk + xk+1

2
,
yk + yk+1

2

)
. (39)

Replacement of Lr
d with Lmp

d in (34-37) leads to equations that cannot be solved for xk+1 and yk+1 explicitly,
as was possible with the rectangle and trapezoidal quadrature rules. We therefore invoke Newton’s method
at each step to find xk+1 and yk+1: we introduce the vector

g(pk, qk, qk+1) =

− ∂
∂xk

Lmp
d (qk, qk+1, h)− px

k

− ∂
∂yk

Lmp
d (qk, qk+1, h)− py

k

 (40)

and the Jacobian matrix

J =


∂g1

∂xk+1

∂g1
∂yk+1

∂g2
∂xk+1

∂g2
∂yk+1

 , (41)

where gi is the ith component of g. We choose an initial guess qk+1 with a rough estimate

qk+1(1) = qk. (42)

Then we apply the recursive formula

qk+1(n + 1) = qk+1(n)− J−1(pk, qk, qk+1(n))g(pk, qk, qk+1(n)) (43)
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until a fixed point is reached. qk+1 can then be used in (35) and (37) to find pk+1, and the process begins
again at (34).

In the comparisons made between variational integrators and the Runge-Kutta method in Section 2, the
trapezoidal variational integrator (38) is compared with the fourth-order Runge-Kutta method (5) using
equal time steps h. In doing so, we avoid the use of a computationally expensive implicit method (the
midpoint variational integrator) without sacrificing the algorithm’s order of accuracy (the rectangle varia-
tional integrator is first-order accurate, while the midpoint and trapezoidal variational integrators are both
second-order accurate).
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7 Appendix

Figure 5: Forbidden regions for energy values in the range of those displayed in Fig. 3, with µ = 9.537×10−4.

(a) (b) (c)

Figure 6: Close up of boxed region in Fig. 5 for (a) E > E2, (b) E2 > E > E1, and (c) E < E1.

13



(a)

(b)

(c)

Figure 7: Transit orbit with initial conditions x(0) = 1 − µ, y(0) = −0.0190, ẋ(0) > 0, ẏ(0) = 0.085,
C = 3.038. Both forward and backward integrations of the initial conditions are displayed as single continuous
trajectories. Right column shows zoomed views of boxed regions in left column. (a) Benchmark calculation.
(b) Variational integrator, h = 0.01. (c) Runge-Kutta, h = 0.01.
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(a)

(b)

(c)

Figure 8: Transit orbit with initial conditions identical to those in Fig. 7, only this time with y(0) =
−0.0192. Both forward and backward integrations of the initial conditions are displayed as single continuous
trajectories. Right column shows zoomed views of boxed regions in left column. (a) Benchmark calculation.
(b) Variational integrator, h = 0.01. (c) Runge-Kutta, h = 0.01.
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(a)

(b)

(c)

(d)

Figure 9: Poincaré cut at x < 0, y = 0, with ẏ > 0, C = 3.038. Variational integrator outputs are shown
in the left column, while Runge-Kutta outputs are shown in the right column. (a) Benchmark calculation.
(b) h = 0.005. (c) h = 0.01. (d) h = 0.03.
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(a)

(b)

(c)

(d)

Figure 10: Poincaré cut at x = 1−µ, y < 0, with ẋ < 0, C = 3.038. Variational integrator outputs are shown
in the left column, while Runge-Kutta outputs are shown in the right column. (a) Benchmark calculation.
(b) h = 0.01. (c) h = 0.0175. (d) h = 0.025.
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(a)

(b)

(c)

(d)

Figure 11: Poincaré cut at x < 0, y = 0, with ẏ < 0, C = 3.038. Variational integrator outputs are shown
in the left column, while Runge-Kutta outputs are shown in the right column. (a) Benchmark calculation.
(b) h = 0.02. (c) h = 0.03. (d) h = 0.05.
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(a)

(b)

(c)

(d)

Figure 12: Poincaré cut at x = 1−µ, y < 0, with ẋ > 0, C = 3.040. Variational integrator outputs are shown
in the left column, while Runge-Kutta outputs are shown in the right column. (a) Benchmark calculation.
(b) h = 0.005. (c) h = 0.01. (d) h = 0.025.

19


	Introduction
	Numerical methods
	The planar circular restricted three-body problem (PCR3BP)

	Results
	Individual trajectories
	Energy conservation
	Poincaré section plots
	Transport rates

	Conclusions and Further Study
	Methods
	Derivation of the PCR3BP equations of motion
	Construction of variatational integrators

	References
	Acknowledgments
	Appendix

