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1 Introduction

The purpose of this work is to derive abalytically and with an explicit formula the motion due
to the variation of the surface of a squirming body in a fluid. Such a derivation has been done
before, but only in two dimensions, and there is no literature on any attempts to generalize to
three dimensions, which is cosiderably more involved algebraically. But utilizing software such
as Mathematica, the derivation is quite straightforward.

The primary motivation behind this work is the search for innovative propulsion mechanisms.
Surface variations may not lead to a very high speed, but they provide higher maneuverability
and efficiency and are the primary source of motion of aquatic animals. Two types of fluid are
studied - an Eulerian (potential) fluid where all viscous effects are ignored and inertia is the
only factor, and a Stokesian (creeping) fluid where all inertial effects are ignored and viscous
friction is the only factor. We consider only those cases because they linearize the equations
governing the fluid motion, and permit analytic solutions.

2 Hydromechanical Connections

Consider a body immersed in a fluid. We regard its shape as a shape manifold M . And the
configuration manifold

Q = M ×G

represents the complete position and orientation of the body in space.

Q = M × G can be thought of as a trivial bundle with a group structure G, and an action of
G on Q given by Φh(r, g) = (r, hg) for (r, g) ∈ Q and h ∈ G. An element of the tangent space
is given by q̇ = (ṙ, ġ) ∈ TQ.

We are intererested in computing a connection on the configuration bundle Q that will allow
us to compute the fiberwise translations resulting from cyclical changes in shape.
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A connection is a vector valued one-form Γ : TQ→ g on Q.

We follow (Kelly, 1998) in defining two types of connections:

• Mechanical connection

Γmech : (q, q̇)→ I−1(q)J(q, q̇)

where I : g→ g∗ is the locked inertia tensor such that

〈I(q)ξ, η〉 =� ξQ(q), ηQ(q)�KE

and
I(r, g) = Ad∗g−1Iloc(r)Adg−1

and J : TQ→ g∗ is the momentum map.

• Stokes connection

ΓStokes : (q, q̇)→ V−1(q)K(q, q̇)

where K : TQ→ g∗ is a momentum map

〈K(q, q̇), ξ〉 = 〈F (q, q̇), ξQ(q)〉

associated with a dissipative force F , and V : g→ g∗ is a viscosity tensor such that

〈V(q)ξ, η〉 = 〈F (ξQ(q)), ηQ(q)〉

and
V(r, g) = Ad∗g−1Vloc(r)Adg−1

Kelly uses the following local expressions

Γmech = Adg(g−1ġ +Amechṙ)

Γmech = Adg(g−1ġ +AStokesṙ)

and for zero initial momentum

g−1ġ = −Amechṙ

g−1ġ = AStokesṙ
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Figure 1: Coordinate system.

which completely describe the evolution of a Potential and Stokesian swimmers respecitlvey.

3 Squirming Sphere

Consider a three dimensional nearly spherical body whose surface is described by the following
equation:

r = F (θ, ϕ; s1, . . . , sn)

Such a body has already been studied previously numerically (Rufat, 2005), and the current
method that allows us to obtain explicit formulas for the displacement as will be later seen, are
valuable tools for validating numerical simulations.

As an example we consider the propulsive movement of a roughly spherical device whose bound-
ary shape is modulated by a small amount. We parametrize the boundary in terms of the shape
variables si(t), and express it as a sum of an unperturbed base shape and a perturbed part:

F (θ; s) = 1 + ε (s1 cos 2θ + s2 cos 3θ)

The configuration manifold is

Q = R2 × SE(3)
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3.1 Potential Flow

Irrotational potential flow is best described in terms of the velocity potential, which satisfies

∇2φ = 0

with the Neumann boundary condition

∇φ · n
∣∣
r=F

= u · n
∣∣
r=F

(1)

where u
∣∣
r=F

is the prescribed boundary motion.

For an axisymmetric problem, such as this one, the solution of the Laplace equation can be
expressed as a series

φ(r, θ) =
∞∑
k=0

(
Akr

k +
Bk
rk+1

)
Pk(cos θ)

where Pk(x) are the Legendre polynomials satisfying the orthogonality condition:

ˆ +1

−1

Pm(x)Pn(x)dx =
2

2n+ 1
δmn
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We require that u→ 0 as r →∞, and therefore we must take Ak = 0 for ∀k.

φ(r, θ) =
∞∑
k=0

ak
Pk(cos θ)
rk+1

≡
∞∑
k=0

akΦk

The problem of solving for φ is reduced to finding the coefficients ak.

First, in order to enforce the boundary conditions on the perturbed surface, we need to compute
the normal n at each point. The two tangential components on the surface are

t1 =
∂

∂θ
(F r̂) =

∂F

∂θ
r̂ + F θ̂

t2 =
∂

∂ϕ
(F r̂) =

∂F

∂ϕ
r̂ + F sin θ ϕ̂

and therefore the normal component can be evaluated as the cross product of the two

n = t1 × t2 = F 2 sin θ r̂ − F ∂F
∂θ

sin θ θ̂ − F ∂F
∂ϕ

ϕ̂

Note that we need not normalize the expression for n since it occurs on both sides of the
boundary condition equation (1). Expanding the spherical coordinates (r, θ, ϕ) of n in terms
of ε:

n = n(0)+εn(1)+ε2n(2)

=

 1
0
0

+ ε

 2 (c[2θ]s1 + c[3θ]s2)
2s[2θ]s1 + 3s[3θ]s2

0

+ ε2

 (c[2θ]s1 + c[3θ]s2) 2

(c[2θ]s1 + c[3θ]s2) (2s[2θ]s1 + 3s[3θ]s2)
0


where c[θ] = cos θ and s[θ] = sin θ.

Next, we expand the potential in a power series in terms of the small perturbation paramater
ε .

φ = φ(0) + εφ(1) + ε2φ(2) + ...+ εiφ(i) + ...

where

φ(i) =
∞∑
k=0

ak
(i)Φk

Plugging back in1, we expand both sides in terms of ε

∇φ · n
∣∣
r=F

=
∞∑
i=0

εi
∞∑
k=0

a
(i)
k f

(i)
k

u · n
∣∣
r=F

=
∞∑
i=0

εiu(i)
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and equate terms of equal power

∞∑
k=0

a
(i)
k f

(i)
k = u(i)

where the first few terms f (0)
k are

f
(0)
0 = −1

f
(0)
1 = −2η

f
(0)
2 =

3
2
(
1− 3η2

)
f

(0)
3 = 2

(
3η − 5η3

)
f

(0)
4 = −5

8
(
3− 30η2 + 35η4

)
f

(0)
5 = −3

4
(
15η − 70η3 + 63η5

)
f

(0)
6 =

7
16
(
5− 105η2 + 315η4 − 231η6

)
f

(0)
7 =

1
2
(
35η − 315η3 + 693η5 − 429η7

)
where η = cos θ

By the linearity of Laplace’s equation (using superposition) one can write following Kirchoff,

φ = φz ż + φs1ṡ1 + +φs2ṡ2

Then, up to second order in ε

φz = − P1

2r2
+ ε

(
9P1s1
10r2

+
9P2s2
7r3

− 6P3s1
5r4

− 48P4s2
35r5

)
+ ε2

(P1

(
−3339s21 − 4990s22

)
2450r2

− 1781P2s1s2
735r3

+
6P3

(
308s21 − 45s22

)
1925r4

+
42264P4s1s2

13475r5
−

16P5

(
91s21 − 90s22

)
637r6

− 64P6s1s2
11r7

− 512P7s
2
2

143r8

)

φs1 = ε

(
P0

3r
− 4P2

9r3

)
+ ε2

(
−14P0s1

15r
− 3P1s2

35r2
+

8P2s1
21r3

+
2P3s2
5r4

− 512P4s1
525r5

− 64P5s2
63r6

)

φs2 = ε

(
3P1

10r2
− 2P3

5r4

)
+ ε2

(
−34P0s2

35r
− 309P1s1

350r2
− 13P2s2

315r3
+

122P3s1
225r4

+
1128P4s2
1925r5

− 208P5s1
189r6

− 1856P6s2
1617r7

)

The total kinetic energy is given by
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L =
1
2

ˆ
F

dV |∇φ|2

1
2

ˆ 2π

0

dφ

ˆ π

0

sin θdθ
ˆ ∞
r=F

r2dr |∇φ|2

= π

ˆ 1

−1

dη

ˆ ∞
r=F

r2dr |∇φ|2

=
π

5
ż2 − επ

5

(
49
15

s1ż
2 +

6
5
ṡ2ż

)
+ε2

π

5

(
230
189

ṡ21 +
241
225

ṡ22 + 2
(

1069
525

s1ṡ2 −
628
245

s2ṡ1

)
ż +

(
576
175

s21 +
144857
18865

s22

)
ż2

)
+O(ε3)

This Lagrangian is invariant under translation along z, so its momentum map is

J =
2π
5
ż−ε2π

5

(
49
15

s1ż +
3
5
ṡ2

)
+ε2

2π
5

(
1069
525

s1ṡ2 −
628
245

s2ṡ1 +
(

576
175

s21 +
144857
18865

s22

)
ż

)
+O(ε3)

The locked inertia tensor is given by

I(s1, s2) : ξ 7→ 2π
5
ξ

(
1− ε49

15
s1 + ε2

(
576
175

s21 +
144857
18865

s22

))
+O(ε3)

Therefore,

Γmech = I−1J = dz − ε3
5
ds2 + ε2

(
1069
525

s1ṡ2 −
628
245

s2ṡ1 −
49
15

s1
3
5
ṡ2

)
+O(ε3

= dz − ε3
5
ds2 + ε2

(
8

105
s1ṡ2 −

628
245

s2ṡ1

)
+O(ε3)

Self-propulsion of the sphere requires that its motion remain horizontal with respet to this
connection, therefore

ż = ε
3
5
ṡ2 + ε2

(
628
245

s2ṡ1 −
8

105
s1ṡ2

)

3.2 Stokes Flow

Thes solution of creeping-motion can be reduce in two dimensions to the biharmonic equation
in terms of the stream function

∇4ψ = 0

which satisfies the no-slip and no-penetration boundary condition on the surface
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u
∣∣
r=F

= (ur, uθ) = (Ḟ , 0)

Following (Leal, 2007) p.462 the general solution is

ψ =
∞∑
k=1

(Akrk+3 +Bkr
k+1 + Ckr

2−k +Dkr
−k)Qk(η)

where Qk(x) are polynomial functions defined in terms of the Legendre polynomials

Qk(x) =
ˆ x

−1

Pk(x)dx

and satisfiying the orthogonality condition

ˆ +1

−1

Qm(x)Qn(x)
1− x2

dx =
2

n(n+ 1)(2n+ 1)
δmn

Again we want the velocity to vanish at infinity, so we will neglect the first two terms

ψ =
∞∑
k=1

(akr2−k + bkr
−k)Qk(η)

ur = − 1
r2
∂ψ

∂η
uθ
√

1− η2 = −1
r

∂ψ

∂r

Again we will exploit the linearity of the equation by using Kirchoff’s method to express teh
streamfunction as

ψ = ψz ż + ψs1ṡ1 + +ψs2ṡ2

ψz =
(

1
2r
− 3r

2

)
Q1 + ε

[
Q3

(
12s1
5r3

− 12s1
5r

)
+Q1

(
− 9s1

10r
+

9rs1
10

)
+Q4

(
24s2
7r4

− 24s2
7r2

)
+Q2

(
27s2
14
− 27s2

14r2

)]
+ε2

[
Q1

(
−

3r
(
448s21 + 1045s22

)
1225

+
4683s21 + 8125s22

2450r

)
+Q2

(
−1287

490
s1s2 +

2197s1s2
490r2

)

+Q3

(
−

6
(
308s21 − 135s22

)
1925r

−
4
(
308s21 + 45s22

)
1925r3

)
+Q4

(
−10764s1s2

2695r4
− 1836s1s2

2695r2

)

+Q7

(
2048s22
143r7

− 1536s22
143r5

)
+Q5

(
48
(
91s21 − 54s22

)
637r5

−
32
(
91s21 − 18s22

)
637r3

)
+Q6

(
224s1s2

11r6
− 160s1s2

11r4

)]

Due to the lack of time, I am unable to continue with the calculations. The Mathematica code
that I use seems to have trouble computing the ψs1 and ψs2 components. This could be related
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the 3D equivalent of the Stoke’s paradox, or could simply be a bug in the code. In any case, it
would be important to carry this calculation to completion at some point in the future in order
to compare the displacement resulting from creeping flow to that in potential flow.

4 Discussion

A calculation similar to the one done above was carried by Kelly for a two dimensional circle
where the algebra is less involved. Figure 3 compares the results. In all cases the shape
trajectory is a unit circle (s1, s2) shape space.
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Figure 3: Geometric phase for a particular gate. TODO: stokes 3d.

Explicitly, we quote the results. For the the potential flow case, Kelly obtained:

ż = ε2(s2ṡ1 − s1ṡ2) +O(ε3)

and for Stoke’s case

ż = −ε2
(

1
4
s2ṡ1 +

1
2
s1ṡ2

)
+O(ε2)

If we compare those, to our result
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Figure 4: Ilustration of axisymmetroc squirming.

ż = ε
3
5
ṡ2 + ε2

(
628
245

s2ṡ1 −
8

105
s1ṡ2

)
(2)

The first thing that we notice is the presence of O(ε1) in the 3d case (our solution). However,
this term has no effect on the net displacement and it only results in a more pronounced
oscillation of the center of mass during each cycle. Also we notice that the body achieves higher
displacementin 3d.

This simplicity with which such explicit equations such as 2 can be obtained is a testament to
the power of the geometric approach to mechanics.
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