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Abstract

In this report, the derivation and analysis of the triple-spherical pen-
dulum is considered. A Lagrangian approach is taken and the relative
equilibria of the system, with the condition that all the beads are pointing
down, are found. The stability of these relative equilibria are then consid-
ered by applying the energy-momentum method, and results showed that
there are two bifurcation parameters and four relative equilibrium solu-
tions, of which one is the trivial rotation and the remaining are “cowboy™
solutions. In particular, for the caseof r=1,f =1, m=2,and 1 = 1,
there is only one stable “cowboy™ solution and it resembles the double-
spherical pendulum case in which the upper two beads portion acts like a
single string with a mass.

1 Introduction

In the article by Marsden and Scheurle [1], the dynamical features of the double
spherical pendulum was studied using Lagrangian reduction and bifurcation
theory. The next simplest case in the pendulum family is the triple-beads case.
In this report, the triple spherical pendulum case is considered (Figure 1).

2 Derivation

To analyze the dynamics of the triple spherical pendulum, a similar approach to
Marsden and Scheurle [1] is taken. The configuration space is Q = %, x S, x
5%, with the constraints ||qs|| = ! where q; € S%, and ; denotes the length of
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Figure 1: Triple spherical pendulum set up

the ith string for i = 1,2,3. The derivation starts with the Lagrangian:

e e e 1 . 1 . 1 .
L(q1,92,q3,q1,42,43) = 5"11"(11"2 + 5"‘?"‘12"2 + 5'"3"‘13"2 ~

m19q: -k — mag(qy +qa) -k -
mag(q1 +q2 +9qa) -k (1)

where k is the unit vector pointing in the z-direction. The conjugate momenta
are defined to be:

= — for i=1,2, 2
pi 94, or i 3 (2)
As a result, the Hamiltonian under the Legendre transformation is:

3 - L3
H Y piai — L(q1,92,93, 41, d2, ds)

i=1

_ 1 2 1 2 1 2
= llp1 = pall* + G lipa - psll* + 2msllpall +
migqy -k+mag(qi +qz) -k +maglqr+qz+qa) -k (3)

The action of simultaneous rotation of all three spheres through an angle 4§ is
symmetric about the z-axis. In other words, if R is defined to be the action of
rotation through an angle 6, then the action

(qll q2, q3) — (Rﬂqll R0q31 Roq:s)



is symmetric. Let the rotation vector be wk where w € R. The infinitesimal
generator corresponding to this rotation vector is:

w(k x q1,k x q2,k x qa3)

The corresponding conserved quantity is the angular momentum about the z-
axis:

< J(q1,92,93,P1,P2,P3),wk> = w(p1-(kxq1)+pa-(kxqa)+ps-(kxqs))

= wk-[q1 x P1+4q2 X p3 +q3 X p3)
=J = k-:[q1 xp1+qa2 X Ppa+q3 X p3]

Substituting equation (2) for i = 1,2,3 and rearranging:

J = k-[m(q1 x q1) + ma(q1 +qa) x (41 + q2) +
ma(q1 + a2 + q3) x (q1 + 92 + q3)] (5)

For simple systems, the locked inertia tensor (II) is the moment of inertia of the
system treated as a rigid system. For the case of the triple spherical pendulum,
the locked inertia tensor is calculated to be:

I(a1,92,93) = mullaz I’ + mollay + azli* + msllai + a3 + o3|

where |jqi(|? = [jall® — |l - k||? for i = 1,2,3, i.e. the projected length of the
vector q; on the z-y plane. With this expression for the locked inertia tensor,
the amended potential (V) can be obtained as follows:

1 -
Vu(Q1,92,.93) = V(qi1,q2,93) + 3 < .1 Ya1,qz2,q3) >
= mgq: -k+mag(q1 + qa2) - k+mag(ar + g2+ q3) -k +

L s (6)
2 mallat P+ mallar + Gt P+ mallar + oF + &P

3 Relative Equilibria

The interesting equilibria of the system is the relative equilibria of the system.
These equilibria characterizes the states of the system as the three spheres rotate
uniformly about the z-axis. These equilibria can be computed by determining
the critical points of V, [I].

The solutions characterizing each pendulum pointing down are first searched
for !. The constraints for the equilibria being considered are the length con-
straints on each vector:

@=~T-latr  for i=1,23

!the trivial solution q;+ = 0 for i = 1,2,3 is not being considered

(4)



By substituting the above constraints into the amended potential and rearrang-
ing, the following is obtained:

Vilar* a2t qst) = —(m+ma+ m3)g\/1 ~ llas (% -
(m2 + ma)g\/13 — llaz* > — magy/8 — llas* |2 +
2

oI (7)

The critical points are found by setting the derivatives of V,, with respect to
qit to 0 for i = 1,2,3. The conditions thus obtained are:

L 2
(my +my + ma)g-lfil—ll](h"'l-l; = %[(ml +mg + mS)QIL + (8)
(m2 + m3)qzt + maqst]
(my +me)g e = B lm rma)art +aat)+ (9)
V5 —Tlaa | L
m3qa™)
qa"

2
[l 1 Ll 1
myg———= = [ma(q1"+q2" +q3)] (10)
Vi3 —llast|]? o2

By definition, q;* are vectors on the x-y plane, which impliesthat q;1//qa*//qa*.
This condition allows the definition of the following parameters:

‘Izl' = 01(11“’
‘l:i'L = ﬁ‘h"‘
lartll = Ay

The shape of the relative equilibrium can be characterized with a, 3, and A.
Furthermore, define the system parameters as follows:
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With these definitions, the conditions (7}, (8), and (9) can be rewritten as:

(";ti\h'é’)l!:- = ‘I;_:[m+a+rh(1+a+ﬂ)l (11)

" 2
_(;12'?:_1?\011 = g—z[l+a+rh(l+a+ﬁ)] (12)

9B u
———————i=2 = ﬂ2A2[1 = F(l + a4+ ﬁ) (13)

The holonomic constraints that ||qi*|| < /; for i = 1,2,3 implies the following
constraint on A:
r r
0 <A< min{~,-,1
<A< min{Z. 21}
Note that if we assume that m = 0 and # = 0, that is, the double spherical
pendulum setting, we do recover the double pendulum equations as in Marsden

and Scheurle [1} 2. From the above equations, conditions for @ and # can be
obtained:

mta+m(l+a+p)>0 and
l+a+mil+a+ﬁ)>0 and
l+a+p
—_>0
B

Dividing equations (11) by (12) and (13) by (11), the following expressions on
A2 can be obtained:

. L2 -2
2 _ 1
A= _L'i! o7 (14)
L2 -
where
2 = [(a+ar‘n)m+a+rh(1+a+ﬂ]

2
m+ m 1+a+ﬁz(1+a+ﬂ)]
3 = (fmtatnitatg),

(m+ m)(1+a+ B)
To obtain the values of the shape variables of the system, one realizes that A2
has to evaluate to one value from both equations ((14) and (15)), subjected
to the constraint 0 < A? < min{(%)?, (%)2, 1}. By equating equation (14) to
equation (15) and rearranging, a relation between a and £ is obtained:

(L3 = r*)(L] - %) = (L3~ P)(L2 - o) =0 (16)

2equation (13) (or equivalently equation (10)) drops out since th = 0 <> m3; =0
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Figure 2: Different possible types of cowboy solutions

In other words, given the physical constraints r, #, m, and m, the relative
equilibria are defined by solving equation (16) for either a or 8 and substituting
the result in A2. Another point worth noting is that there exists three possible
kinds of “cowboy” solutions {Figure 2):

e a <0and 8 > 0 ¢« the “true” cowboy solution for the triple spherical
pendulum case 3;

® a>0and 8 <0 & a “pseudo-"cowboy solution: the upper two beads
portion acts like a single string with a mass and the system can be thought
of as a pseudo-double-spherical-pendulum;

¢ a < 0and § < 0 & another “pseudo-"cowboy solution: the lower two
beads portion acts like a single string with a mass and the system can be
thought of as another pseudo-double-spherical-pendulum.

For a given set of parameters (r, 7, m, /i), the analysis of possible combinations

of @ and # will determine the existence of each of these types of cowboy solutions.
For example, for the case of r = 1, # = 1, m = 2, and th = 1, 4 different

relative equilibria solutions are obtained and a sample of them is as follows:

¢ a=-17¢4 [ =0.805and A? = 0.177: the first kind of the cowboy
solution;

3one way to visualize this scenario is to think of the relative equilibrium as a “zig-zag"”

when projected onto the y-z plane



Solutions to m=2, \hat{m}=1, r=1, hat(r}=1
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Figure 3: Solutionstor=1,* =1, m=2,and m=1

e a=-03 & g =-1.5412 and A? = 0.345: the third kind of the cowboy
solution:

e a =03 4= -2354 and A? = 0.03: the second kind of the cowboy
solution:

e a=114 g =1.169 and A? = 0.537: the trivially rotating solution.

The solutions for -3 <a<3andr=1.%=1, m =2, and 2 = |, are shown
in Figure 3. For fixed m = 2 and 1 = 1, Figure 4 shows the effect of large and
small value of the ratio . So for large &, it appears that the trivial rotation
solution does not exist for the specified range of a.

4 Stability of Equilibria

To determine the stability of the relative equilibria of the triple-spherical pen-
dulum system, the idea of the energy momentum method (2] is employed. Polar
coordinates (r;,0;) are assigned to q;* for i = 1,2,3. Thus, ¢ = 6, — 4; and
® = 83 — 0, are the S'-invariant coordinates. By putting the conserved angular
momentum J from equation (5) and the Lagrangian L from equation (1) in
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Figure 4: Solutions to m = 2 and #m = 1 for large and small r/r

terms of the polar coordinates:

J = mlrfél + m-_;[ri"ﬂ.; + 1'-:_':0.2 + rirabycosé + rirafacoso —

r§03

F17r28ing + r1rasing] + m3[—r—3‘)—:—’- + 7120 +ri0 + 2= 4

2

rlrgélcos¢ + r1r292008¢ + r;r;-,é;cos(q& + 43) +

r1r3153cos(¢ + d)) + r2r3ézcos<i3 + rgraéacos$ +

rifscos(¢ + ¢ + 0;)
2

rirasin(¢ + é) — Farasiné + rgr'-;,sin& +

rifasin(¢ + & + 0;)
5)

4

1 .9 242 "fri!
-mry + 0 + 5——
2 [ 1 171 I? — r?

raracos(¢ + ¢ + 61)
r +

— Firasing + ryFo8ing — firasin(¢ + @) +

l'3f‘3$il'l(¢ + ¢ + 01) _

2

(17)

- 1 . . M < A
+ o\ = ril+ gmalif + 7 + 67 + 1303 +

2ryracosg + 2r, rgélégcos¢ + 2ry 1.‘2 élsiné - 2r rgégsind: +

rify rafa

l « + 9 «
(= + ==+ 9(\/ ] = 1]\ = )]+ cma[f + #2 + 3 +
\/l‘z_—Tf m) g( 1 1 2 2)] 9 3[ 1 2 3
:tﬁ + r§0'2"' + r:,"og + 27y 73cos¢ + 24 rgél égcos¢ + 25y r3cos{¢ + 45) -+
Lryrat 03(:05(1:) + 21.'27-‘3608&) “+ 2r31’30.20.3(308d; +
Ir1£2018i00 — 27 ro625ind + 2r1 796, sin(o + ¢) —

2r raéasin(d) + 0) -+ 2!‘21.'30.28in¢.3 - 21.'91‘30'38int}-5 +

r 1"1 ra ,‘-._,

( +

5 -3

.11_5 2
Vit T

._.__)'3 +

sy =13+ 8 = rd+ /B = r2))

(18)




the amended potential V,, can be rewritten in the following form:

Vu = —mugy/l} -r}- mzy(\/lf —r2 B -r) - (19)

o Lp?
mag(y/1} — v+l —rt + /B - r2) + e

where

I = murf+ma(r} +r} + 2rirycosd) +
ma[r} + r2 + r3 + 2riracosé + 2ryracos(d + ¢) +
2rar3c0s4)
If mg is set to zero, the double spherical pendulum case is again recovered.

One way to determine the stability of the relative equilibria of the system is to
calculate 62V,,. After some algebra, it can be obtained as follows:

ay bl Cy 0 0
bl as C2 0 0
0

62V,, =]c; ¢ az 0 (20)
0 0 0 aq €4
0 (t] 0 €4 Qs
where
o = p2[4(a + m + m + am + fn)?] +
= Aima(2a + a? + m + m + 2am + a?m + 20 + 2af8m + B#2m)3
g (=m — ) +
Aimy(2a + a? + m + m + 2am + a?m + 26 + 2a6h + B32m)?
gma(m + ) + g,\zlfmg(m + m)
VI (T=3) (1~ 22))3
b = #2[4(1 + a + 1 + amn + Brn)(a + m + 11 + arm + Brm)]
! Alimy (20 + o2 + m + 1 + 2am + a2 + 20 + 2aPm + F2m)3
#(=1—1h)
Atima(2a + o + m+ 1 + 2am + a2 + 2010 + 2afmm + f2w)?
o = #2[4(1 + a + B)n(a + m + 1 + ari + fra) — m) +

Atlima(20 + a® + m + 1 + 2amm + o’ + 20 + 2afm + f2m)3
2 -
—ucm

Aima(2a + a? + m + m + 2a1h + arh + 20 + 2281 + B2m)?




p2[4(1 + a + m + am + fm)?] +
Mimy(2a + a2 + m 4+ m + 2amm + a?2m + 20 + 2afh + 2m)3
#2(=1 - ) +
AlIma(2a + a? + m + m 4 2a1 + a2m + 20m + 2a8m + §21m)?
1
gma(l+m)  gAlimac?(l 4 i)

VEIT=a?)?) © ((r? - o2)2))}

241 + o + B)i(l + a + i + am + fr)] +
Alimsy(2a + a? + m+ 1 + 2arh + a?mm + 28h + 2a 8 + 32m)3
—uim
Aima(2a + a? + m + m + 2arh + a?rh + 28m + 2afin + F21h)?

ca =

p2[4m*(1 + a + B)?) +
Alima(2a + a? + m + i + 2am + a?rh + 207 + 2a8%h + F21)3
-
XTimy(2a + of + m + 1 + 2tk + ot + 207 + 2afm + B T
gmam g 2 2 mamB?
(72— 8207 ~ (13(72 — p2A2))3

a =

(e + arit + Brin)u?

9 = Aima(2a + a2 + m + 1 + 2a1mh + o + 28 + 2a3m + §2n)?

Brap?

“ = NEm2a+ ol +m+rht 2am+ o+ 20 1 Zafm + Fm)E

(14 a)Bmp®

B = Nlm;(2a+ o+ m+ 7+ 2am + o’ + 25m + Zadm + F)2

As explained in Marsden and Scheurle {1], the signature of §2V,, determines the
stability of the relative equilibrium of interest. For the case of r = 1, # = 1,
m =2, and 1 = 1, the signature of §°V,, is as follows:

-2<a<~1 = (-=--,-,-)
—“l<a<l <= (===—-)
0<a<l = (-,—-,+,—,-)
I<a<?2 <<= (+,+,+,+,+)

So only the trivial rotation and the second kind of cowboy solution are stable.
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5 Linearized Equations of Motion and Bifurca-
tion Analysis

The Euler-Lagrange equations of motion can be obtained for (ry, r2, r3, 0y, 02, 83)
from the Lagrangian described in equation (18). The resulting equations can
then be dropped down to J=!(u)/G, where G, = G = Lie group for Abelian
groups. This operation amounts to rewriting the Euler-Lagrange equations in
terms of ¢ and ¢, as defined before, using the equivariant momentum map J
(which is set to u) described in equation (17). The resulting equations can
then be linearized about a given relative equilibrium solution to determine its
stability. The linearized equations should take the form:

where

and

my

my2

ms

ma2

mas

Mi4Sz+Azr=0

T = (rlvr2y r3, ¢l ¢)
my mya ma 0 0
my3 ma2 me3 O 0
M = |mg3s ma mas 0 0
0 0 0 myq4 mys
| 0 0 0 mys mgs
[0 0 0 514 S15
0 0 0 §24 8725
S = 0 0 0 834 S35
—814 —824 —83¢ 0 O
|—815 —85 —s35 0 O

(m1 4+ m3 4 m3)

1-2A2
a)?

= mrmlt e
- B
= ma(l+ \/(I—AT)\/(f'z-ﬂzz\z))
_ (ma 4+ ma)r?
T T2 a2
= -
=l e )
- '7137'2

11
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(21)



A23ma(m — 1){a? + ha® + afmh)

mas = 2a + a? + m + 11 + 2o + a?rh + 26b + 2a8m + B
mmaa B3 (m - 1)

45 = Zatal+m+m+ 2am+ alm + 20 + 2afm + fim
mmaaB? A% (a + 1)

mss =

2a+ a? + m+ ™+ 2am + a?m + 20 + 2afm + 2

and A is the matrix given by equation (20). At the time of writing this report,
the author has not finished the algebra needed in computing the matrix S,
though it should be skew-symmetric in theory [1]. Again, note that the matrices
M and A reduce to the case of the double-spherical pendulum when ms3 is set
to zero, and S should also, in theory.

Given the linearized system described in equation (21), the characteristic
polynomial p(y) (with eigenvalue v) can be obtained as:

p(v) = det[y*M + 95 + A] (22)

Given the various relevant parameters (r, #, m, 7, e, B, and u). the linearized
stability of a relative equilibrium solution can then be determined, and bifurca-
tions can be observed as the changes in the parameters alter the nature of the
eigenvalues.

6 Discussions and Further Work

In this report, the triple-spherical pendulum is considered. The relative equi-
libria are obtained and their stability analyzed using the concept of the energy-
momentum method (2] with an amended potential. In an attempt to character-
ize the bifurcations behavior of a relative equilibrium of interest, the equations of
motion are linearized in terms of the S!-invariant angles. A compntational prob-
lem in obtaining the matrix associated with the magnetic term is encountered
and this particular matrix is not completely computed at the time of prepara-
tion of this report, though the steps for computing this matrix are outlined in
the previous section.

Despite the problem mentioned above, some interesting behavior is observed
with the triple-spherical pendulum case:

o there exists two bifurcation parameters (a and $) as opposed to one (a)
in the double-spherical pendulum case;

¢ the existence and nature of relative equilibrium solutions depends upon
the physical parameters (r, #, m, 1) of the system and only exist for
certain combinations of values of o and 3;

o there exist three distinct kinds of “cowboy” solutions; for the case of r = 1,
r=1,m =2, and 1 = 1, the only stable solutions are the trivial rotation
and the cowboy solution that resembles the double-spherical pendulum

12



case where the upper two beads portion acts like a single string with a
mass.

The first and the third items suggest that there are certain similarities between
the double- and the triple-spherical pendulum cases. The analysis technique
applies in both cases, and the results are similar 4.

Appendix

By assigning polar coordinates (r;,8;) to q;* for i = 1,2,3, the following re-
lationships can be obtained and used to rewrite equations (1), (5), and (6) as
(17), (18), and (19) respectively.

1‘39‘1

r'fél + r%éz + rlrgélcos(ﬂg -0)+
rirabycos(f2 — 0,) — Fyrosin(fy — 6y) +
™ igsin(Bz band 31)

k- [q1 x 44}
k-[(q1 + q2) x (41 + §2))

]

: 2

k-[(qa+92+qs3) x (1 + 42+ da)] = —222'+7'f91+1‘§9.2+%+

rlrgéxcos(ﬂg -61)+ rirgégcos(oz -0)+

rlraélcos(ﬂa - 6) + r1r3é3c08(93 -6,)+

rzrségcos(ﬁs - 02) + rgraéscos(Oa — 02) +

rafscos(203)  rfacos(20s)

st~ 3 -

i'lrzsin(ﬂg - 01) + ru"gsin(ag - 91) -

i-lrasin(ﬁa - 91) + 1’11"33ill(93 - 01) -

rarasin(f3 — 02) + rorfssin(fa — 62) +

rarasin(26s) _ r3r3sin(263)

2 2
2:2
. ) . rip
lal® = 54 et 0
lar + @al* = #2473 +r}02 + 1363 +

21"11"2(:05(93 -~ 01) + 2r1r2é1égcos(02 - 01) +
21'11.‘29.18in(02 - 01) - 21"1r2023in(92 - 01) +
( 1y rof2

—_— —)2
\/ll —f'l \/12—1'2

4in fact, given a clever enough coding scheme with a software package capable of symbolic
mathematical manipulations (such as Mathematica or Maple), the case of n-tuple pendulum
can be studied where n is completely arbitrary; the inputa to the software can be the physical
constants m, and ; for { = 1,2,... ,n and the outputs are the bifurcation/shape parameters,
possible solutions, stability results with §2V),, linearized equations of motion on J~! (1)/Gu,
and the bifurcations behavior based on the nature of the eigenvalues
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s+ @z +asl® = #f +7f +73+ri6] + 1363 +
r§0§ + 2ryocos(f2 — 91) +
2ry126, 62c08(0; — 0,) + 27 7acos(f3 — 01) +
2r raf, 8acos(fs — 0,) + 2f7acos(fz — 62) +
2r3r3égé3cos(03 - 02) + 2!’17"20.18'm(02 - 01) -
271 r2028in (02 — 8;) + 2r1736,sin(f3 - 6;) —
27y r3fasin(fz — 01) + 2raafasin(fs — 6,) —
™

——+
Vil —ri

2For3fasin(fa — 02) + (

rafy n r3fa 2
3-r3 Vi - 7'.:52
harl> = rf
lai +azll? = rf+r}+2rircos(d2 - 6y)
oy +az +aslI> = rf+r3 413+ 2rirycos(f; - 6;) +
2ryr3cos(f3 — 6y) + 2rarscos(fz — 0>)
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