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1 Introduction
In this report we investigate numerical algorithms for structure-preserving integration of mechanical systems
over irregular discretizations of spacetime. The ultimate goal is to develop integrators that adapt the dis-
cretization to the solution. In this report we take the first step by considering discretizations that are fixed,
but arbitrary. The hope is that if we can develop algorithms that demonstrate good conservation properties on
arbitrary meshes, then adaptive methods can be achieved via, e.g., simple adaptive refinement. Our approach
to adaptation is in a way more naı̈ve than other adaptive methods (in particular, the time adaptive method of
Kharevych et al [2] and the r-adaptive method of Zielonka et al [5]) since we do not attempt to simultaneously
solve for the evolution of the system and adapt the material and/or time coordinates.

When comparing our method to these “simultaneous” approaches, there are several important practical
and theoretical issues to consider. Simultaneous methods tend to produce more accurate solutions for a given
number of temporal and material nodes, since these nodes are placed judiciously. However, the resulting sys-
tems of equations can be more difficult to solve not just because they involve more total degrees of freedom
(e.g., temporal coordinates and Lagrange multipliers), but also because these DOFs can be coupled in a way
that makes the system dense or otherwise difficult to solve (cf. Kharevych et al [2]). More importantly, simul-
taneous methods require that the combinatorics of the spacetime mesh be fixed, since the resulting equations
involve derivatives of material and temporal coordinates. In contrast, our approach could permit arbitrary
refinement of the spacetime mesh. Further, we have more flexibility in choosing refinement criteria since we
do not have to incorporate this refinement into a global framework. But it is not yet entirely clear how our
method performs with respect to accuracy and momentum conservation; even worse, we do not even know how
to formulate the method for an initial value problem! (These issues are discussed in greater detail in Section
4).

The main difference between the two approaches from a theoretical perspective is that our method directly
integrates the original system, whereas the simultaneous methods augment the system with additional fields
that govern mesh evolution. Both methods correspond to the evolution of some Hamiltonian system, but there
is an interesting question of how closely the augmented system follows trajectories of the original system.

Finally, as noted in a paper by Zielonka et al [5], “...in attempting a general implementation, an unexpected
essential difficulty arises: A direct space-time discretization of the action results in unstable discrete systems in
general. ... The instabilities that plague naive space-time discretizations may be traced to inaccuracies in the
velocity field introduced by the motion of the mesh.” In other words, it is already known that a compromise
between the two approaches (i.e., a single-field theory of simultaneous adaptation) is not feasible.

2 Background
The fundamental variational principle governing mechanical systems is d’Alembert’s principle, which says that
any system of forces is in equilibrium if we add to the impressed forces the forces of inertia [3]. We can express
this principle as

δwe = 0

where we is the effective virtual work, i.e., the virtual work done by both impressed and interial forces and δ
denotes variations in the configuration of our system around an equilibrium. Hamilton’s principle reformulates
this idea by requiring that d’Alembert’s principle be satisfied at every moment in time, i.e., that
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∫ t2

t1
δwedt = 0

which can be expressed more explicitly as

δ

∫ t2

t1
Ldt −

[
pδq

]t2
t1

where L is the Lagrangian of the system, and p and q are the momentum and configuration of the system
(expressed in generalized coordinates). In order to make this statement a true variational principle (i.e., the
extremization of a scalar functional), we require that the variation δq be zero at the endpoints t1 and t2, yielding
the typical statement of Hamilton’s principle

δS = δ
∫ t2

t1
Ldt = 0.

(We will refer to the quantity S as the action integral.) We can subsequently write down the Euler-Lagrange
equations corresponding to Hamilton’s principle in order to get the equations of motion for the system in
question. The standard approach to numerical time integration is to discretize the equations of motion di-
rectly (usually using finite differences to approximate derivatives). However, there is an alternative approach,
namely to approximate the action integral S using numerical quadrature and derive the Euler-Lagrange equa-
tions corresponding to the resulting approximated action. Both procedures yield an update rule for a discrete
system, but in general the two approaches do not commute. In fact, it can be shown that the latter, “variational”
approach will produce integrators with good conservation properties [4], whereas the standard approach, in
general, will not.

Letting Q be the configuration space of the system, the standard approach to variational integrators is to
first define a discrete Lagrangian

LD : Q × Q→ R

that approximates the integral of the Lagrangian between time tk and tk+1. One then writes down the
discrete action in terms of three consecutive configurations qk−1, qk, and qk+1, and finds extrema of this action
with respect to qk while keeping qk−1 and qk+1 fixed:

∂

∂qk
(L(qk−1, qk) + L(qk, qk+1)) = 0.

This equation (or system of equations, in the case of PDEs) can then be solved for the next configuration of
the system qk+1. This procedure is then repeated ad nauseum to produce a series of configurations q1, q2, q3, ....
In this report we adpot a slightly different perspective, which is to write down a discrete action

S D =

N−1∑
k=1

LD(qk, qk+1)

in terms of all the DOFs in our discrete trajectory, and then solve the system of equations

∂S D

∂qi
= 0

for all qi not at the beginning or end of our trajectory. It is not hard to see (Section 3) that if the first two
configurations q1 and q2 are known, these two formulations of variational integrators are completely equivalent
in the case of ODEs. However, this perspective will be very useful in formulating integrators on irregular
spacetime domains, and does not (yet) appear to reduce to something “obvious.”

The main assumption that we make in this report (and it may be flawed) is stated below.

MAIN ASSUMPTION: extremization of the discrete action integral yields a discrete flow that is sym-
plectic, independent of the choice of quadrature.

In particular, if this assumption holds then we should be able to adapt our solution purely through choice
of quadrature points between the initial and final configurations in our trajectory. In other words, we think of
all the intermediate points in our trajectory as merely quadrature points for the action between q1 and qN .
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3 Kepler problem
We first examine the behavior of our approach for ODEs using a mesh that is irregular in time (we will hence-
forth refer to our approach as the global approach, since we solve for all degrees of freedom simultaneously).
In particular, we study the Kepler problem, which describes the motion of a particle with position q moving
under the influence of the simple potential

U(q) = −
mk
||q||

where m is the mass of the particle, a ∈ R is an arbitrary constant, and || · || denotes the Euclidean norm. For
a > 0 and non-zero intial velocity, the trajectories of this system are generally ellipses around the origin. For
simplicity, we will use m = 1 and k = −1. The Lagrangian for this system then becomes

L =
1
2
||q̇||2 −

1
||q||

where q̇ is the time derivative of q.

3.1 Discretization
As discussed previously, the global method fixes the configuration q of the system at the initial and final times
ti and t f , and seeks extrema of the corresponding action integral with respect to variations in the intermediate
q. In particular, we discretize q̇ via first-order finite differences and use midpoint quadrature for the potential.
The discrete action is thus given by

S d =

N∑
k=1

hk

1
2

∣∣∣∣∣∣∣∣∣∣qk+1 − qk

hk

∣∣∣∣∣∣∣∣∣∣2 − 1∣∣∣∣∣∣ qk+qk+1
2

∣∣∣∣∣∣


where N is the number of time steps in the discrete trajectory and hk is the length of the kth time step. We
then solve the system

∂S d

∂qk
= 0, 1 < k < N

for the unknown coordinates along the trajectory.

3.2 Numerical Experiments
We implemented the algorithm described above in Mathematica. For comparison, we also implemented sym-
plectic Euler, the time adaptive method of Kharevych et al [2], as well as the standard three-point variational
integrator described in the previous section (again using midpoint quadrature for a fair comparison). The
adaptive method, which we will henceforth refer to as the Pontryagin approach, represents the state-of-the-art
in temporally adaptive variational integrators for ODEs. The basic idea is to specify a function σ : Q × Q → R
that expresses the desired temporal spacing between consecutive configurations via the relationship

tk+1 − tk
h

= σ(qk, qk+1),

where h is a “fictitious” time step that determines the overall granularity of the solution. In order to
enforce this relationship, the method adds a Lagrange multiplier term λk ((tk+1 − tk) − hσ(qk, qk+1)) to the discrete
action and extremizes this action with respect to q, t, and λ. The Pontryagin method effectivly introduces an
additional force that pushes the solution towards the desired time steps, but may also push the original system
from its true trajectory (even if momenta are conserved).

Energy plots and the corresponding time steps are shown in figures (1), (2), and (3) for the trajectory shown
in figure (1). Not surprisingly, the global method and the standard three-point method yielded identical results
(and hence are not plotted independently). It is easy to see why this should be the case, since in both methods
the solutions must satisfy

∂

∂qk
S D = 0
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Figure 1: Trajectory examined in this section (all trajectories look roughly the same).
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Figure 2: Left: energy curves for a partial orbit in Kepler’s problem using the global method (equivalent to a standard vari-
ational integrator with a midpoint evaluation of the potential) and standard symplectic Euler – the flatter curve corresponds
to the global method. Right: time step magnitude as a function of step index.

for all intermediate points qk, regardless of how the actual computation is carried out. It is most interesting
to note that this global/standard approach demonstrates much better energy behavior that standard symplec-
tic Euler for variable time steps. This discrepancy is most likely due to the fact that we chose a midpoint
discretization of the potential, resulting in a scheme that is not only symplectic, but also symmetric with re-
spect to time – such integrators are well-known for their good long-term energy behavior [1], although it is not
clear what the relationship is (if any) between symmetry and symplecticity. Finally, the Pontryagin approach
and the symmetric approach behaved almost identically in terms of energy behavior. However, because the
function σ which determines the time step in the Pontryagin approach can be written only in terms of qk and
qk+1, we could not compare it directly with symplectic Euler and the symmetric method using truly random
time steps.

What can we conclude from these experiments? Standard symplectic Euler is a symplectic method for fixed
time steps, but its energy behavior is not fantastic for variable time steps. Is this because symplecticity is
not an absolute guarantee of good energy behavior, or is it an indicator that our main assumption is flawed?
Conversely, if our main assumption holds, then symplectic Euler must be symplectic even for variable time
steps, since it will be equivalent to a “global” variational method for some choice of quadrature.

It is also worth noting that we used a very short trajectory used in this experiment, rather than the long,
looping trajectories typically seen in numerical tests of structure-preserving integrators. The global method
was our limitation here: since we are only able to specify the initial and final configurations (and not initial
velocities), we are likely to find the shortest among all trajectories satisfying these conditions.1 This is a
general limitation of our DMOC-like approach to time integration.

1Of course, now that we see that the global method is equivlaent to the standard approach, we could easily perform experiments of
longer duration.
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Figure 3: Left: energy curves for a partial orbit in Kepler’s problem using the global and standard methods (top) and
the method of Kharevych et al [2] (bottom). Both trajectories use identical timesteps, adapted to generate equispaced poses.
Right: time step magnitude as a function of time step index.
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Figure 4: Cartoon of effective spacetime discretizations used by different variational methods for the 1D elasticity problem.
Mesh types not used by existing variational methods are highlighted in the bottom row.

4 1D Elasticity
We now consider a mechanical PDE using a mesh that is irregular in both time and space. Notably, the number
of degrees of freedom is not required to be fixed over the course of the simulation.

4.1 Lagrangian
Consider a 1D elastic body immersed in R3 with reference configuration B = [0, 1] and uniform mass density
ρ = 2. The immersion q : B → R3 gives the configuration of the body at time t. The total kinetic energy at time
t can therefore be written as

K =
∫
B

ρ

2

∣∣∣∣∣∣∣∣∣∣∂q
∂t

∣∣∣∣∣∣∣∣∣∣2 dV.

We use a simple elastic potential

U =
1
2

∫
B

ρ

(∣∣∣∣∣∣∣∣∣∣ ∂q
∂X

∣∣∣∣∣∣∣∣∣∣ − 1
)2

dV
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where the leading factor 1/2 is merely for convenience. The resulting Lagrangian is then simply

L = −VB +
∫
B

∣∣∣∣∣∣∣∣∣∣∂q
∂t

∣∣∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣∣∣ ∂q
∂X

∣∣∣∣∣∣∣∣∣∣2 + 2
∣∣∣∣∣∣∣∣∣∣ q

X

∣∣∣∣∣∣∣∣∣∣ dV

where in the final expression VB is the volume of the body.

4.2 Discrete Lagrangian
Consider a spacetime domain with coordinates X and t along the material and temporal axes, respectively.
Let V, E, and F be the sets of vertices, edges, and faces in a simplicial mesh of this domain. For the moment,
assume that we are only interested in configurations in R (instead of R3). We can then describe the discrete
configuration of the body via the map qD : V → R. Suppose that we interpolate q̂ piecewise linearly over each
simplex to get a map q̂ : B → R3. We can then express a discrete action SD as the sum over each simplex of the
action of the interpolated configuration:

SD =
∑
f∈F

∫
f

L.

Note that the integral over f is actually an integral over space and time. In fact, this integral is very
straightforward to compute. Let AqX, Aqt and AXt be the signed, projected areas of f along the t, X, and q axes,
respectively. It is easy to show that on f

∂q̂
∂t
=

AqX

AtX

and

∂q̂
∂X
=

Atq

AtX
,

hence integrating these quantities over f (which we assume has signed area AtX > 0 in the material/time
domain) gives us

SD( f ) = A2
qX − A2

tq + 2Atq − AtX ,

where the final term accounts for VB in the continuous Lagrangian.
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Figure 5: Energy curves for uniform (left) and variable (right) discretizations.

4.3 Numerical Implementation
Our discrete action is quadratic in q, hence the system expressing extremization of this action with respect
to q is linear. We implemented this system in Mathematica, again specifying the initial and final configu-
rations of the body as boundary conditions. For reference, we also implemented a standard (non-adaptive)
variational integrator using the same midpoint discretization of the potential. Trajectories produces by these
two integrators are shown in figures (4.3) and (6); the corresponding energy curves are given in figure (5).

Although the energy in the irregular case is not preserved as well as in the reference integrator, it does not
appear to drift. Again, the inability to perform long-term integration makes it difficult to truly understand
the energy behavior of this method. However, it does give hope that adaptivity on arbitrary meshes may be
possible.2

Practically speaking, the main obstruction to turning the existing integrator into a initial value-type inte-
grator is that (unlike the ODE case) we may not have the same number of material degrees of freedom at the
beginning and the end of the action. Hence we cannot merely “swap out” known degrees of freedom at the end
for known degrees of freedom near the beginning. We speculate that this situation may reflect the fact that
if we lose (or gain) information from the beginning to the end of the integration, it makes it very difficult to
conserve momenta in a meaningful way. Clearly there are many more questions to be answered!
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Figure 6: Spacetime solution of 1D elasticity problem using uniform discretization projected along X (left), t (middle) and
q (right) axes.

Figure 7: Spacetime solution of 1D elasticity problem using variable discretization projected along X (left), t (middle) and
q (right) axes.
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