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1 Introduction

Since the seminal work of Art Ashkin[1] in 1970 on the trapping and ma-
nipulation of dielectric particles by radiation forces, radiation pressure forces
have been at the forefront of current experimental research. Optical tweez-
ing, laser cooling of atoms, and the new field of optomechanically coupled
devices are example incarnations of this field of study. A coherent and unified
approach to dealing with these systems is however lacking.

The forces on the particle are usually split into two types, the “scattering
force” and the “gradient force”[2]. In Ashkin’s paper, and many studies
of optical tweezing, the case of the gradient force on a dielectric sphere is
treated through the use of ray optics and invocation of the conservation of
momentum. For the case of the “scattering force”, arguments are based on
absorption and emission rates, and the directionality of each process along
with the conservation of momentum .

On the other hand, studies of laser cooling of two- or multi-level systems
use either the highly fruitful quantum mechanical formulation1 of Claude
Cohen-Tannoudji[4], or a perturbation theoretical approach.

More recent work, tracing originally back to the 1970s[3], and having been
recently spurred by advances in nano-fabrication of optical cavities, usually
start with the phenomonological hamiltonian

H = ω0(1− gx)a∗a+
Ω2

2
x2 +

1

2
p2 (1)

Where a is the mode amplitude of the electromagnetic field. The use of
this methodology has lead to remarkably close the precise agreement with
measurement. It is not difficult to see that this modal Hamiltonian can only
be an approximation of the full equations of motion.

1The Atome Habillé or “dressed atom” approach for which the Nobel Prize in Physics
of 1997 was awarded to Claude Cohen-Tannoudji.
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It is of interest to develop the full equations for dielectric-radiation inter-
actions so that all of the above treatments can be placed in an equivalent,
general footing, and that limitations in the usual hamiltonians, such as the
one above can be identified.

The first step in such a program is the development of variational prin-
ciples for the “macroscopic” maxwell equations. This is done in section 2,
and constitutes the heart of this article. It is therein argued that it may be
proper to view A and φ as positions, the “electric field” E and “magnetic
field” B as velocities, and the “electric displacement” D and “magnetizing
field” H as momenta. With respect to the correct field Lagrangian, the four
Maxwell’s equations can then be interpreted as two kinematic relations (akin
to q̇ = v) and two Euler-Lagrange equations. The two “constitutive rela-
tions”, are then only the definition of canonical momenta. This treatment
is made particularly lucid through the use of differential forms which make
D(B) and E(H) different geometrical objects, 2- and 1-forms respectively.

2 Variational Formulation of Microscopic and

Macroscopic Maxwell’s Equations

2.1 Vector Calculus Maxwell’s Equations in 3+1 Di-
mensions

Electromagnetic theory is usually used by physicists, engineers and experi-
mentalists who may not be familiar with the differential forms. There are
many resources for learning about differential forms[6] and in particular, its
application to electromagnetics[5]. We start at first with the vector calcu-
lus formulation of Maxwell’s equations which is what is usually found in the
relevant physics texts and literature:
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Maxwell-Faraday

∇× E +
∂B

∂t
= 0 (2)

∇ ·B = 0 (3)

Maxwell-Ampére

∇×H− ∂D

∂t
= J (4)

∇ ·D = ρ (5)

General Constitutive Relations

D = ε0E + P[E,B, t] (6)

H = µ−1
0 B−M[E,B, t] (7)

The vectors P[E,B, t] and M[E,B, t] are called the polarization and mag-
netization vectors respectively and are used to model the response of mate-
rials to the electromagnetic fields. They are are generally nonlocal in time
and space.

The case were P = 0 and M = 0 is called the Microscopic Maxwell
Equations.

An equivalent viewpoint involves the definition of “effective” or “bound”
charges and currents which create the material response. Then the mate-
rial response is modeled by simply adding Jb[E,B, t] and ρb[E,B, t] to the
microscopic Maxwell-Ampére equations:

∇× µ−1
0 B− ∂ε0E

∂t
= J + Jb[E,B, t] (8)

∇ · ε0E = ρ+ ρb[E,B, t] (9)

ρb[E,B, t] = −∇ ·P[E,B, t] (10)

Jb[E,B, t] = ∇×M[E,B, t]− ∂

∂t
P[E,B, t] (11)

2.1.1 A Variational Principle for the Microscopic Maxwell’s Equa-
tions

The Lagrangian is a function L : TQ→ R. In this section, we’ll use a slightly
looser definition of a Lagrangian which will simplify much what will be done
later.
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Taking the cue from the usual lagrangian L(q, q̇) which is a function
the position q, and a variable kinematically related to q, i.e. q̇ which may
be found by a differentiation, we generalize this differentiation to spatial
variables as well and define our Lagrangian density to be L(A, φ,−Ȧ −
∇φ,∇×A) = L(A, φ,E,B). The action is then given by:

S[A, φ,E,B] =

∫ ∫
L(A, φ,E,B)d3xdt (12)

L(A, φ,E,B) =
ε0E · E− µ−1

0 B ·B
2

− ρφ+ J ·A (13)

This formulation is much more transparent the 4-vector notation. In any
case Euler-Lagrange equations for the above lagrangian density can be shown
to be:

∇× µ−1
0 B− ∂ε0E

∂t
= J (14)

∇ · ε0E = ρ (15)

This is proven in section A.2 using the language of differential forms,
which is introduced in the next section. These are none other than the
Maxwell-Ampére equations for vacuum. The Maxwell-Faraday equations are
implicit in our definition of E and B.

2.2 Differential Forms Maxwell’s Equations in 3+1 Di-
mensions

Before going any further, it is fruitful to begin using the differential forms
formulation of Maxwell’s equations. Not only only will this will make the
derivations more mathematically elegant, it will also make them more physi-
cally meaningful. In the vector calculus formulation of Maxwell’s equations,
E, B, J and M are all vector fields and hence mathematically indistinguish-
able. Yet they are physically different quantities. By defining them to be
different types of differential forms, one can not only avoid mistakes, but
elucidate the derivations and provide motivations for definitions.

For the Maxwell-Faraday equations, we define a 0-form φ and a 1-form
A. Then the 1-form E and 2-form B are:

E = −∂tA− dφ (16)

B = dA (17)
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From here arrive at

dE = −∂tdA− ddφ (18)

= −∂tB (19)

dB = ddA = 0 (20)

These are the first two of Maxwell’s equations, the Maxwell-Faraday equa-
tions.

2.2.1 Motivation for the Definition of D and H for the Microscopic
Case

Next we motivate what D and H must be by looking at the Lagrangian
density. Since L from equation (13) gives us the Lagrangian L under an
integral

∫
d3x, we know that it must be a 3-form.

This means:

L(A, φ,E,B) =
ε0 ∗ E ∧ E − µ−1

0 ∗B ∧B
2

− ρ ∧ φ+ J ∧ A (21)

Note that this naturally defines ρ to be a 3-form (as expected, since a
volume integral gives us the charge) and J to be a 2-form (since a surface
integral gives us the current).

We define D and H as “conjugate momenta”2:

D =
∂L
∂E

= ε0 ∗ E (22)

H = −∂L
∂B

= µ−1
0 ∗B (23)

We see that D and H can be thought of as playing the role of “conjugate
momenta” to A and φ while E and B play the role of “velocities”3. We also
see that the constitutive relations are none other than an analog to ∂L/∂v =
p. This is particularly pleasing because the E and B are kinematically related
to A and φ, while D and H provide us with the dynamical relations of the

2Deschamps[5] also defines D = ε ∗ E and H = µ−1 ∗ B though he does not use a
variational principle.

3This is different than what is usually considered to be the conjugate momentum to
A, i.e. Y = −E.
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system. These dynamical relations are the Euler-Lagrange equations for the
system (see section A.2 for derivations):

∂L
∂A

= −d
∂L
∂B
− d

dt

∂L
∂E

(24)

∂L
∂φ

= −d
∂L
∂E

(25)

Using ∂L/∂φ = −ρ, ∂L/∂A = J and equations (22), (23) above, these
equations become:

dH = J +
d

dt
D (26)

dD = ρ (27)

These two equations are the Maxwell-Ampére equations.

2.2.2 Motivation for the Definition of D and H in the General
Case

For the general case where the material response may be thought of currents
and charges imposed from the outside, we may write the the 3-form for bound
charges ρb = −dP and the 2-form for bound currents as Jb = dM − d

dt
P

following equations (10)-(11).
Adding these to the Lagrangian density (21), one finds:

L(A, φ,E,B) =
ε0 ∗ E ∧ E − µ−1

0 ∗B ∧B
2

−ρ∧φ−ρb∧φ+J∧A+Jb∧A (28)

Integration by parts changes this Lagrangian density to

L(A, φ,E,B) =
ε0 ∗ E ∧ E − µ−1

0 ∗B ∧B
2

−ρ∧φ+J∧A+P∧E+M∧B (29)

Now using the previous definitions for D and H, equations (22)-(23)
become4:

D =
∂L
∂E

= ε0 ∗ E + P (30)

H = −∂L
∂B

= µ−1
0 ∗B −M (31)

4This is in analogy to the situation arrived at when treating a charged particle in an
external imposed field A with a velocity term v · A in the lagrangian where one finds
p = mv + A.
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2.2.3 Summary of Analogy

The summarize the analogy, we compare the above definitions and derivations
to the case of a single particle lagrangian L(q, q̇).

The original Maxwell equations (2)-(7) came in three parts. The Maxwell-
Faraday relations were shown to result from the kinematical relation between
E, B and A, φ. This is analogous to v = q̇.

The constitutive relations, were shown to be none other than the defini-
tion of conjugate momenta. In other words, they are the analogue to p = ∂L

∂v
.

Finally, the Maxwell-Ampére relations, are the dynamical relations, which
were shown to be equivalent to the Euler-Lagrange equations of the La-
grangian Density.

Maxwell-Faraday | Definition of Velocities

∇× E +
∂B

∂t
= 0 E = −∂tA− dφ (32)

∇ ·B = 0 B = dA (33)

General Constitutive Relations | Canonical Momenta

D = ε0E + P D =
∂L
∂E

(34)

H = µ−1
0 B−M H = −∂L

∂B
(35)

Maxwell-Ampére | Euler-Lagrange Equations

∇×H− ∂D

∂t
= J

∂L
∂A

= −d
∂L
∂B
− d

dt

∂L
∂E

(36)

∇ ·D = ρ
∂L
∂φ

= −d
∂L
∂E

(37)

2.3 Hamilton-Pontryagin Description of the Electro-
magnetic Field in Vacuum

The Hamilton-Pontryagin description gives one a functional which when ex-
tremized provides the definition of conjugate momenta, Hamilton’s equations,
the Euler-Lagrange equations, and their relation through the legendre trans-
form. This is done by introducing an auxiliary variable v and optimization
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of the functional

SHP[q,v,p] =

∫
L(q,v) + p · (q̇− v)dt (38)

One is in effect “hard-coding” the relations q̇ = v, ∂L
∂q̇

= p into the problem.
In the same way, one can “hard-code” the kinematical relations E = −∂tA−
dφ and B = dA.

Following the discussion in section 2.2.3, one finds in complete analogy
that the correct Hamilton-Pontryagin action is given by:

SHP[A, φ,E,B,D,H] =

∫ ∫
LHPdt (39)

LHP(A, φ,E,B,D,H) = L(A, φ,E,B)

+D ∧ (−∂tA− dφ− E)

−H ∧ (dA−B) (40)

The negative sign on H is due to its definition as H = − ∂L
∂B

. A similar
Hamilton-Pontryagin principle for the microscopic Maxwell equations can be
found in Schwinger’s Electrodynamics text[7]5.

Extremizing with respect to variations in A, φ, E, B, D and H of
SHP[A, φ,E,B,D,H] give the Maxwell-Ampére, the constitutive and the
Maxwell-Farday equations respectively.

5Schwinger does not extend this to the macroscopic Maxwell equations. This mainly
because Schwinger was a member of the electromagnetics community in the 1940-50s
at the MIT Radiation Lab where most applications involved either waveguides or radar
scattering where the dielectric response of materials was not particularly important or
interesting. Also, his Nobel prize winning work was in quantum electrodynamics, where
one only considers the microscopic Maxwell equations. Only with the gradual unification
of optics and electromagnetics has the dielectric response of materials gained practical
prominence.

Schwinger also does not identify explicitly E and B as velocities, possibly because of
the confusion which arises from also identifying E as a momentum. The different roles
of E and D, which has to do with them being different types of geometrical objects only
becomes clear in the differential forms language.

Interestingly, he calls the general SHP[q,v,p] shown in equation (38), the “third way”
variational principle, as opposed to “first” and “second” ways which are the hamiltonian
and lagrangian formulations.
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3 Radiation-Matter Interaction

We are now ready to apply the variational principle developed in the previous
section to the problem at hand, the interaction of a dynamic dielectric with
radiation. To find the total Lagrangian of the system, we add the lagrangian
of the material system to that of the field, and enforce the interaction through
the term P ∧ E in the Lagrangian density.

Then the total Lagrangian can be broken up into three terms:

Field Lagrangian

Lf =

∫
Lf(A, φ,E,B) (41)

Interaction Lagrangian

Lint =

∫
Lint =

∫
P ∧ E (42)

Material Lagrangian

Lmat = Lmat(qi,vi) (43)

Interaction Condition

P = P [qi,vi;A, φ,E,B] (44)

There is some arbitrariness to this division. The general requirement is
that the material variables don’t make an appearance in the field lagrangian,
and that the field variables avoid the material lagrangian.

3.1 Infinitesimally Small Dielectric Particle with Free
Fields

The simplest system to treat is that of small, free dielectric particle. In this
case, Lmat = 1

2
mq̇2.

We take this to be a “small”, neutral, point particle. The particle of
interest has a constant, dispersion-less dielectric susceptibility of χp. In other
words, P (x) = χpΘ(x− q) ∗ E(x).

Using equation (42) and an assumption that the volume of the particle,
Vp is small enough,

Lint = χpVp||E||2(q) (45)
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The equation of motion for the particle then becomes:

mq̈ = χpVp∇||E||2(q) (46)

This is the “gradient force” derived originally by Ashkin through use of
geometrical optics.

3.2 Larger Dielectric Particles

The analysis of larger particles is difficult because the effects of interest arise
from “self-interactions”, in much the same way that Bremsstrahlung can be
interpreted to occur due to interaction of a particle with the field created by
itself. For the case of the infinitesimally small particle, one ignores the effect
of the the particle on the fields, making the system very simple to analyse.
The same cannot be said for the larger (order of wavelength) particles.

For larger dielectric particles, the interaction with Lf must also be taken
into account. These interactions give rise to resonances, and hence memory.
One possible path is to incorporate this into the dispersion of susceptibility.
In these cases, though the gradient force remains essentially the same, there
will also be “memory” in the total polarizability of the particle (caused by
either Mie or atomic resonances). This memory in turn gives rise to a velocity
dependent force. This velocity dependent force in turn gives rise to effects
which make damping or laser cooling possible.

3.3 Deformable Cavities

Deformable optical cavities cause two seemingly difficult to handle compli-
cations. Firstly, because they are cavities, there will be a large memory in
the effective polarizability of the system, arising from interactions with Lf.
These systems are deep in the “strongly interacting” regime. A small change
in the cavity shape can have grave consequences for the future evolution of
the fields.

Secondly, the material system itself is no longer described by the few
degrees of freedom of a single particle, but by a displacement field u(x, t)
with its own dynamics.
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4 Conclusions

In this article we studied a possible general framework for the analysis of
the interaction of dielectric materials with the electromagnetic field. We
start by extending slightly, the usual electromagnetic field lagrangian to take
into account the material properties. This approach is made particularly
transparent through the of differential forms and may be interesting in its
own right because it illuminates some of the geometry which is present in
Maxwell’s equations.

From there, it is then very easy to incorporate the dynamics of the mate-
rial itself. In section 3.1, we see how this method gives us the usual “gradient
force”.

For future it study in may be interesting to try applying this formalism to
a strongly interacting system (i.e. particles with Mie resonances, or dielectric
cavities). One path may be through the use of a Green’s function formalism,
where the Green’s function is itself a function of the material configuration
co-ordinates.

A Derivations

A.1 The partial derivative of the Lagrangian Density
L(A, φ,E,B)

The 3-form L of is a function of the local A, φ, E, and B at a particular
point on the manifold. We define the various partial derivatives as:

∂L
∂A
∧ α =

d

dε
L(A+ εα, φ, E,B)

∣∣∣∣
ε=0

(47)

∂L
∂φ
∧ γ =

d

dε
L(A, φ+ εγ, E,B)

∣∣∣∣
ε=0

(48)

∂L
∂E
∧ η =

d

dε
L(A, φ,E + εη, B)

∣∣∣∣
ε=0

(49)

∂L
∂B
∧ β =

d

dε
L(A, φ,E,B + εβ)

∣∣∣∣
ε=0

(50)

(51)

Where α, γ, η and β are 1-, 0-, 1- and 2-forms respectively.
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A.2 Euler-Lagrange Equations for L(A, φ,E,B)

The E-L equations are derived for the action S[A, φ,E,B] by minimizing
with respect to variations in A and φ.

A.2.1 Variations δφ and the Divergence Equation

A variation in φ→ φ+ δφ causes a corresponding variation in E → E−dδφ.
We are left with:

δS =

∫ ∫
∂L
∂E
∧ (−dδφ) +

∂L
∂φ
∧ δφdt (52)

Using

d

(
∂L
∂E
∧ (δφ)

)
=

(
d
∂L
∂E

)
∧ (δφ) +

∂L
∂E
∧ (dδφ) (53)

And assuming the integration area is large enough to make the field terms
zero in the boundary,

δS =

∫ ∫ (
d
∂L
∂E

)
∧ (δφ) +

∂L
∂φ
∧ δφdt (54)

Setting the variation to 0, one arrives at:

∂L
∂φ

= −d
∂L
∂E

(55)

A.2.2 Variations δA and the Curl Equation

A variation in A→ A+δA causes a corresponding variation in E → E−∂tδA
and B → B + dδA. We are left with:

δS =

∫ ∫
∂L
∂E
∧ (−∂tδA) +

∂L
∂B
∧ dδA+

∂L
∂A
∧ (δA)dt (56)

Using

d

(
∂L
∂B
∧ (δA)

)
=

(
d
∂L
∂B

)
∧ (δA)− ∂L

∂B
∧ (dδA) (57)
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d

dt

(
∂L
∂E
∧ (δA)

)
=

(
d

dt

∂L
∂E

)
∧ (δA) +

∂L
∂E
∧ (

d

dt
δA) (58)

Again, setting the boundary terms to be zero, one arrives at:

δS =

∫ ∫ (
d

dt

∂L
∂E

)
∧ (δA) +

(
d
∂L
∂B

)
∧ (δA) +

∂L
∂A
∧ (δA)dt (59)

Setting the variation to zero, one arrives at:

−d
∂L
∂B

=
d

dt

∂L
∂E

+
∂L
∂A

(60)
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