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Abstract

In recent years, academic as well as industrial interests on the sub-
ject of chaos has been growing as more and more systems from various
disciplines exhibit the well known signature of chaos. In this report, the
chaotic planar double pendulum is considered. Simulations have been

performed on the unactuated system and results verifies the presence of
chaos.

1 Introduction

In recent years, academic as well as industrial interests on the subject of chaos
has been growing as more and more systems from various disciplines exhibit the
well known signature of chaos. From the Lorentz system [6] to applications in
lasers (4], disc dynamo [5], and baroclinic waves [7, 8], the importance of the
understanding of the theory of chaos is well established and reinforced as the
understanding grows deeper.

In this report, the chaotic planar double pendulum is considered. Shinbrot
et al [9], Burov [2], and others have considered the problem both from an exper-
imental as well as theoretical perspective. The system is described in Figure 1.

2 Derivation

The Euler-Lagrange approach is used to cerive the governing equations of the
system. The potential (V) and kinetic energy (K) and the Lagrangian (L) of



Figure 1: The chaotic planar double pendulum

the system as depicted in Figure 1 are
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The Euler-Lagrange equations as a system of first order ODEs are thus
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where u4 = 1+ 2 and g is the gravitional constant. For this report, the various
parameters (m;,ma,{1,12,9) are chosen to be (1.3,1,1.2,1,9.81) respectively.

3 Simulations and Results

The simulations are carried out in C using simulate written by Professor Richard
Murray at Caltech and contributed by Sudipto Sur and Robert Behnken. For
the unactuated system, twelve simulations are run with each simulation starting
from a slightly different set of initial conditions from the others. These initial



run || 6, | 62 )| 7 || 2
1 90 || 0 0 0
2 90 || 5 0 0
3 8 || 0 0 0
4 8| 5 0 0
5 80 { O 0 0
6 80 || 5 0 0
7 5] 0 0 0
8 1 5 0 0
9 70 || O 0 0
10 (70500
1|65 000
12 |65 5 [[ 0 [[ O

Table 1: Initial conditions for the simulations

conditions are listed in Table 1. Each simulation is carried out for 25 seconds in
real time. The presence of chaos is verified as shown in the simulation results
with the first two of the initial conditions (Figure 2).

The results of each simulation is made into a movie in Matlab and various
frames of each movie are compared. A sample of the comparison plots are
included as Figures 3, 4, 5 where simulations with the first four initial conditions
in Table 1 are carried out. In each of these plots, the colors represent the time
indices of the simulation with yellow as the starting color, dark red the ending,
and the colors are interpolated between the starting and ending time indices.
Figure 3 shows the simulation of time index 0 to 0.7 seconds, Figure 4 10 to
10.7 seconds, Figure 5 20 to 20.7 seconds, and Figure 6 24.3 to 25 seconds.
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Figure 2: Simulation results with the first two initial conditions
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Figure 3: Frames for 0 to 0.7 sec



Initial condition: thetal = 1.571, theta2 =0
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Figure 4: Frames for 10 to 10.7 sec
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Figure 5: Frames for 20 to 2.7 sec
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Figure 6: Frames for 24.3 to 25 sec



Chaotic attractor with i.c.: thetal = 1,571, theta2 =0
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Figure 7: Chaotic attractor from simulating with first i.c.

The simulations of the first four initial conditions are also carried out for
a prolonged period of time (1000 seconds) to estimate the chaotic attractor
in the (6;, #>) coordinates. The estimated chaotic attractor resulting from
simulating the first initial condition is shown in Figure 7. All the estimated



Chaotic attractors of 4 simulations with different i.c.'s
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Figure 8: 4 chaotic attractors from simulations

chaotic attractors resulting from simulating the first four initial conditions are

plotted together in Figure 8 to verify the validity of the presence of the chaotic
attractor 1.

4 Further work

Similar to the Lorentz system [6], the dynamics of the planar double pendulum
is chaotic and yet the governing equations are remarkably simple. As mentioned
in the Introduction section, systems from different disciplines have been found
to resemble the Lorentz system, and controls applications is thus a relevant
issue {3, 10, 1, 11]. Similarly, one can consider the controllability of the planar
double pendulum and the performance of controllers when applied to the system
with actuation entering in various different places.

I'theoretically speaking, if the simulations were carried out to an inifinite amount of time,
these chaotic attractors should be identical as sets on the (8, 8;) phase space
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