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1. INTRODUCTION TO WHITHAM’S AVERAGING METHOD

Whitham’s averaging method is developed as a general technique for dispersive
nonlinear waves [13, 8]. This kind of methods has significant connections with
mathematics, physics and engineering [6], for example, algebraic geometry, plasma
physics, fiber optics, and string theory.

The general idea is, when we consider a nonlinear periodic wave, we can de-
compose it into a ’slow’ modulated wave and ’fast’ oscillations. We can average
the evolution equation over fast variables, and obtain equations for slow modulated
parameters of the periodic (single phase) or quasi-periodic (multiphase) solutions
of the PDE. This approach is due to Whitham [13] and the averaged modulational
equations are called the Whitham equations.

The idea can be applied not only to integrable equations like KAV or NLS, but
to any evolution equation having periodic solutions.

Whitham’s method can be obtained by a multiple scale expansion type argu-
ment, however, it turns out that variational approach can give a more compact
and significant derivation of the modulational equation. It’s of interest to inves-
tigate the geometric structure of the Whitham’s equation. For example, it has
been proved in [5, 4] that the multiphase Whitham’s equation for KdV equation
(ot = 6pYy — Pezs), and Sine-Gordon equation (g — Yz, = sing) has so-called
’Riemann invariants’, which means that the Whitham’s equations can be diagonal-
ized and is therefore an essential reduction of the original system (a dimension> 3
system does not necessarily have Riemann invariants).

In the following section 2, we will present the geometric formulation of Whitham’s
method by B.A.Dubrovin and S.P.Novikov following [2, 3, 11] , in section 3, we will
prove a rigorous justification of the leading order Whitham approximation for linear
Klein-Gordon equation, which can also applied to nonlinear Klein-Gordon equation.

2. GEOMETRIC MECHANICAL FORMULATION OF WHITHAM’S EQUATION

2.1. Lagrangian Formulation. Suppose the evolution system has Lagrangian
L(q,qs,q:), (for example, Klein-Gordan, KdV, NLS, etc), generally, we can con-
sider equations of hydrodynamic type (¢f = vi*(u)¢), ¢}, = g%), which includes
larger class of equations, e.g., Euler equations for fluid, Yang-Mills etc.

Now suppose we have a m-phase periodic solution of the problem, in other words,
let ¢ = Q(kx — wt,ul,...,u?™) be a function on the m-torus depending on 2m
parameters u',. .., u>™.



ON WHITHAM’S AVERAGING METHOD CDS 205 COURSE PROJECT 2

Define the averaged Lagrangian by averaging the Lagrangian L(q,q,,q:) over
each phase 7°. Since ¢; = wQ@r, ¢z = kQ -, we have,

anw:@mﬂi/uQmwiwxnw¢@4nwmm-

Therefore, the equations of slow modulation waves can be obtained by the Euler-
Lagrangian equation for [ L(k,w,u)dXdT.
Variation of 7 gives

0 0L 0 oL
@1) T
Variation of u gives
oL
2.2 =
(2.2) 5y Y
together with the compatible condition
(2.3) kr +wx =0

Notice here k has the sense of wave number and w has the sense of frequency,
equation (2.2) has the meaning of dispersion relation. Also, formally, equation (2.3)
is the conservation of wave number, and (2.1) is conservation laws of the modulated
energy.

2.1.1. Awveraging Conservation Laws. The Whitham’s modulational equation can
also be derived from averaging the conservation laws of the corresponding system.
Suppose the system has NV local field integrals

I; =/H(‘Pa‘PzﬂPm;---)dﬂU,i:17---=N

Let Qi(p, ¥z, Pzz,---) be the corresponding flux densities, i.e., for the solution
of the original evolution equation, we have,

oP;  0Q;

= i, =1,...,N
ot ~ ozt U
For example, the KAV equation has the following conservation laws,
w4+ Bul +Ugg)e = O
1 1

(§u2)t + (2u® + uuy, — Eui)w = 0

3 1 9 4 2 Ly
(v’ — Euw)t + (Eu + 3u gy + Uz Ffugug) = 0

Actually, it can be proved there exists hierarchy of such conservation laws for
KdV equation.
Now average the conservation laws,

3 :(%ymfa@@m,qmwzg

Q; = (ZW)_m/Qi(tI)(T,u),...)me
therefore, the averaged conservation law is
OP;  0Q;
oT ~— 08X
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Remark 2.1. it can be proved that the form of the averaged equation using La-
grangian formulation is independent of the choice of conservation laws.

2.2. Hamiltonian Structure. Basically, the Hamiltonian structure can be ob-
tained by Legendre transform from Lagrangian formulation. Introduce the function
S(X,T), such that k(u(X,T)) = Sx, w(u(X,T)) = St, which in the single phase
case, is just the phase function. Now let the parameters u also depend on k, w, the
Lagrangian is then £ = £(Sx, St) = L(k,w, u(k,w)).
Perform the Legendre transform
oL

(S7ST) - (Sa‘] = E)

H=H(Sx,J)=JSt — L(Sx,ST), ST = ST(J, S2)
Write in variables (J,k = S;), the slow modulation equations are in Hamiltonian
form with H(k, J)

kr = OxHy
Jr = 6Xer

Suppose the solution is single phase, we can compute J like

7= @0 L@ ke = 0 Q. Shar
= (2m)7! ?{pdq

thus, J is the action variable canonically conjugate to the angle variable 7, which
is also the classical result of adiabatic invariants.

Note that the existence of multiphase solution of the original evolution equation
can be obtained from this action-angle argument.

2.3. Averaged Poisson Brackets. It’s of interest that we can actually directly
average the Poisson brackets of the corresponding system, and the averaged system
is Hamiltonian with respect to the averaged brackets, which is equivalent to the
Whitham’s system.

The Poisson bracket is defined in [2]

Definition 2.2. Poisson brackets of hydrodynamic type are local Poisson brackets
of the form

(2.4) {u’(z),u”(y)} = 9% (u(2))d' (z — y) + b (u(@))uzd(z — y)

Here g% and b?P are smooth functions in local coordinates on the u-space, which
is a finite-dimensional manifold M. For the moment, the expression (2.4) is to
be interpreted formally. With brackets of hydrodynamic type, Hamiltonians of
hydrodynamic type (H = [ h(u)dz) generate equations of hydrodynamic type of
the form ui = {ui(z), H}.

More precisely, the Poisson bracket of any two functionals I; (u), I>(u) has the

form
ol

ol ap
{Il,fz}z/dx((suq(lm)A (SUP(HI))

A= (A%) = (gP(w) 1 + b (w)u)

where
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For example, the KdV bracket write

>8I, d (512
{h. L} = / Su dz (5u)

and d/dx represents the total derivative with respect to x, therefore, for KdV,
{u(z),uly)} =0'(z —y)

Now we have Novikov’s results:
suppose we have N commuting local integrals I; (for example, in exercise 3.3.1

[10]), {L;, I;} = 0, I; = [ P;dz, then we have {P;(z),P;j(y)} = >, Azjts(k)(m —y),
where §(%) (z — y) is the kth order distributive derivative of & function. By the
commuting property {I;,I;} = 0, [ A¥dz = 0, therefore exists G, such that
8,Gi = AY.

Now introduce the averaged metric g (u) and connection b}/ (u)

diw) = (2m)™ / A(Q,Q',...)d"r
9

bl (u) = W(Qﬂ')_m / GY(Q,Q',...)d™r
The averaged Poisson brackets can be defined as

{u(X), 4 (V)} = g7 (u(X))d'(X = V) + b (w(X))uks(X — V)

for i,j = 1,--- ,N. The equations of slow modulation are Hamiltonian with

respect to the averaged Poisson brackets
and averaged Hamiltonian H = [[(27)™™ [h(Q,Q’,...)d™7]dX

3. MATHEMATICAL JUSTIFICATION OF LEADING ORDER TERM

There are several articles [9, 12, 7, 1] considering the justification of Whitham’s
modulation equation, the method we are using [9] is based on the the stability of
the periodic solution and hyperbolicity of the modulation equation.

Let’s consider the linear Klein-Gordon equations

U — Uge — U =10

which is the E-L equation for the Lagrangian

5//%( —u? —u?)dzdt

introduce small parameter ¢ from, for example, initial condition, U = a(X,T') cos¥,

where X =ex, T =¢€t, § = %, a and O are slowly varying.
The averaged Lagrangian is given by
1 2 _ 12 2 a’
Llw,kA) = —AWw’ —k*—1)4+0(*), A= —
27 2

Notice A is the averaged Hamiltonian in general, thus, the variational equations
are

5//£(w,k,A)dXdT =0

And, let w = —6;, k = 6., the E-L equations are
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0A : La=0
0 0
00 : 6—T£w—a—Xﬁk—0

L4 =0is w? = k? + 1, which is the dispersion relation for linear Klein-Gordon
wave.

dg gives 8%(1@4) + %(wA) = 0, which is the conservation laws corresponding to
wave energy.

together with the compatible condition % + g—; =0

We can reduce the modulation equation to 2% + w'(k)2£ = 0, and % +
2 (w'(k)A) = 0, this is a conservation law system, however, it’s degenerate in the
sense that both wave and energy propagated with the group velocity w'(k), given
proper initial condition, we can solve it explicitly by characteristics, and prove that
A has asymptotics A ~ t—1/2

Suppose that U = acosf and u satisfy the same initial condition, a,f satisfy the
modulation equation, and u satisfy the linear Klein-Gordon equation.

Suppose the residue R = (U —u)/e?=7,0< v < 2

g—g = g—;scow —aksin @
o’U , 0%a Oa . . O(ak) 5
9z - € X2 cosG—ea—kanG—ea—Xsm0—ak cos @
oU Oa .
N = a—Tscosﬂ—}-awsmG
o?U , 0%a Oa . O(aw) . 9
52 - € WCOSG+68_TWSIHG+E X sin @ — aw” cos @
thus, let L = 6‘9—; — g)—; — 1 be the differential operator,
2 2
trR=e(L2 04 N o

0X?2 912

where |N| is bounded from above.

Now let S = 9, R, the linear part of the equation for R is 8;(R,S) = G(R, S) =
(S,02R — R),

By Hille-Yosida theorem, the associate semigroup of G is a contraction semigroup
with respect to the energy norm ||(R, S)||3 = [((0xR)?*+R*+S?)dz, Y = H'(R) x
L*(R)

Therefore, we have the exact form of residue R(t) = G(t)R(0) + & f(f Gt —
s)N(s)ds

suppose |N(s)| < C, by Gronwall inequality, we have

IR(#)|| < C1exp(Ce™)

If e7t < Ty, we have ||U — ul|ly < C exp(CTp)e? 7,which means that the error
of modulational solution is uniformly bounded by O(£2=7) up to time O(e~7)
Thus, we have the theorem,

Theorem 3.1. For linear Klein-Gordon equation, if the solution w and modulated
solution U satisfies the same initial condition, then up to time 7, the error is
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uniformly bounded by
lu=Ully <e*

Notice that if we can prove the boundedness of the residue term, which is given
by the stability of the modulational equation solution, this argument can be readily
applied to the nonlinear case. In principle, it can also applied to justify the higher
order approximation, in case we know the stability of corresponding system.

Remark 3.2. this method is from [9] with the same question, but with different
scaling. Consider the solution of the formU = a(X,T)ek*—«t)/c the slow time
T = £2t, and slow space variable X = e(z—w'(k)t), we can found that the amplitude
function a satisfies NLS (—2wdra — 0% a + 3|al?a = 0). By the fact KGE has a
unique solution in Y, NLS has a unique solution in H!(R), and the corresponding
residue term is of order O(¢%), the error estimate can be ||u — Ully = O(e2) up to

O(™2)

Acknowledgement. 1 would like to thank Harish Bhat and Nawaf M. Bou-Rabee for
the stimulating discussions on the project and also for their hard work in TAing
CDS205. We all feel gratitude to Professor Marsden for his especially inspiring and
lucid teaching in CDS 202 and CDS 205.

REFERENCES

[1] W. Dreyer, M. Herrmann, A. Mielke, Micro-Macro transitions in the atomic chain via
Whitham’s modulation equation, WIAS Preprint No. 1032, (2005)

[2] B.A. Dubrovin and S.P. Novikov, Hamiltonian formalism of one-dimensional systems of hy-
drodynamic type and the Bogolyubov-Whitham averaging method, Soviet Math. Dokl., Vol.
27, No. 3, 665-669 (1983)

[3] B.A. Dubrovin and S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices, differ-
ential geometry and Hamiltonian theory, Russian Math. Surveys Vol 44 , no. 6, 35-124 (1989)

[4] N. Ercolani, M. G. Forest, D. W. McLaughlin and R. Montgomery, Hamiltonian structure for
the modulation equations of a sine-Gordon wavetrain, Duke Math. J., Vol. 55, no. 4, 949-
983(1987)

[5] H. Flaschka, M.G. Forest, D.W. McLaughlin, Multiphase averaging and the inverse spectral
solution of the Korteweg-de Vries equation, Comm. Pure Appl. Math., Vol 33, no. 6, 739-784
(1980)

[6] D. D. Holm and P. Lynch, Stepwise Precession of the Resonant Swinging Spring, SIAM J.
Applied Dynamical Systems, Vol. 1, No. 1, 44-64, (2002)

[7] L.A. Kalyakin, Long wave asymptotics, integrable equations as asymptotic limits of non-linear
systems, Uspekhi Mat. Nauk, Vol 44, No. 1, 5-34 (1989)

[8] A.M. Kamchatnov, Nonlinear periodic waves and their modulations, an introductory course,
World Scientific, Singapore (2000)

[9] P. Kirrmann, G. Schneider and A. Mielke, The validity of modulation equations for extended
systems with cubic nonlinearities, Proceedings of the Royal Society of Edinburgh Vol 122A,
85-91 (1992)

[10] J.E. Marsden, and T.S. Ratiu, Introduction to Mechanics and Symmetry., Texts in Applied
Mathematics, 17, Springer-Verlag; (Second Edition, March 6, 2002) .

[11] S.P. Novikov, The geometry of conservative systems of hydrodynamic type, the method of
averaging for field-theoretical systems. Russian Math. Surveys Vol 40, No. 4, 85-98 (1985)
[12] G. Schneider, Justification of modulation equations for hyperbolic systems via normal forms,

Nonlinear differ. equ. appl., Vol 5, 69-82 (1998)
[13] G.B.Whitham, Linear and Nonlinear Waves, Wiley, New York (1974)

APPLIED AND COMPUTATIONAL MATHEMATICS, CALTECH



