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Abstract: In this paper we study the geometry of configurational forces. We first review
the efforts in understanding and formulating configurational forces in the framework of
continuum mechanics. A brief formulation of continuum mechanics from a geometric
point of view is given. We then give a geometric treatment of configurational forces. In
the end, configurational forces are studied in spacetime and multisymplectic continuum
mechanics.
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2 CONFIGURATIONAL FORCES AND THEIR HISTORY

1 Introduction

Driving (configurational, material, etc.) force in continuum mechanics has an old history and many
researchers have studied it from different points of view. Understanding configurational forces
and their balance is important in formulating the evolution of defects in a solid in the setting of
continuum mechanics. Driving force in continuum mechanics was introduced by Eshelby [4, 5, 6]
and was elaborated by many other researchers (see [1, 9, 12, 18] and references therein).

Understanding geometric aspects of continuum mechanics is very important in having a con-
sistent theory. A good example of the lack of geometric insight in the literature of continuum
mechanics is the existence of different objective stress rates and the belief that some stress rates
are more objective than others. Indeed all the objective stress rates are different associated tensors
of a Lie derivative (see Marsden and Hughes [14] for more details). In addition to giving a deeper
theoretical understanding of continuum mechanics, the geometric approach enables one to develop
more efficient and consistent numerical techniques (see Lew et al. [13] and references therein).
We believe that a geometric study of configurational forces is missing. This paper aims to fill this
gap.

This paper is organized as follows. Section 2 reviews some of the important contributions in
the literature of configurational forces. In the course of this review some comparisons and obser-
vations are made. Geometry of continuum mechanics is reviewed in Section 3. Variational and
Hamiltonian structures of continuum mechanics are briefly explained in Section 4. In Section 5,
we study configurational forces from a geometric point of view. Spacetime formulation of config-
urational forces is given in Section 6. Section 7 studies configurational forces in the framework of
multisymplectic continuum mechanics. Finally, conclusions are given in Section 8.

2 Configurational Forces and Their History

The idea of driving force in continuum mechanics goes back to Eshelby [4, 5, 6]. Understanding
driving force is important in developing evolution laws for movement of defects. Dislocations,
vacancies, interfaces, cavities, cracks, etc. are examples of defects. Driving force on these defects
causes climb and glide of dislocations, diffusion of point defects, migration of interfaces, chang-
ing the shape of cavities and propagation of cracks, to mention a few examples. Eshelby defines
the force on a defect as the generalized force corresponding to position of the defect, which is
thought of as a generalized displacement. Eshelby studied inhomogeneities in elastostatic systems
by considering explicit dependence of the elastic energy density on position. Suppose the elas-
tic energy density has explicit dependence on X (position of material points in the undeformed
configuration), i.e.,

W =W(p,F,X) (2.0.1)
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where ¢ and F are deformation mapping and deformation gradient, respectively !. Eshelby con-
siders an open neighborhood €2 of an isolated defect and shows that,

ow .
Frefect / - av = / DivE dV = EN dA (2.0.2)
Q (3X )explicil Q an

where,
E=WI-F'pP (2.0.3)

is Eshelby’s energy-momentum tensor, P = %_vg is the first Piola-Kirchhoff stress tensor and
(a_é,’\{—)explici[ is differentiation with respect to X when all other independent variables are fixed. It
turns out that for a crack (thought of as a defect) this is nothing but J-integral [20].

Knowles [12] and Knowles and Abarayaneh [1, 2] chose a different point of departure. Suppose
there is a surface of discontinuity S(¢) moving in a continuum. They look at the rate of dissipa-
tion due to this surface of discontinuity. They observe that the rate of dissipation may be written
as a surface integral. The integrand is proportional to normal velocity of the moving surface and
what is paired with the normal velocity is nothing but the normal component of the jump in Es-
helby’s energy-momentum tensor. Knowles [12] looks at the rate of change of elastic energy in a
domain D that intersects with the surface of deformation gradient discontinuity & (in the reference
configuration),

Ut) = 5? f W(p,F,X)dV, DNG&#0 (2.0.4)
D
He shows that,
Ut) = / PN . vdA — / [E]N - VdA 2.0.5)
ap 5t

where 5, = ;' (S(t)) and S(t) is the surface of discontinuity in the deformed configuration at
time {. Note that this surface is evolved in the reference configuration, i.e., at any moment ¢ the
deformed configuration is the motion of a new reference configuration. Even with this point of
view which is different from that of Eshelby’s original idea, Eshelby’s energy-momentum tensor
E shows up. Here [g] = (9)* — (g)~", where (g)* and (g)~ are outer and inner traces of g on the
surface of discontinuity. It should be noted that [[E]]N can be thought of as a force per unit area
associated with the material surface of discontinuity.

Abeyaratne and Knowles [1] consider the inertial effects and show that the driving force on a
surface of discontinuity of deformation gradient has the following form,

f=n-[pp1 —FTT + %pV,fC]]ﬁ (2.0.6)

where 1 is the free energy, 1 is the identity tensor, F is the deformation gradient, T is the Cauchy
stress tensor, C is the right Cauchy-Green deformation tensor and V, is the normal velocity of the
surface of discontinuity 2. Abeyaratne and Knowles [1, 2] introduce kinetic relations for evolution
of surfaces of discontinuity. Their kinetic relations have the following form,

Va(z,t) = A(f(z,t)), =€ S(t) (2.0.7)

'All the notations used in this paper are explained in Section 3.
2V, = V- i, where V = V(z,1) is the velocity of the point  on the moving surface of discontinuity S(¢).
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where A is some function. The above equation closes the system of partial differential equations
governing an elastodynamic problem with moving surfaces of discontinuity.

Gurtin [9, 10] studies configurational forces from a more abstract point of view. He believes
that one should view configurational forces as basic primitive objects rather than variational con-
structs. This would imply that configurational forces will have their own balance laws. Gurtin
introduces referential control volumes (RCV) and writes the balance laws for them. This is a nat-
ural thing to do for a continuum with defects. Movement of a defect is independent of its elastic
motion and this requires a larger configuration space. This will become clearer when we give a
geometric picture of configurational forces. Boundary of an RCV evolves with the reference con-
figuration. Gurtin considers a local parametrization of the boundary of an RCV, 9R(¢) and defines
its velocity by,

v(X,t) = %X(ul, ug, t) (2.0.8)

where X = X(uy,us,t) is a local chart for 9R(t). The normal component of this velocity V, is
intrinsic while the component that lies in the tangent space of 9R(t) depends on the parametriza-
tion. 3 When a surface of discontinuity moves, there is some removal and addition of matter in any
fixed part of the continuum. Gurtin calls this accretion. Accretion is independent of deformation
map ¢ and hence can be thought of as an independent kinematical process. This leads us to expect
to have an independent system of configurational forces.* Introducing a configurational stress ten-
sor P<"8- and imposing the invariance of ‘working’ with respect to reparametrizations of R (t),
leads to the following balance equation,

peoie L FTP = 71 (2.0.9)

where 7 is a bulk tension, which is work conjugate to volume change of R(t) due to accretion.
Then, invariance of entropy inequality with respect to reparametrizations of R () implies that
7 = U, the free energy density. This and Eq. (2.0.9) yield,

perfie = ¢ — FTP = E (2.0.10)

i.e., the configurational stress tensor is nothing but Eshelby’s energy-momentum tensor. Gurtin
defines a configurational body force field (internal configurational force) B<fie- which does not
contribute to ‘working’ or entropy inequality as material is being removed or added only through
the boundary of an RCV. A balance of configurational forces is postulated which states,’

/ Peomie 1A + / B gy — 0 (2.0.11)
R(t) R(t)
Or,

DivPeoris 4 Beonfie. — (2.0.12)

This suggests that there is a momentum map related to this symmetry. What is it?

4This statement can be made more rigorous and will become clearer in our geometric treatment of configurational
forces.

$Think about a momentum balance of configurational forces and its importance and implications. Specific exam-
ples in fracture mechanics are called M- and L-integrals. Are there any applications for these?
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Now consider a nonhomogeneous elastic solid, i.e., ¥ = ¥(F, X). It can be easily shown that for
such a material,

ov
Beovfis — _(Z— TR 2.0.1
(6X expl. + F ) ( 3)
This is now related to Eshelby’s idea when B = 0,%
fect 3\11 config. "
Fefct — [ —_| JV = [ —B°"84dy = | ENdA 2.0.15)
Q oX expl. Q 80

Gurtin also considers surfaces of discontinuity of deformation gradient (phase boundaries). Sup-
pose there are two phases separated by a smooth surface S(¢). Gurtin defines a surface con-
figurational stress P*"" and an internal configurational surface body force B**". The following
configurational balance law is postulated,

/ Pwnﬁg'NdA-l- Bconﬁg.dV+/
aR(t)

P Nds + / BYdA =0 (2.0.16)
SR(H)NS(t)

R(t) R()NS(e)

where N is the unit formal to dR(t) N S(¢).

Maugin and Trimarco [17] and Maugin [18] write the balance of linear momentum in Lagrang-
ina coordinates and introduce a pseudomomentum.” Gurevich and Thellung [8] use a similar idea
to obtain a form of conservation of quasimomentum, but without giving a clear explanation of why
they multiply the balance of linear momentum by the deformation gradient. Here we summarize
the work of Maugin and Trimarco. Let us define the following two linear momentum densities,?

= l(z,t) = p(z,t)v(z,t), lo=ly(z,t) = po(z,t)v(z,t) (2.0.17)
It can be shown that equilibrium equations are equivalent to,’

div(T-v®l) - -g—i =0 (2.0.18)

We now rewrite (2.0.18) in terms of the first Piola-Kirchhoff stress tensor P = JF~!T,

div (J“FP - F%v ® 10) - %(ﬁlo) =0 (2.0.19)

SFTB has a nice geometric interpretation. B is body force per unit undeformed volume but defined on the tangent
space of the deformed configuration. B acts on virtual displacements in the deformed configuration. Thus,

(B,dw) = (B,Fé§W) = (FTB,§W) (2.0.14)

This means that F7 B is the equivalent body force in the material space. This might not be written well but I think the
idea is interesting.

"This paper is not cited in many other related papers. This shows that people do not see the connection between
different works. This is something that the present paper should address.

8What is the meaning and significance of the second one?

“What is the motivation behind this? Is it possible to start from Div P + B = 0 ? This will be done later.
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Using conservation of mass and the fact that Vx = FV this simplifies to,

DivP — % =0 (2.0.20)
In components, ,
opP? 0
%7 —(p v')=0 (2.0.21)

It is seen that these equations are still in spacial coordinates. Maugin and Trimarco then try to
rewrite these equations completely in material coordinates. 10 We know that,

OFT ow rn OW
5 = Grad v, Div(WI) = X —— + (GradF") - 3F (2.0.22)
Also note that,
ol 0 1 1
r¢o _ Y pT - 2 (FT 2 —lv|2
F T at(F lp) — (Grad v)l, (F lp) — Dw(2p0|v| ) + 2|v| Grad p,
FTDivP = Div(F"P) - Div(WI) + g—z (2.0.23)
Multiplying (2.0.20) by F7 from left and substituting from (2.0.23), we will have, "'
0 T . 1 2\1 _ wT 1 9 ow
a(PoF v) +DIV[(W - §po|v| )I F P] + 2|v| Grad po — Ol 0 (2.0.24)
Now define,
£ = W(EX)~ spolvl’
P = —FTlo
E = I-F'P
finhom. __a_g_
aX
Then, (2.0.24) can be written as, 5
DivE = finhom- . 3—7; (2.0.25)

Now we give a geometric interpretation of what Maugin and Trimarco did. The quantity deﬁned
in the left hand side of Eq.(2.0.20) is a vector-valued 1-form on the deformed configuration ‘2, i.e.,

a = DivP — % eT,S (2.0.26)

10They do not explain how and in what sense the balance of linear momentum is rewritten in the material space. We
will make this clear.

'"They do not explain why they left multiply by F7 and, for example, not by F~1.

128ee Section 3 for notations used here.
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Balance of linear momentum states that,
a=0 (2.0.27)

which is equivalent to,
¢ (@) =FTa=0 (2.0.28)

Rogula [21] mentions a connection between balance of configurational forces and Noether’s
theorem. For example, if reference configuration is invariant with respect to translations, a con-
servation law follows. However, he does not follow this in more detail and starts from a definition
of quasi-momentum. Huang and Batra [11] have a short discussion on this. Nelson [19] stud-
ies the consequence of invariance of the Lagrangian with respect to translations in the reference
configuration. He shows that the conserved quantity is the canonical crystal momentum, which is
nothing but the pull-back of the linear momentum. In this paper, we will investigate all the relevant
invariance groups and the corresponding momentum maps.

Observations:

o Configurational forces are due to change of reference configuration during deformation.
However, these forces cannot be independent of the deformation. The same solid behaves
differently under the action of external forces regarding the motion of defects. For example,
a crack does not propagate unless the external forces are ‘large’ enough as the stress intensity
factor is proportional to the external forces in linear elastic fracture mechanics.

e Goal: Similar to what exists for balance laws in the physical space (deformed configuration),
it should be possible to systematically postulate balance laws for evolution of reference con-
figuration.

e Having local balance of linear and angular momentum, left multiplication by F7 gives us
the corresponding balance law in the material space. Does this mean balance laws in the
material space are not independent of those in the physical space? I think the answer is no.
Balance of configurational forces is locally related to balance of linear momentum through
FT. But globally they are independent. Gurtin [9] starts from the global balance laws. This
is something that needs more thinking.

3 Geometry of Continuum Mechanics

Here,we first review geometry of continuum mechanics.!® For more details refer to Marsden and
Hughes [14].

3This review is not complete.
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3.1 Preliminaries from Manifold Theory

This brief review follows Marsden, Ratiu and Abraham [16], Marsden and Hughes [14] and Mars-
den and Ratiu [15].

Definition 3.1.1 (Tangent Space) Suppose M is an n-manifold and p € M. The tangent space to
M at pis the set of all equivalent curves at p. The tangent space of M at p is denoted T,M and
can be identified with R". The tangent bundle of M is the disjoint union of all the tangent spaces,

™ = | | T,M (3.1.1)

peEM

Tangent bundle consists of pairs (p, v) of base points and tangent vectors at p.

Definition 3.1.2 (Directional Derivative) Suppose B is an n-manifold and f : B — R is C.
Let Vx = (X,V) € TxB. Vx[f] denotes the derivative of f at X in the direction of Vx, i.e.,
Vx|f] = Df(X)- V. Inalocal chart {X'},

af
X7

Definition 3.1.3 (Tangent Map) Suppose B and S are manifolds and ¢ : B — S is C'. The
tangent map of ¢ is defined in any local chart as,

Vx[f] = Vi (3.1.2)

To:TB—TS, To(X,V)=(o(X),Dp(X)- V) (3.1.3)

Definition 3.1.4 (Vector Field) A vector field on a manifold M is a mapping v : M — T M such
that,
vip)eT,M VYpeM (3.1.4)

Definition 3.1.5 (Pull-Back and Push-Forward of Scalar Functions) Let o : B — S be a map
of manifolds and f : S — R. The pull-back of f by p is defined by,

o' f=Ffoyp (3.1.5)
If g : B— R, the push-forward of g by p is defined by,

pg=goyp! (3.1.6)

Note that for push-forward  is required to be invertible.

Definition 3.1.6 (Pull-Back and Push-Forward of Vector Fields) If Y is a vector field on B and
@ : B — SisaC! diffeomorphism, then 0, Y = T oY o ¢~ is a vector field on o(B) and is
called the push-forward of Y by .

Ify is a vector field on p(B) and ¢ is C', o'y = T(¢~') oy o @ is a vector field on B and is
called the pull-back of y by .
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Definition 3.1.7 (One-forms) Let M be an n-manifold and p € M. A one-form at p is a linear
map ap : ToM — R. The vector space of one-forms at p is denoted by T; M. Cotangent bundle of
M is the disjoint union of these sets, i.e.,

"M =||T;M (3.1.7)
pEM

A one-formon M isamap a : M — T*M such that,
a=alp)eT;!M YpeM (3.1.8)
Definition 3.1.8 If ¢ : B — S is a C! mapping and 8 € T*S, then the one-form on B defined as,
(@ B)x - Vx =Box) (Tp-Vx) VYXEB, Vx €TxB (3.1.9)

is called the pull-back of 38 by ¢. If ¢ is a C! diffeomorphism, the push-forward of a one-form o
on B is defined by p.a = (¢~ 1)*a.

Definition 3.1.9 A type ( {1) ) tensor at x € B is a multilinear map,

T:TxBx .. x TxBxTxB x ... x TxB— R (3.1.10)

-~ v

p copies q copies

T is said to be contravariant of order p and covariant of order q. In a local coordinate chart,
1 _ 1)...4 1 3] ;
T(a*,...,a”, V.., V,)=T" ”jlqua,-l...afle‘...\/;"' (3.1.11)

where, of € T%B and V¥ € TxB.

Definition 3.1.10 Suppose ¢ : B — S is a regular map and T is a tensor of type ( z ) Push-

forward of T by p is denoted ¢, T and is a ( g )-tensor on p(B) defined by,

(@ T) ()@, oy &P, V1, ooy V) = T(X)(@u@! ooy 0u0F, 0V, oy V) (3.1.12)

where, of € T3S, v € T.8, X = ¢~} (z),¢*(@*) - vi = a* - (Tp - v;) and p*(v;) = T(@ Vv,
Similarly, pull-back of a tensor t defined on p(B) is given by p*t = (p~').t. In the setting of
continuum mechanics push-forward and pull-back of tensors will have the following forms,

(@ T)" ™5 @) = P4 (X0 F,(X) T, (F7), (@) (F7)5, (@)
@) 55 (X) = (F)% @) (FT5, @) 8477 5, FP (X) P (X)

F1.-dq
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/
Definition 3.1.11 (Two-Point Tensor) A two-point tensor T of type ( Iq7 Z, ) atx € Bovera

map ¢ : B — S is a multilinear map,

T:TxBx..x T;(Zix:.l"xB X...xTxB

" v

p copies q copies
T;Sx... xT;‘SJ'xTISx...meSI—:»R (3.1.13)
P c;)’picx q copies

where © = @o(X). Deformation gradient is actually a two-point tensor,

F(X): T;8 xTxB—R
(o, V) = a(Txep- V)

Definition 3.1.12 Let w : Y — TS be a vector field, where Y C S is open. A curvec : I — S,
where I is an open interval, is an integral curve of w if

‘;‘;() wic(r) Vrel 3.1.14)

If w depends on time variable explicitly, i.e, w : U x (—¢€,€) — TS, an integral curve is defined

by,
dc

dt

Definition 3.1.13 Letw : S x I — TS be a vector field. The collection of maps F; ; such that for
each s and z, t — F, ;(z) is an integral curve of w and F, ;(z) = z is called the flow of w.

= w(c(t),1) (3.1.15)

Definition 3.1.14 (Lie Derivative) Let w be a C* vector field on S and F, ; be its flow. Suppose t
is a C! tensor field on S. Lie derivative of t with respect to w is defined by,

d
=2 (Ft ) 1.
Lt = ( _ (3.1.16)
If we hold t fixed in t then,
swt_dt(ﬂs ) . G.1.17)
which is the autonomous Lie derivative. Hence,
9
Lut = 2t + Sut (3.1.18)
It turns out that all objective stress rates are Lie derivatives.
Proposition 3.1.15 If' W is a vector field on M, then,
LwdV = (Div W)dV (3.1.19)

where dV is a volume form on M.

10
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Proposition 3.1.16 Let N be the unit outward normal to 9P(P C B) and V a vector field on P,
then on OP, V - NdA = iydV, where dA is the area element on P and i dV is contraction of
the volume element by V.

Definition 3.1.17 Ler v be a vector fieldon S and ¢ : B — S a regular and orientation preserving
C! map. The Piola transform of v is,
V =Jp'v (3.1.20)

where J is the Jacobian of .
Proposition 3.1.18 W is the Piola transform of w if and only if ¢*(iwdv) = iwdV.
Theorem 3.1.19 (Piola Identity) If Y is the Piola transform of y, then,
DivY = J(divy)o g (3.1.21)
Theorem 3.1.20 (Cartan’s Magoc Formula) Let o € Q¥(M) and v be a vector field on M, then,
Lva =diya + iyda (3.1.22)
where da is the exterior derivative of o.
Definition 3.1.21 A k-form on a manifold M is a skew-symmetric ( 2 ) tensor. The space of
k-forms on M is denoted 2*(M).

Theorem 3.1.22 (Change of Variables) If o : M — N is a regular and orientation preserving C'
map and o € QF(p(M)), then,
/ pra= / s" (3.1.23)
M p(M)

Theorem 3.1.23 (Stokes’ Theorem) Suppose o € Q0= (M ) and OM is positively oriented, then,

/da=/ a (3.1.24)
M aM

3.2 Geometric Continuum Mechanics

Definition 3.2.1 A body is an open set B € R® and a configuration of B is a mapping ¢ : B — R3.
The set of all configurations of B is denoted C.

Definition 3.2.2 A motion is a curve inC, i.e., a map,

¢c:R—-C
Lty

11
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Forafixedt, p,(X) = (X, t) and forafixed X, px(t) = ¢(X,t), where X is position of material
points in the undeformed configuration B. Material velocity is the map V, : B — R3,

X, d
Vi(x) = V(x5 = 25D _ Ly G2.1)

Similarly, material acceleration is defined by,

At(X)=A(X,t)=%a‘:’Q

Here it is assumed that ¢; is invertible and regular. Spacial velocity of a regular motion ¢; is
defined as,

d
= Et-VX(t) 3.2.2)

A\ QD;(B) - Rs, Ve = Vt 0 (pt—l (3.2.3)

and spacial acceleration a, is defined similarly.

Definition 3.2.3 Let ¢ : B — S be a C* configuration of B in S, where B and S are manifolds.
Deformation gradient is defined to be ¥ = T, i.e., it is the tangent of . Thus,

F(X) :TxB — Tq,(x)S VXeB (3.2.4)
If {z'} and {X'} are local coordinate charts on S and B, respectively,

bk

FiJ(X) =§)ﬁ

(X) (3.2.5)

Suppose B and S are Riemannian manifolds with inner products (,)x and (, ), based at X € B
and z € S, respectively. The transpose of deformation gradient is defined by,

FT:T,S — TxB, (FV,v),=(V,FTv)x VYV eTyxB veT.S (3.2.6)

In components, .
(FT(X)); = g55(z) Pl (X)G'¥ (X) (B2.7)

where g and G are metric tensors on S and B, respectively.

Definition 3.2.4 The right Cauchy-Green deformation tensor is defined by,

C(X):TxB - TxB, C(X)=FX)TF(X) 3.2.8)
In components,
cl = (FDLF* (3.2.9)
It can be shown that, o
C’ = ¢'(g), i.e. Cry=(gijoQ)FiF} (3.2.10)

12
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Definition 3.2.5 (Conservation of mass) Suppose B C R" is a body and ¢(X,t) is a motion of B.
Let p(X,t) be the mass density per unit volume of p.(B) at the point x. Then we say that p obeys
conservation of mass if,

% / p(X,t)dv =0 YU C B with piecewise C' boundary (3.2.11)
e (U)

Localization of this gives us,
?ﬁ
ot
Definition 3.2.6 The mass 3-form is defined by m = pdv in the deformed configuration and mg =

podV in the undeformed configuration. Conservation of mass in terms of these 3-forms can be
expressed as,

+ div(pv) =0 (3.2.12)

Y'm=my (3.2.13)

Theorem 3.2.7 (Transport Theorem) Let p, : B — S be a regular motion of Bin S and P C B
a k-dimensional submanifold. Then for any k-form ccon S,

4 / o= / Loa (3.2.14)
dt Joup) ou(P)

where v is the special velocity of the motion. In a special case when a = fdvand P = U is an
open set, then
d of

et d =/ = L di d 3.2.15)
di so.(P)f ° wt(m[at w(fv)] Y (

Definition 3.2.8 (Balance of Linear Momentum) We say that a body B satisfies balance of linear
momentum if for every nice open setUd C B,

4 pvdy = / pbdv + / tda (3.2.16)
dt Sy ) ) B (W)

where p = p(z,t) is mass density, b = b(x,t) is body force vector field and t = t(z,n,t) is
the traction vector. Note that Cauchy'’s stress theorem tells us that there is a second-order tensor
T = T(z,t) (Cauchy stress tensor) such that t = (T, 11} = T - fi. Equivalently, balance of linear
momentum can be written in the undeformed configuration as,

4 / poVdV = / poBdV + | P-NdA (3.2.17)
dt Ju u au

where, P = Jp*T (the first Piola-Kirchhoff stress tensor) is the Piola transform of Cauchy stress
tensor. Note that P is a two-point tensor. Note that this is the balance of linear momentum in the
deformed (physical) space written in terms of some quantities that are defined with respect to the
reference configuration.

13



5 CONFIGURATIONAL FORCES FROM A GEOMETRIC POINT OF VIEW

Definition 3.2.9 (Balance of Angular Momentum) A body B satisfies the balance of angular
momentum if for every nice open setUd C B,

d

— pxX X vdy = / px % bdv +/ x x (T, h)da (3.2.18)
dt J o) ) Beeth)

Definition 3.2.10 (Balance of Energy) For every nice open setUd C B,

d 1
7 Mu)p(e+-2-(v,v))dv—/

7

" P((b, v)+ r) dv + /&p‘(u) ((t,v) + h) da  (3.2.19)

where e = e(x,t),r = r(z,t) and h = h(z,1,t) are internal energy per unit mass, heat supply
per unit mass and heat flux, respectively.

4 Variational and Hamiltonian structures of continuum me-
chanics

5 Configurational Forces from a Geometric Point of View

Suppose the reference configuration evolves in time. This evolution can be represented by a one-
parameter family of mappings that map B (reference configuration at £ = 0) to B; (reference
configuration at at time t),

Y B— B, (5.0.20)

We call these maps the configurational deformation maps.'* The configuration space for evolution
of reference configuration is,

C={v|v:B—- B} (5.0.21)

Evolution of the reference configuration is a curve ¢ in C ie.,
¢:1-C (5.0.22)
Physical deformation is represented by a one-parameter family of mappings,
xt:Bi— S (5.0.23)
The physical configuration space is defined by,

C={x|lx:B — S} (5.0.24)

141 think the configurational deformation map need not be a map from B to B, i.c., the evolved reference configura-
tion could be a completely different manifold. Is this right?

14



5 CONFIGURATIONAL FORCES FROM A GEOMETRIC POINT OF VIEW

Again, a physical deformation is a curve in the physical configuration space. The total deformation
map is composition of physical and configurational deformation maps,

pe=xio%: B85 (5.0.25)

This idea is clearly shown in the following diagram,

B, X>S,

th A=Xt°¢'c

B

Fig.1 shows the same idea schematically. In term of mapping the material points, z = x,(X;) =
x¢ © ¥ (X) as is shown in the following diagram.

¥
tT Pr=Xt0Y
X

The configuration space for the total deformation is defined as,
C={plo=xo01p, xeC,pelC}=CoC (5.0.26)
A deformation is a curve in the total configuration space, i.e.,
c:I—-C*™ (5.027)

Note that v, = id (identity map) in classical continuum mechanics. As it is seen, there are two
independent deformation mappings ¢, and ¥, (see Fig.1). An example is shown in Fig. 2, in which
a bar is deformed and in the process of deformation it undergoes a phase transformation. It is seen
that the phase boundary moves independent of the physical deformation.

Definition 5.0.11 (Configurational Velocity) Lagrangian and Eulerian configurational velocities
are defined by,

V(X,t) = _a; L (X, t) = Vo, (5.0.28)
Definition 5.0.12 Total material velocity is defined by,
Oxt(Xe) Oxt C
1ot — hat 23 5.0.29
VX, t)= 5 » 5 +FV ( )

where F = -g% is the physical deformation gradient.

15



5 CONFIGURATIONAL FORCES FROM A GEOMETRIC POINT OF VIEW

v,
N

\ /

B,
?, / Xe

Figure 1: Configurational and physical deformation maps.

Note that, 5 5 .
Pt _ Xt t ot _ T
7X = OX, o 3X F FoF (5.0.30)
Thus, _
F=F!oF® (5.0.31)

Now we postulate the conservation of configurational mass and balance of linear and angular
configurational momenta.

¢ Question: Is this the right way of looking at evolution of reference configuration?

¢ Perhaps balance of configurational forces can be understood in terms of balance laws for
configurational and physical deformation maps or a combination of them?

o Is the configurational deformation map v, always invertible? Perhaps not always. An exam-
ple would be the propagation of a crack.



8 CONCLUSIONS

Y

Xe tXx | | X4 - X

?: X:

Figure 2: A bar that undergoes both physical and configurational (phase transformation) deforma-
tions.

6 Configurational Forces in Space-Time Continuum Mechan-
ics

7 Configurational Forces in Multisymplectic Continuum Me-
chanics

8 Conclusions

A comprehensive review of the literature of configurational forces has been done in this report.
We tried to see the similarities and differences between the different methods of studying config-
urational forces. It seems that a geometric study is lacking and this report is just the beginning
of the project. It is hoped that having a geometric theory of configurational forces will make the
continuum theory of driving forces clearer and some new things might be found in the process of
developing the theory. The following is a tentative list of what should be done.

e Studying momentum maps corresponding to symmetries in the reference configuration.

¢ Studying configurational forces in spacetime continuum mechanics. Michael Ortiz has done
some work on this to obtain the evolution equations of dislocations. His point of view is sim-
ilar to that of Eshelby. After having a geometric theory of configurational forces generalizing
it for spacetime should not be very hard.

¢ Studying configurational forces in multisymplectic continuum mechanics. I will read the
relevant papers soon.
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¢ Studying configurational force using the variational and Hamiltonian structure of continuum
mechanics.
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