Goal: develop and understand spatially- and temporally-adaptive variational integrators for mechanical PDEs that do not require a constant number of degrees of freedom in the material domain. This problem is different from (but related to) r-adaptive or asynchronous variational integrators, which adapt DOFs in either the material or time domain but always maintain a constant number of material DOFs. In general, allowing a variable number of material DOFs allows the material domain to be remeshed in an arbitrary way over the course of the simulation. For the course project I will focus on a highly simplified model of 1D elastic body dynamics. My overall approach is a direct discretization of Hamilton’s principle on a spacetime mesh. Rather than trying to adapt this mesh to meet some performance criterion, I will simply assume that a “good” mesh is known a priori (for now). The figure below is a cartoon of spacetime meshes for the 1D elasticity problem using different variational schemes; the types of problems I am interested are highlighted in the bottom row.

1 Lagrangian

Consider a 1D elastic body immersed in \mathbb{R}^3 with reference configuration $\mathcal{B} = [0, 1]$ and uniform mass density $\rho = 2$. The immersion $q : \mathcal{B} \rightarrow \mathbb{R}^3$ gives the configuration of the body at time t. The total kinetic energy at time t can therefore be written as

$$K_t = \int_{\mathcal{B}} \rho \frac{1}{2} \left\| \frac{\partial q_t(X)}{\partial t} \right\|^2 dV.$$

We use a simple elastic potential

$$U_t = \frac{1}{2} \int_{\mathcal{B}} \rho \left(\left\| \frac{\partial q_t(X)}{\partial X} \right\|^2 - 1 \right) dV$$

where the leading factor $1/2$ is merely for convenience. The resulting Lagrangian is then simply

$$L_t = V_{\mathcal{B}} + \int_{\mathcal{B}} \left\| \nabla q_t \right\|^2 dV.$$
where in the final expression \(V_B \) is the volume of the body, \(\nabla \) represents partial derivatives with respect to both space and time, and \(\| \cdot \| \) is the usual Lorentzian metric on \(\mathbb{R}^{1,1} \). The trajectory of \(q \) in time is given by the extrema of the corresponding action integral, i.e., solutions of

\[
\delta S = \delta \int_{t_0}^{t_f} L dt = 0
\]

where there is zero variation in \(q \) at \(t_0 \) and \(t_f \).

2 Discrete Lagrangian

Consider a spacetime domain with coordinates \(X \) and \(t \) along the material and temporal axes, respectively. Let \(V, E, \) and \(F \) be the sets of vertices, edges, and faces in a simplicial mesh of this domain. For the moment, assume that we are only interested in configurations in \(\mathbb{R} \) (instead of \(\mathbb{R}^3 \)). We can then describe the discrete configuration of the body via the map \(q_D : V \to \mathbb{R} \). Suppose that we interpolate \(\hat{q} \) piecewise linearly over each simplex to get a map \(\hat{q} : B \to \mathbb{R}^3 \). We can then express a discrete action \(S_D \) as the sum over each simplex of the action of the interpolated configuration:

\[
S_D = \sum_{f \in F} \int_f L.
\]

Note that the integral over \(f \) is actually an integral over space and time. In fact, this integral is very straightforward to compute. Let \(A_{qX}, A_{qt}, \) and \(A_{Xt} \) be the projected areas of \(f \) along the \(t, X, \) and \(q \) axes, respectively. It is easy to show that on \(f \)

\[
\frac{\partial \hat{q}}{\partial t} = \frac{A_{qX}}{A_{Xt}}
\]

and

\[
\frac{\partial \hat{q}}{\partial X} = \frac{A_{qt}}{A_{Xt}},
\]

hence integrating these quantities over \(f \) (which has area \(A_{Xt} \) in the material/time domain) gives us

\[
S_D(f) = A_{qt}^2 - A_{qX}^2 + A_{Xt},
\]

where the final term accounts for \(V_B \) in the continuous Lagrangian.
3 Numerical Implementation

Our discrete action is quadratic in q, hence the system expressing extremization of this action with respect to q is linear. From here we can proceed in a number of ways – for instance, we can specify the values of q at t_0 and t_f and solve for the remaining values of q such that the action is extremized. The remainder of this project entails implementing the system described above and analyzing the behavior of the resulting solutions.