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Abstract. In this paper, we present an approach to autonomous navigation
of a balloon by optimally exploiting wind �elds to minimize control (i.e. power
requirements), time of travel, or other cost functionals. We use the princi-
ples of Discrete Mechanics and Optimal Control (DMOC) to compute optimal
trajectories for a simpli�ed model of balloon dynamics in a two-dimensional,
time-dependent wind velocity �eld. The wind �eld was produced using the
Weather Research and Forecasting (WRF) model for a region of the Mojave
Desert on July 5, 2005.

Due to inherent inaccuracies of the global wind model and the need for
e�cient optimization, we approach the problem of optimizing medium-scale
(i.e., distances of the order approximately 100km) balloon trajectories using
a simpli�ed model of balloon dynamics. The results presented in this paper
provide a framework to extend this approach to �nding optimal trajectories in
real-time for a three-dimensional wind �eld.

We hope to test our approach during a balloon demonstration �ight cur-
rently planned to take place in the Mojave Desert in 2009. Results of such
experiment may be used to develop an approach for a similar problem of au-
tonomous and optimal balloon navigation on Titan, a moon of Saturn.

1. Introduction

The Cassini-Huygens spacecraft mission to study Saturn revealed remarkable ob-
servations of Titan, Saturn's moon. The data sent back to Earth demonstrates the
likely existence of high-latitude hydrocarbon oceans [3] and equatorial sand dunes
[5]. The rocks on the surface are likely made up of water-ice pebbles, analogous to
the silicate sands found on Earth [4]. While life is unlikely to exist on Titan, its un-
canny similarities to Earth have sparked the interest and curiosity of the scienti�c
community.

An overview of some of the most intriguing scienti�c questions can be found in
[12, 13]. These include, but are not limited to, a study of the geochemical processes
on Titan and their similarities to those found on Earth, a study of the prebiotic
chemistry on Titan, and a study into the origin and evolution of Titan. Answering
these questions would require greater surface exploration than is currently possible
with the Cassini-Huygens mission. If NASA were to return to Titan, aerobots
and Montgol�er balloons have been proposed for scienti�c exploration of Titan's
surface [2]. Ideally the vehicle would be able to gather data for an extended period
of time, hopefully greater than six months, while circumnavigating Titan with the
possibility of conducting some surface sampling experiments.
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While the balloon is on Titan, intervening with the �ight-plan on a short time-
scale is impossible. In addition to a communication lag time of several hours, there
will be communication blackout periods where the balloon will be operating in
largely unknown environments [2]. Therefore, it is necessary for the balloon to make
decisions autonomously and still be able to reach particular regions of interest on
Titan in order to gather high quality data. It is hoped that by optimally exploiting
the winds on Titan, the balloon would be able to autonomously navigate di�erent
regions of Saturn's moon with minimal control force or time of travel.

It is not exactly clear what type of information the balloon will have regarding
the wind �elds. Several global wind models for the atmosphere of Titan exists
although they are not very robust. Moreover, they can help the balloon navigate
Titan globally, but locally may not be of much use. We note that even with perfect
information this problem is not easy to solve.

The launch of a Titan-exploration mission will occur no earlier than 2016 [13].
Until then, some experiments will be run on Earth to test methods that can be used
to solve the problem on Titan. If an approach is to succeed on Titan, it should also
work on Earth, whose atmospheric models are much more robust and reliable due
to a greater availability of accurate data and veri�able results. For Earth, we use a
mesoscale weather model that can provide us with wind data for a relatively small
area with higher resolution than would be available with a global model.

The problem of optimal balloon navigation in the presence of winds is not lim-
ited to a Titan mission. Such aerial vehicles may be useful for further study of
atmospheric phenomena on Earth or may be used for surveillance, exploration, or
even transportation of goods.

We are primarily concerned with medium-scale (i.e., distances of 100km) balloon
navigation for which the global wind model should help us compute a near-optimal
trajectory. Then, in order to traverse this trajectory, the balloon would use local
wind information (it gathers) to maneuver on scales of 10-100m. However, such
small-scale balloon navigation is a somewhat di�erent problem than the medium-
scale problem with which we are concerned.

2. Discrete Mechanics and Optimal Control

2.1. Framework. We are concerned with an optimal control problem for a bal-
loon in a wind �eld. We employ the DMOC framework [9, 11] for this problem.
Abstractly, we want to compute the control, f(t), necessary to move a balloon in
con�guration space Q from an initial state (qini, q̇ini) to a �nal state (qfin, q̇fin),
while minimizing the cost functional

(2.1) J(q, f) =
ˆ T

0

C(q(t), q̇(t), f(t))dt.

However, we must constrain q(t) so that the balloon obeys physical laws. Usually
DMOC requires the motion must satisfy the Lagrange-d'Alembert principle, but
we will constrain q(t) using the equations of motion derived from Newton's second
law instead. In some cases, an appropriate descretization (i.e., Midpoint Rule) of
the associated ordinary di�erential equations will perform as well as the variational
approach. We choose to approximate the balloon as a �xed-size sphere since more
complex motion constraints will signi�cantly slow down the computation, but will
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not signi�cantly in�uence the trajectory for the medium-scale problem. On the
other hand, solving small-scale problems may require greater sophistication.

2.2. Newton's Laws. In three dimensions, the principle forces acting on the bal-
loon are lift, gravity, drag, and propulsion. In the horizontal directions, there is no
lift or gravity, so propulsion is the only controlling force. In the vertical direction,
we combine the lift, gravity, and propulsion. However, we �rst considered a two
dimensional model which neglects the altitude. Implementing the model in three
dimensions is part of the future research goals - see Section (4.1).

We de�ne the following variables:

• ρ: density. We will say that ρfluid refers to the air and ρgas refers to the gas
inside the balloon. Note that ρfluid depends on elevation, temperature, etc,
however, for simplicity, we will assume this is constant. In hot air balloons,
ρgas is controlled by changing its temperature. Again, for now, we will
assume that ρgas is constant.

• V : volume, speci�cally of the balloon. We may assume the balloon is a
sphere, in which case the cross-sectional area A = πR2 and V = 4

3πR
3.

Depending on the design, the volume of the balloon could depend on ele-
vation, temperature, etc, however again, we assume this is constant.

• meq: mass of the equipment.
• D: drag coe�cient .
• v refers to velocity of the wind. We de�nite the scalar quantity

‖v − ẋ‖ =
√

(vx − ẋ)2 + (vy − ẏ)2

where vx, vy are the components of the wind velocity and ẋ, ẏ are the com-
ponents of the balloon velocity in the ex = (1, 0, 0), ey = (0, 1, 0) directions.

Drag due to the wind, assuming quadratic dependence on relative velocity, pushes
against the direction of motion of the balloon. We have (in a vector form)

Fd = −1
2
ρfluid‖v − ẋ‖2DA v − ẋ

‖v − ẋ‖

= −1
2
ρfluid‖v − ẋ‖DA(v − ẋ).

Overall, if we include the control force, fc, we have

(meq + ρgasV )ẍ = −1
2
ρfluid‖v − ẋ‖DA(v − ẋ) + fc.

If we introduce the following quantities

β =
ρfluidDA

2(meq + ρgasV )
and

f̃c =
fc

meq + ρgasV
,

then we have
ẍ = −β‖v − ẋ‖(v − ẋ) + f̃c.

If we set q = x and p = ẋ, we get

q̇ = p,(2.2)

ṗ = −β‖v − p‖(v − p) + f̃c.



PATH OPTIMIZATION FOR AN EARTH-BASED DEMONSTRATION BALLOON FLIGHT 4

We set β by using an approximation to the speci�cations of the JPL aerobot [2].
It is clear that the wind plays an critical role in (2.2). For a more thorough

discussion of the wind �eld and how it is generated using the Weather Research
and Forecasting model, see Appendix (5.1).

2.3. Discretization. We approximate the balloon trajectory, q : [0, tfinal] → Q
using a discrete path qd : {0, h, 2h, . . . , Nh, (N + 1)h = tfinal} → Q such that

qd(kh) ≈ q(kh). We approximate p by pd and f̃c by fd in an analogous manner.
We impose the boundary conditions, that is qd(0) = qini, pd(0) = q̇ini, qd(tfinal) =
qfin, and pd(tfinal) = q̇fin.

2.3.1. Discrete Newton's Law. There are many ways to discretize (2.2). We use the
Midpoint Rule which provides an appropriate balance of numerical precision (i.e.,
it is second-order, implicit, and symplectic) and computational e�ciency. We have

qn+1 = qn + h

(
pn+1 + pn

2

)
,(2.3)

pn+1 = pn + h

(
−β‖v 2n+1

2
− pn+1 + pn

2
‖(v 2n+1

2
− pn+1 + pn

2
) + fn

)
,

where v 2n+1
2

= v(qn+1+qn

2 ). As described, we must impose the boundary condi-

tions, q0 = qini, p0 = q̇ini, qN+1 = qfin, and pN+1 = q̇fin.

2.3.2. Discrete Cost Functional. We approximate the cost functional (2.1) as

Jd(qd, fd) =
N∑

k=0

Cd(qk,qk+1, fk, fk+1).

We want to �nd qd that minimizes Jd. We chose to minimize control force, fd,
although we could have easily chosen to minimize time or some other parameter
depending on the problem at hand. As a simpli�ed example, let us consider the
case when

Cd(qk,qk+1, fk, fk+1) = f2
k .

We use the l2-norm as the measure of control, i.e., we want to minimize

N∑
k=0

f2
k .

2.4. Optimization. We are faced with an equality constrained nonlinear optimiza-
tion problem: we seek to �nd qd and pd that minimizes Jd subject to the boundary
conditions and constraints in (2.3). This optimal control problem can be solved
using sequential quadratic programming (SQP), which is implemented as fmincon
in Matlab.

3. Results

Since a demonstration balloon �ight is planned for the Mojave Desert, we used
wind �eld data computed using the WRF model (see Appendix 5.1) from the same
region starting on July 5, 2005 at 12:00pm GMT. Speci�cally, we targeted a region
nearby (−116◦E, 36◦N) at an altitude of 3500m. Thus, the wind �eld is a function
of two spatial dimensions and time.
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The initial and �nal positions were chosen to be about 100km apart �tting the
speci�cations of the medium-scale problem. We required that the initial and �nal
velocity were zero.

We made a movie with 205 frames that shows the progression of the balloon
along its trajectory in the time-dependent wind �eld. Figures (3.1) - (3.5) are �ve
frames of this movie and show the optimal path at di�erent points in time.

These results suggest that DMOC is able to �nd a near-optimal path which is
satisfactory for the medium-scale problem. Because SQP is a local optimization
routine, the optimal trajectory depends heavily on the initial guess. Fortunately,
we are not interested in the global minimum although choosing a better initial guess
would result in a better local minimum. In our case, we used a linear initial guess.
We could substantially improve the results if we were to choose an initial guess that
accounts for the wind �eld.

We also were able to increase the number of discretization points by using the
result from one run of DMOC as the initial guess for a subsequent run with more
descretization points. In this case, we started with N = 50 and used the result
as an initial guess for N = 101. We did this again to get the optimal path for
N = 203. This allows us to get results for a large N fairly inexpensively since the
most time consuming step is the �rst run.
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Figure 3.1. The balloon's initial position is the upper red dot
and its target is the lower red dot. We display the wind �eld at
hour 0, which corresponds to July 5, 2005 at 12:00pm GMT.



PATH OPTIMIZATION FOR AN EARTH-BASED DEMONSTRATION BALLOON FLIGHT 6

−140 −120 −100 −80 −60 −40 −20 0 20
−120

−100

−80

−60

−40

−20

0

20

40

60

80

X − Direction (km)

Y
 −

 D
ire

ct
io

n 
(k

m
)

Balloon Trajectory

Figure 3.2. The balloon's trajectory after 2.84 hours. As ex-
pected, the balloon's path seems to closely follow the direction of
the wind.
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Figure 3.3. The balloon's trajectory after 5.96 hours. Interest-
ingly, the balloon has found a region where it is able to turn toward
its destination. In this region, the wind is relatively calm although
it pushes the balloon in the right direction. The calm wind allows
the balloon to easily make maneuvers (i.e., minimal control) to
change its �ight path.
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Figure 3.4. The balloon's trajectory after 10.86 hours. It appears
that the wind is able to carry the balloon toward its �nal destina-
tion. The only important piece left is to ensure that the balloon is
able to stop at the target to satisfy the velocity boundary condi-
tion.
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Figure 3.5. The balloon's optimal path requires 14.48 hours.
Since the wind at that location is signi�cant, it requires a strong
force for the balloon to reach zero velocity.
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4. Future Research Goals

4.1. Three-Dimensions. We are currently working to expand the model to three
dimensions, however doing so requires a slight change in the method of obtaining the
wind �eld - see Appendix (5.1). The current method provides us with non-uniform
data (particularly in the z-direction), interpolation of which signi�cantly slows the
optimization (by more than 100 times). We are currently exploring methods that
use faster interpolation in the z-direction that may sample directly from the output
of WRF instead of requiring pre-processing.

Incorporating time into the three dimensional problem posses further di�cul-
ties since a four-dimensional interpolation may signi�cantly slow the optimization.
However, a receding-horizon approach [8] may be used as an alternative.

4.2. Real-Time Optimization. Probabilistic road-map methods have been shown
to be useful for real-time path planning. The method is divided into a learning phase
and a query phase [10]. In the learning phase, we randomly sample the con�guration
space of the balloon and then use some fast local trajectory routine to connect these
so-called free con�gurations. One can think of this roadmap as a graph whose nodes
are the free con�gurations and whose edges are the paths generated by the local
path planner. In the query phase, the start and goal con�gurations are connected
to the graph.

Figure 4.1. Example of an obstacle-based probabilistic roadmap.
s and g are the start and goal con�gurations. A path is found by
searching over the roadmap. Image was taken from [14].

One possible local trajectories planner is based on motion primitives [7, 1], which
are essentially precomputed (i.e., o�-line) trajectories and stored in a library for
fast retrieval. These trajectories can be computed using DMOC (and, thus, lo-
cally optimal) or recorded maneuvers from a �eld test. However, with wind forces,
such an approach may not be feasible. We are considering possible alternatives,
such as sampling the control force space instead of the state space of the system.
Alternatively, a machine-learning based approach may work as well.
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5. Appendix

5.1. The Weather Research and Forecasting Model. The in�uence of wind is
a signi�cant component of the constraint equations. Since we are investigating the
problem of a balloon appropriately exploiting winds to reach high priority targets, it
is important to obtain actual wind �elds for the region of interest. To do so, we use
the Weather Research and Forecasting (WRF) model. It is a numerical, mesoscale
weather prediction system used for both research and forecasting applications [6].
For our purposes, it is capable of providing wind velocities (i.e. speed and direction)
at di�erent latitudes and longitudes. As an example, we considered a region of the
Mojave Desert on July 5, 2005 at 12:00pm GMT. We chose the Mojave Desert
because it is the likely location of a balloon demonstration �ight currently planned
to take place in 2009.

5.1.1. Vertical Coordinate. WRF uses a �terrain-following hydrostatic-pressure� [6]
vertical coordinate, more commonly known as the σ coordinate, for its computation.
Sigma is used as the vertical coordinate as opposed to altitude because it is preferred
for ease of calculation in global climate models. It is the ratio of the pressure at a
point in the atmosphere to the pressure of the surface of the Earth beneath it

η =
ph − pht

phs − pht

where ph is the hydrostatic component of the pressure, and phs and pht are the
hydrostatic component of the pressure at the surface and top boundary respectively.
It clearly follows that at the surface, η = 1 and at the top boundary, η = 0.

Figure 5.1. Example of sigma coordinate at di�erent values of η
for an uneven terrain. It is clear that the altitude is not constant
for a given η. Image was taken from [6].

5.1.2. Interpolating onto a Cartesian Grid. Unfortunately, WRF gives the wind
speeds on a curvilinear grid
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Figure 5.2. Curvilinear grid used by WRF

yet we would like it to have the wind speeds on a uniform, rectangular Carte-
sian grid. As mentioned, interpolation of uniform data is signi�cantly faster and
improves the speed of optimization.
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Figure 5.3. Uniform, rectangular Cartesian grid onto which we
interpolate the WRF output
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To do this, we must �rst interpolate all the necessary data (which we will show are
the wind speeds and the geopotential height) onto the grid. We must also take into
the account that the data is staggered on an Arakawa-C grid.

Additionally, we make a change of coordinates from latitude and longitude to
Cartesian distance

(5.1) x =
π

180◦
· r · cos(φ) · (λ− λ0),

(5.2) y =
π

180◦
· r · (φ− φ0),

where φ is latitude, λ is longitude, and r = 6, 378 · 103m is the radius of the Earth
(for simplicity, we are assuming that the Earth is spherical). We note that (λ0, φ0)
is the origin, which in the case of Mojave Desert, will be (−116◦E, 36◦N).

The WRF model provides us with a table of discrete altitudes (obtained by
dividing the geopotential height by Earth's gravity) and wind velocities as functions
of position and the sigma level, i.e.,

z = z(x, y, σ)

v = v(x, y, σ).
For our purposes, we need wind velocities as functions of x,y,z and thus we retab-
ulate the wind velocities so that they are functions of projected position on the
ground and altitude, i.e.,

ṽ = ṽ(x, y, z).
We do this via interpolation so that for a �xed x, y, ṽ is

ṽ(x, y, z(σ)) = v(x, y, σ).

Current implementation of such interpolation is quite crude. We are considering
alternative approaches that improve the computation speed and the accuracy of the
resulting wind data. This is a component of the future research goals - see Section
(4.1).
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