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Goal: develop and understand spatially- and temporally- adaptive variational integrators for mechanical
PDEs that do not require a constant number of degrees of freedom in the material domain. This problem is
different from (but related to) r-adaptive or asynchronous variational integrators, which adapt DOFs in either
the material or time domain but always maintain a constant number of material DOFs. In general, allowing
a variable number of material DOFs allows the material domain to be remeshed in an arbitrary way over the
course of the simulation. For the course project I will focus on a highly simplified model of 1D elastic body
dynamics. My overall approach is a direct discretization of Hamilton’s principle on a spacetime mesh. Rather
than trying to adapt this mesh to meet some performance criterion, I will simply assume that a “good” mesh
is known a priori (for now). The figure below is a cartoon of spacetime meshes for the 1D elasticity problem
using different variational schemes; the types of problems I am interested are highlighted in the bottom row.

X

t

X

t

X

t

X

t

X

t

standard variational integrator asynchronous variational integrator r-adaptive variational integrator

h-adaptive variational integrator spacetime adaptive variational integrator

1 Lagrangian
Consider a 1D elastic body immersed in R3 with reference configuration B = [0, 1] and uniform mass density
ρ = 2. The immersion q : B → R3 gives the configuration of the body at time t. The total kinetic energy at time
t can therefore be written as

Kt =

∫
B

ρ

2

∣∣∣∣∣∣∣∣∣∣∂qt(X)
∂t

∣∣∣∣∣∣∣∣∣∣2 dV.

We use a simple elastic potential

Ut =
1
2

∫
B

ρ

(∣∣∣∣∣∣∣∣∣∣∂qt(X)
∂X

∣∣∣∣∣∣∣∣∣∣2 − 1
)

dV

where the leading factor 1/2 is merely for convenience. The resulting Lagrangian is then simply

Lt = VB +

∫
B

||∇qt ||
2 dV
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where in the final expression VB is the volume of the body, ∇ represents partial derivatives with respect to
both space and time, and || · || is the usual Lorentzian metric on R3,1. The trajectory of q in time is given by the
extrema of the corresponding action integral, i.e., solutions of

δS = δ

∫ t f

t0
Ltdt = 0

where there is zero variation in q at t0 and t f .

2 Discrete Lagrangian
Consider a spacetime domain with coordinates X and t along the material and temporal axes, respectively.
Let V, E, and F be the sets of vertices, edges, and faces in a simplicial mesh of this domain. For the moment,
assume that we are only interested in configurations in R (instead of R3). We can then describe the discrete
configuration of the body via the map qD : V → R. Suppose that we interpolate q̂ piecewise linearly over each
simplex to get a map q̂ : B → R3. We can then express a discrete action SD as the sum over each simplex of the
action of the interpolated configuration:

SD =
∑
f∈F

∫
f

L.

Note that the integral over f is actually an integral over space and time. In fact, this integral is very
straightforward to compute. Let AqX, Aqt and AXt be the projected areas of f along the t, X, and q axes, respec-
tively. It is easy to show that on f

∂q̂
∂t
=

AqX

AXt

and

∂q̂
∂X
=

Aqt

AXt
,

hence integrating these quantities over f (which has area AXt in the material/time domain) gives us

SD( f ) = A2
qt − A2

qX + AXt,

where the final term accounts for VB in the continuous Lagrangian.
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3 Numerical Implementation
Our discrete action is quadratic in q, hence the system expressing extremization of this action with respect to
q is linear. From here we can proceed in a number of ways – for instance, we can specify the values of q at t0
and t f and solve for the remaining values of q such that the action is extremized. The remainder of this project
entails implementing the system described above and analyzing the behavior of the resulting solutions.
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