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Abstract 

Through a combination of invariant manifolds in the planar circular restricted three body 

problem and multiple resonant gravity assists, it is possible to design trajectories with a ∆V 

significantly smaller than that for a typical Hohmann transfer. In this paper, the Keplerian 

mapping function will be explored as a means to choose desirable resonances rather than taking 

advantage of the maximum available energy kick. The goal is to create a resonant gravity assist 

trajectory which will, at any single node, minimize time of flight and exposure to significant 

perturbations. Using this design tool, the resulting time of flight for a trajectory at a single Jacobi 

constant will be compared with a trajectory utilizing the maximum decrease in semimajor axis at 

any single point. Through selecting desired resonances, the effect of the Jacobi constant on the 

trajectory’s total ∆V is explored. 

 

  



Natasha Bosanac 

SURF Final Report – September 25, 2009 

Mentor: Professor J E Marsden, Control and Dynamical Systems 

 

 

2 
 

1. Introduction 

In recent years, Cassini’s primary mission has delivered a wealth of knowledge about 

Saturn’s largest, haze-covered moon, Titan. Amongst other outcomes of the mission, Cassini has 

revealed that the surface of Titan features equatorial sand dunes and liquid oceans – resembling 

the early state of the Earth billions of years ago. Given this analogous behavior, NASA maintains 

plans for a future collaboration with ESA to explore the surface of Titan with a lighter-than-air 

vehicle.   

One constraint imposed on such a mission is the limitation on fuel in navigating a distance as 

far as Saturn and its moons. Careful trajectory design can decrease the spacecraft’s fuel 

requirement, thereby easing the constraints on other subsystems and allowing additional mission 

objectives.  

The Keplerian mapping function is explored as a means to choose desirable resonances 

rather than taking advantage of the maximum available energy kick. Resonant gravity assist 

trajectories are created such that at any single node, a decision is made to minimize time of flight 

and exposure to significant perturbations. Using this design tool, a large decrease in time of 

flight is found when compared with a trajectory utilizing the maximum decrease in semimajor 

axis at any single point. Next, the effect of the Jacobi constant on the trajectory’s total ∆V is 

explored. The particular choice of Jacobi constant is shown to affect the position of the invariant 

manifold Poincarè section taken at periapsis when plotted in Keplerian mapping space and the 

sequence of resonances that can be traversed to target this exit region.  

 

2. Targeting Better Resonances 

Construction of the gravity assist portion of the trajectory relies on the following problem 

definition: two main bodies, referred to as primaries, revolve around their barycenter with a test 

mass, the spacecraft, moving in a near Keplerian orbit under the influence of the gravitational 

attraction of the primaries. The spacecraft begins in an orbit of large semimajor axis about 

Saturn. By iteratively employing resonant gravity assists, it is possible to decrease the semimajor 

axis of the spacecraft orbit such that it can target the invariant manifolds in the Saturn-Titan 

system.
1
 The largest perturbation occurs at the periapsis of the spacecraft’s orbit, which can be 

described by two key parameters: the argument of periapsis, ω, and the Keplerian energy, 

𝐾 =
−1

2𝑎
. This change in semimajor axis can be modeled as an instantaneous kick approximated 

by an energy kick function, f. Considering the effect of the gravitational force on the semi-major 

axis, and therefore the Keplerian energy, the following two-dimensional map
2
 can approximate 



Natasha Bosanac 

SURF Final Report – September 25, 2009 

Mentor: Professor J E Marsden, Control and Dynamical Systems 

 

 

3 
 

the sequence of periapsis coordinates (𝜔𝑛 , 𝐾𝑛), n=1, 2, 3…, from an initial (𝜔0, 𝐾0) with the 

application of control un: 

𝐹  
𝜔𝑛

𝐾𝑛
 =  

𝜔𝑛+1

𝐾𝑛+1
 =  𝜔𝑛 − 2𝜋(−2𝐾𝑛+1)−3

2  (𝑚𝑜𝑑 2𝜋)

𝐾𝑛 + 𝜇𝑓 𝜔𝑛 + 𝛼𝑢𝑛

  
(1) 

 

Where 𝛼 =  
1

𝑎 
 

1+𝑒 

1−𝑒 
   with 𝑒 =  1 −  

𝐶𝐽 −𝑎 

2𝑎3 2         
2
 and 𝑎 = −

1

2𝐾 
 

 

(2) 

  

  

One can also define the Jacobi constant as a measure of the energy of the spacecraft. If: 

𝐸(𝑥, 𝑦, 𝑥 , 𝑦 ) =
1

2
 𝑥 2 + 𝑦 2 − Ω(𝑥, 𝑦) (3) 

where 

 

Ω(𝑥, 𝑦) =
𝑥2 + 𝑦2

2
+

1 − 𝜇

  𝑥 + 𝜇 2 + 𝑦2
+

𝜇

  𝑥 − 1 + 𝜇 2 + 𝑦2
 

 

 

 

 then the Jacobi constant is then CJ = -2E.
3
 

 

 

(4) 

Any resonance can be described as a ratio, n:m, where n is the number of Titan 

revolutions about Saturn and m is the number of spacecraft revolutions about Saturn. 
4
 The term 

‘better resonance’ describes a resonance where n is as low as possible. Since n is proportional to 

the period of Titan’s orbit about Saturn, this means a decrease in the time of flight for the 

spacecraft. In addition, the larger the difference in n-m, the more susceptible the spacecraft orbit 

is to extra perturbation as it passes through the region of maximum energy kick n-m times.  

 An example plot of the achievable change in semimajor axis starting from a= 1.48 for a 

Jacobi constant of 𝐶𝐽 = 3.012 is shown in Figure 1. Given an initial semimajor axis, an, the 

dotted blue line indicates the next semimajor axis, an+1, if the spacecraft has an initial argument 

of periapsis, wn, for 0 m/s of ∆V. Similarly, the solid blue line indicates the successive 

semimajor axis for 10 m/s of ∆V applied at the initial periapsis. The colored lines represent 

resonances which are labeled on the right hand side: thicker lines have a larger n-m value (where 

n is the number of Titan revolutions and m refers to spacecraft revolutions) while lines that are 

closer to the red side of the ROYGBIV color scale have a lower n value.  

Figure 1a) suggests that for a given control input, the succeeding resonance, (n:m)n+1, can 

be chosen and reached by using ∆V’s during the initial resonance, (n:m)n, to target ωn. It also 

suggests that by increasing the ∆V used at the initial periapsis, (ωn, Kn), one could increase the 

range of available resonances to consider when designing a low energy trajectory. Expanding on 
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this idea, Figure b), which is a subset region of a), features two red dots at the maximum 

semimajor axis, an+1, achievable for a given initial semimajor axis. As expected from the 

Keplerian map approximation (Equation 1), a ∆V of 10 m/s yields a larger semimajor axis 

change than the uncontrolled iterate. However, simply exploiting the largest possible change in 

semimajor axis will lead the spacecraft to resonances such as the 18:11 and 13:8 resonances. 

Instead of jumping to these resonances which take a long time to travel through, one could jump 

to the 5:3 resonance by targeting the range of initial periapsis angles indicated by the red box. 

Although it may not yield the largest possible decrease in semimajor axis, it does decrease the 

time required to complete this portion of the trajectory.   

Through a combination of invariant manifolds of the planar circular restricted three body 

problem and multiple resonant gravity assists, it is possible to design trajectories to Titan with a 

∆V significantly smaller than that for a typical Hohmann transfer.
1
 Employing the 

aforementioned method of targeting desired resonances, one can successively use resonant 

gravity assists to decrease the semimajor axis of the spacecraft orbit until it gets close to the 

region of (ωn,Kn) coordinates that correspond to the invariant manifolds. As shown by the red 

curve in Figure 2, this exit region corresponds to a Poincarè section taken at periapsis for the 

trajectories comprising the Saturn-Titan stable manifolds. While a trajectory can be designed to 

target this exit region, the assumption of a near-Keplerian orbit breaks down close to the 

secondary body, Titan.
5
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Figure 1: Starting from an initial semimajor axis, an, of 1.48, a) shows the reachable semimajor 

axis an+1 for varying values of initial periapsis angle, ωn. The dotted blue line evaluates the 

energy kick for 0 m/s of ∆V while the solid blue line uses a maximum 10 m/s of ∆V applied at 

periapsis. A subset of this is shown in b) to demonstrate the resonances that will be reached 

using the maximum energy kick. The red box indicates that a better resonance can still yield a 

large decrease in semimajor axis. 

a) 

b) 
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Figure 2 : Keplerian map for the Saturn-Titan system, assuming CJ = 3.012 and an average 

semimajor axis of 1.55. The white holes indicate stable resonant islands, while the red curve 

represents the target region corresponding to the Poincarè section of the stable manifold at 

periapsis.  

 

In order to demonstrate the benefit of selecting the sequence of resonances rather than 

exploiting an instantaneous maximum decrease in semimajor axis, two trajectories have been 

created for an example Jacobi constant, CJ = 3.012. A trajectory utilizing the absolute maximum 

energy kick available to move between resonances is shown in Figure 3 - using merely 30.9 m/s, 

which is an extremely small value of ∆V for such a far journey. While this procedure may utilize 

the maximum available decrease in semi-major axis over each jump between resonances, it does 

not target good resonances. In fact, the spacecraft travels along the sequence 24:11 – 2:1 – 19:10 

– 30:17 – 11:7, meaning that the trajectory has a time of flight approximately equal to 86 Titan 

revolutions. 

One can compromise when selecting a desired sequence of resonances by performing a 

trade-off between fewer Titan revolutions (lower n value) and a significant decrease in 
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semimajor axis. This has been implemented by considering only the resonances available for an 

initial periapsis angle on the interval ω = (0,0.15]. Although the exact upper limit of this interval 

is not a fixed boundary, it does provide the benefits of simultaneously allowing a wide range of 

resonances and significantly decreasing the semimajor axis. Since this resonance may be reached 

with a finite interval of values for control input, the author finds the desired periapsis angle for 

the lowest required amount of control input – subtly enforcing the objective of using the least 

fuel possible. Employing this technique has created the trajectory shown in Figure 4 which 

requires a ∆V of 15.99 m/s over the entire resonant gravity assist portion of the trajectory and 

travels along the sequence of resonances 11:5 - 2:1 – 9:5 – 5:3 – 3:2 – 7:5. Thus, this part of the 

trajectory has a time of flight approximately equal to 37 Titan revolutions.  

It thus becomes clear that traveling along carefully selected resonances is a subtle form of 

decreasing the trajectory time of flight. If one were to simply input an initial trajectory such as 

that in Figure 3 into an optimization algorithm and consider time of flight in the cost function, it 

would only minimize the travel time for a given sequence of resonances. Instead, better 

resonances can be reached by targeting specific periapsis angles which do not necessarily 

correspond to those that result in the maximum decrease in semimajor axis. In addition, it allows 

for a decrease in the sum of n-m for each of the resonances, and thus decreases the extra 

perturbations as it passes through the region of high energy kick n-m times. This implies that a 

good resonant gravity assist trajectory will be created by considering the maximum change in 

semimajor axis per Titan revolution rather than simply the maximum total change in semimajor 

axis between two resonances.  
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Figure 3 : Resonant gravity assist trajectory plotted as blue points on top of the Keplerian map. 

Note the final node in (ω,K) space that intersects the red curve representing the stable manifold on 

the bottom left of the figure. This portion of the trajectory uses a ∆V of only 30.8 m/s.  

 

Figure 4: Resonant gravity assist produced with selective resonance 

targeting for CJ=3.012 plotted as black points and target regions shown in 

light blue in the bottom of the figure. These points of interest are plotted 

against resonances, with those traversed labeled on the right. 
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3. Varying the Jacobi Constant 

In order to travel from the exterior Hill’s region to the interior region, the Jacobi constant of 

the spacecraft must remain within the range 𝐸 𝐿2 < 𝐸 < 𝐸 𝐿3 . 3 For the Saturn-Titan system, 

this interval becomes 3.0157 < 𝐸 < 3.005. Varying the Jacobi constant within this range will 

change the Poincarè section of the stable invariant manifold, thereby changing the region that the 

resonant gravity assist portion of the trajectory must target. In addition, the sequence of 

resonances is also affected, as well as the set of resonances that both intersect the exit region and 

allow a periapsis coordinate to fall within the region given a maximum value of control input. 

The exact interaction of these effects poses an interesting problem with respect to mission 

design.  

Such a study was implemented by carrying out the steps detailed in Section 2: generate the 

invariant manifolds, take a Poincarè section at periapsis for the stable manifold, generate a 

sequence of gravity assists by selecting good resonances, and target the exit region in the final 

resonance. This was completed for different values of the Jacobi constant, with Table 1 showing 

the resulting resonance sequences and ∆V sums for each trajectory.  

Table 1: Resulting sequence of resonances for various Jacobi constant with total ∆V 

required to target Poincarè section taken at periapsis of stable manifold and number of 

Titan revolutions which is proportional to the total time of flight.  

Jacobi 
Constant 3014 3013 3012 3011 3010 3009 

Sequence of 
Resonances 

11:5 - 2:1 
-9:5 - 5:3 
-3:2 - 4:3 

11:5 - 2:1-
9:5 - 5:3 -
3:2 - 4:3 

11:5 - 2:1 -
9:5 - 5:3-
3:2 - 7:5 

11:5 - 2:1 -
9:5 - 5:3 -
3:2 - 4:3 

11:5 - 2:1 -
9:5 - 8:5 -
4:3 

11:5 - 2:1 -
9:5 - 5:3 -
3:2 - 4:3 

∆V 13.70 27.19 15.99 31.73 24.11 37.12 

No. Titan 
Revolutions 34 34 37 34 34 34 

  

Although there is no clear trend in the total number of Titan revolutions, and therefore 

total time of flight, for varying Jacobi constants, the results shown in Table 1 and graphically 

represented in (ω,K) space in Figure 5, demonstrate that the choice of Jacobi constant affects 

some key aspects in the design of the trajectory. Firstly, the Jacobi constant affects the 

trajectories comprising the stable invariant manifolds – thus, the Poincarè section used to create 

the exit region changes. Represented as a light blue filled curve in the figure, this region can vary 

significantly with respect to minimum and maximum semimajor axis and periapsis angles, as 

demonstrated by the difference between Figure 5a) and Figure 5c).  
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This change in the exit region affects the set of resonances that intersect with it. In addition to 

changing the number of available resonances or the minimum n value of these resonances, its 

position along the ω axis can shift. For a given maximum value of control input, this shifting 

could cause the target region to be unreachable from a particular resonance at one Jacobi 

constant, while it is reachable for another Jacobi constant. Such a difference is evident in Figure 

5 b) and c) which traverse the same sequence of resonances until the final resonance. Another 

reason for this difference in resonance sequences can be postulated by looking at Figure 5 a) and 

b). Looking at the fourth resonance on these two plots, it is evident that the value of the Jacobi 

constant can affect the range of available resonances. Using the aforementioned method of 

surveying resonances which can be reached by starting at a periapsis angle of ω = (0,0.15], the 

5:3 resonance falls within this range for CJ = 3.012, while it is not for CJ = 3.010. Algorithms 

performing this calculation would require some form of adaptive decision-making to decide on 

the merits of extending this interval. In this particular case, the time of flight for the CJ =3.010 

trajectory is not larger than that of CJ =3.012 and such a tradeoff may not be too pertinent.    
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Figure 5: Resonant gravity assist trajectories created using selective resonance 

targeting plotted for a) CJ = 3.010 b) CJ = 3.012 and c) CJ=3.013. Trajectory 

(black dots) and target regions (blue filled curves) plotted against resonances 

with traversed resonances labeled to the right.  

a) 

b) 

c) 
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4. Methods 
 

4.1.  Invariant Manifolds 

4.1.1. Planar Circular Restricted Three-Body Problem (PCR3BP) 

 

 Construction of the invariant manifolds in the Saturn-Titan system relies on the following 

problem definition: two main bodies, referred to as primaries, revolve around their barycenter 

with a test mass, the spacecraft, moving in a planar circular orbit under the influence of the 

gravitational attraction of the primaries.
1
 In the problem of interest, the two primaries, Saturn and 

Titan, are respectively assigned normalized masses of 𝑚1 = 1 − 𝜇 and 𝑚2 = 𝜇, where 𝜇 =
𝑀2

𝑀1+𝑀2
. As shown in Figure 6, the primaries are located at (-µ,0) and (1-µ,0), respectively, in the 

Saturn-Titan rotating frame. In the PCR3BP, the motion of the test particle with location (x,y) is 

governed by the following equations
3
: 

𝑥 − 2𝑦 =  
𝜕Ω

𝜕𝑥
 

(1) 

𝑦 + 2𝑥 =  
𝜕Ω

𝜕𝑦
 

(2) 

 

Where 

Ω(𝑥, 𝑦) =
𝑥2 + 𝑦2

2
+

1 − 𝜇

  𝑥 + 𝜇 2 + 𝑦2
+

𝜇

  𝑥 − 1 + 𝜇 2 + 𝑦2
 

 

 

(3) 

     

The effective potential, Ω, in Eq (3) gives rise to five Lagrange points whereby the gravitational 

force on the test mass is negated by the centripetal force.
6
 These Lagrange points are marked in 

Figure 1 as Li  i=1, 2, 3, 4, 5. Of most interest in this problem is L2, one of the unstable collinear 

equilibrium points.  

. 



Natasha Bosanac 

SURF Final Report – September 25, 2009 

Mentor: Professor J E Marsden, Control and Dynamical Systems 

 

 

13 
 

 

Figure 6 : PCR3BP Geometry and Lagrange Points. In 

the Saturn-Titan-spacecraft system, m1 is Saturn, m2 is 

Titan, and P is the spacecraft.  

Considering the Hamiltonian as a function of positions and velocities, the following energy 

integral is obtained
3
: 

𝐸(𝑥, 𝑦, 𝑥 , 𝑦 ) =
1

2
 𝑥 2 + 𝑦 2 − Ω(𝑥, 𝑦) (4) 

 

4.1.2. Regions of allowable motion 

 

 Fixing the energy integral such that it is equal to a constant allows one to project the 

corresponding 3D surface onto position space, where (x,y) are coordinates in the Saturn-Titan 

rotating frame. This projection is referred to as the Hill’s region. Bounding this region in position 

space are zero-velocity curves (i.e. 𝑣 =  𝑥2 + 𝑦2 = 0) which separate regions of allowable and 

forbidden motion. As seen in Figure 2, the regions accessible to a spacecraft depend on its 

energy, E, relative to that corresponding to the five equilibrium points. These critical values of 

energy are defined as
3
 

𝐸 𝐿𝑖 =  𝐸 𝐿𝑖
𝑥 , 𝐿𝑖

𝑦
, 0,0 = Ω(𝐿𝑖

𝑥 , 𝐿𝑖
𝑦

) (5) 
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Figure 7: Regions of allowable motion for each energy 

case; shading indicates forbidden region and white 

corresponds to allowable motion. Diagram taken from [5]. 

 

The shaded regions in Figure 7 correspond to forbidden regions. In the case of 𝐸 < 𝐸1, the 

shaded annulus separates the exterior and interior regions of allowable motion. For the problem 

being considered, the spacecraft shall begin at a very large semimajor axis relative to the Saturn-

Titan system. At the end of the trajectory, it is intended that the spacecraft will be captured at 

Titan. These mission requirements mean that the spacecraft should have an energy, E, such that it 

can move from the exterior region to the interior region of the Saturn-Titan system. This motion 

is possible in the case of 𝐸 𝐿2 < 𝐸 < 𝐸(𝐿3).
3
  

 

4.1.3. Invariant Manifolds 

Creation of the invariant manifolds begins with the selection of an initial condition from a 

Lyapunov orbit about 𝐿2. This periodic orbit is found by creating a family of periodic orbits 

about 𝐿2 beginning from a linearized approximation to the Lyapunov orbit. Differential 

correction is then used to obtain the orbit corresponding to the energy of the spacecraft to within 

a certain tolerance level. The state transition matrix, Φ(𝑇, 0), is then calculated over one period. 

Using the eigenvectors of this matrix, local approximations to the stable and unstable manifolds 

can be found. This state vector can then be integrated using nonlinear equations of motion to 

create the stable and unstable manifolds.
7
 The invariant manifolds for a Jacobi constant of 3.012 

for a gravitational parameter of 𝜇 = 2.3663 ∙ 10−4 are shown in Figure 8. The points highlighted 
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in green denote the periapsis of those trajectories that form the stable manifold – these points will 

be targeted by the resonant gravity assist portion of the trajectory. 

 

 

Figure 8 : Invariant manifolds in the Saturn-Titan-spacecraft system. a) 

The green curve shows the intersection of the stable manifold with the 

Poincarè section at periapsis. b) Zoomed view of invariant manifolds 

emanating from L2 periodic orbit. Red and magenta tubes are unstable 

manifolds, while green and blue tubes are stable manifolds. Arrows show 

direction of motion with respect to time. 

L2 Periodic 

Orbit 

a) 

b) 
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4.2. Resonant Gravity Assists 

 

4.2.1. Keplerian Map 

Since the invariant manifolds in the Saturn-Titan-spacecraft and the Sun-Saturn-

spacecraft PCR3BP do not intersect, it is possible to employ resonant gravity assists to reduce 

the semi-major axis of the spacecraft’s orbit about Saturn with minimal fuel usage. Recalling the 

PCR3BP constructed in Section 4.1, Figure 9 further defines the osculating orbital elements for 

the spacecraft, the test particle, as it moves with near-Keplerian motion about 𝑚1 and 𝑚2, and 

Saturn and Titan, respectively.
6
  

 

Figure 9 : Osculating orbital elements in the PCR3BP, considering an 

inertial frame of reference where a is the semi-major axis and ω is the 

angle of periapsis. 

The spacecraft begins in an orbit of large semimajor axis about Saturn, in the exterior realm. At 

the periapsis of the spacecraft’s orbit, it receives its largest perturbation. This perturbation can be 

modeled as an instantaneous event occurring at periapsis, approximated by an energy kick 

function
5
: 

𝑓 𝑤, 𝐾 =  
∆𝐺

𝜇
 

(6) 

where 

∆𝐺 =  −
𝜇

 𝑝
    

𝑟

𝑟2
 

3

sin(𝜔 + 𝜈 − 𝑡 𝜈 )
𝜋

−𝜋

𝑑𝜈 − 𝑠𝑖𝑛𝜔 2  cos 𝜈 − 𝑡 𝜈  𝑑𝜈
𝜋

0

   
(7) 

 

and 

𝐾 = −
−1

2𝑎
 

 

 

(8) 

 

. 
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Here, ν = ν(t) is the true anomaly of the particle,  𝑝 =  𝑎(1 − 𝑒2) is the angular momentum of 

the spacecraft’s orbit, r is the distance between the test particle and the m1-m2 barycenter, and r2 

is the distance between the test particle and m2.
6
 An example plot of the energy kick function for 

𝐶𝐽 = 3.012 is shown in Figure 10. Varying the Jacobi constant or average semimajor affects the 

amplitude of the maximum kick available at periapsis and the periapsis angle, ω, at which this 

occurs.  

 

Figure 10 : Energy kick function for CJ = 3.012. The minimum of the function, 

located at ω = 0.058 produces the largest possible decrease in semimajor axis 

while the maximum of the function at ω = -0.058 produces the largest increase 

in semimajor axis.  
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Figure 11 : Keplerian map for the Saturn-Titan system, assuming CJ = 3.012 and an average 

semimajor axis of 1.55. The white holes indicate stable resonant islands, while the red curve 

represents the target region corresponding to the Poincarè section of the stable manifold at 

periapsis.  

 

Considering only the effect of the gravitational force on the semi-major axis, and therefore the 

Keplerian energy, 𝐾 =
−1

2𝑎
, the following two-dimensional map

2
 can approximate the sequence of 

periapsis coordinates (𝜔𝑛 , 𝐾𝑛), n=1, 2, 3…, from an initial (𝜔0, 𝐾0): 

𝐹  
𝜔𝑛

𝐾𝑛
 =  

𝜔𝑛+1

𝐾𝑛+1
 =  𝜔𝑛 − 2𝜋(−2𝐾𝑛+1)−3

2  (𝑚𝑜𝑑 2𝜋)
𝐾𝑛 + 𝜇𝑓(𝜔𝑛)

  
(9) 

 

Employing control, however, over each orbit allows for targeting of angles in order to cause a 

predicted change in semi-major axis. A ∆V is best exerted at apoapsis or periapsis to avoid any 

out-of-plane motion, changing the Keplerian map as follows
2
: 
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𝐹  
𝜔𝑛

𝐾𝑛
 =  

𝜔𝑛+1

𝐾𝑛+1
 =  𝜔𝑛 − 2𝜋(−2𝐾𝑛+1)−3

2  (𝑚𝑜𝑑 2𝜋)

𝐾𝑛 + 𝜇𝑓 𝜔𝑛 + 𝛼𝑢𝑛

  
(10) 

 

where 𝛼 =  
1

𝑎 
 

1+𝑒 

1−𝑒 
   with 𝑒 =  1 −  

𝐶𝐽 −𝑎 

2𝑎3 2         
2
 and 𝑎 = −

1

2𝐾 
 

 

(11) 

This approximation very closely matches the resonant gravity assist trajectory produced via full 

integration of the equations of motion for the spacecraft in the PCR3BP.  

 

5. Conclusion 

In this paper, we have combined invariant manifolds in the planar circular restricted three 

body problem and multiple gravity assists to design low ∆V trajectories within the Saturn-Titan 

system. These trajectories have been designed with single-point decision-making based on 

characteristics of the available resonances, rather than targeting resonances which result in the 

largest decrease in semimajor axis. Employing the described method of selecting resonances to 

target has resulted in a significant decrease in the time of flight over the entire trajectory. Using 

this method, trajectories have been created over a range of Jacobi constants. Although there was 

no clear trend in the corresponding time of flight or ∆V usage, the study highlighted the 

importance of selecting the Jacobi constant based on the available resonances given a series of 

resonances to be targeted and the maximum ∆V available for maneuvers.  

Although the presented method of single-point decision-making has resulted in a large 

decrease in the total time of flight for a relatively similar value of ∆V over the gravity assist 

portion of the trajectory, a branch and bound decision-making technique may yield a larger 

decrease in time of flight. This would be a good avenue for future study as the set encompassing 

all possible combinations could be analyzed to find an optimum.  

In addition, there are some limitations to the results presented in Section 3. In particular, the 

trajectories created would need to be input into a global optimization algorithm to truly optimize 

for total ∆V. The results presented in Table 1 should merely be used to demonstrate that the 

choice of Jacobi constant is not an arbitrary one.  

Finally, it would be interesting to include the ∆V at capture when studying the effect of the 

Jacobi Constant. As the Jacobi constant changes, so too does the radius of the spacecraft before 

capture – therefore, the capture ∆V will exhibit changes. While this contribution is significantly 

larger to the minute ∆V’s for the gravity assist and invariant manifold portions of the trajectory, 

the capture ∆V may add to any possible trends or considerations.  

. 
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Implementing these steps for future work would surely contribute to current efforts in 

designing trajectories with low ∆V – allowing us to expand our envelope of feasible and 

affordable space exploration.  
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