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Abstract

We provide a geometric analysis of Foucault’s pendulum. Such an analysis
differs from conventional ones in that it explicitly demonstrates the reason for
the pendulum’s motion: the geometric constraint of moving the pendulum on
the Earth. Such an analysis frees one from the potentially confusing notion

of a “fictitious” force and is the foundation for solving similar problems with
geometric constraints.



A geometric analysis of Foucault’s pendulum

Foucault’s pendulum is perhaps one of the most elegant dynamical systems in
Hamiltonian mechanics. It combines the richness of the harmonic oscillator,
an undamped simple pendulum, with that of a seemingly innocent constraint,
adibiatic motion (with respect to the pendulum frequency) around the earth
~ 57 at a fixed latitude. This setup is shown in figure 1, and it is something
virtually anyone who has ever been to a natural science museum has seen.
The interesting thing about this system is that as the pendulum swings,
after one day (one Earth revolution) its plane of swing rotates by an amount
27 sin(@), where 8 is the latitude of swing.

The reason for the rotation, or as we shall henceforth call it, the phase
shift of the pendulum, is explained in virtually any mechanics textbook!.
Briefly, the usual procedure is to introduce a body frame x, y, and z (for
example, with respect to an observer watching the pendulum in the museum).
By assuming the pendulum is “long”, so that we may ignore vertical z motion
in the body frame and by ignoring centripetal force on the pendulum we can
model the pendulum as a two-dimensional harmonic oscillator and obtain
the equations of motion

2 = —wiz+2y0Q, (1)
¥ = —wily—2i0,

where 2, = |Q[sin(6), and Q is the angular velocity of the earth. We let

z = z + 1y and reduce (1) to the equivalent complex ordinary differential
equation

2414202 +w?z = 0. (2)

We can solve this equation in the standard way, and upon using the adibiatic
assumption 2, << w simplify the solution to obtain

(50)= (Ltog o) (=0,

1For example, see Arnold, pp. 132-33 or Landau and Lifshitz, pp. 129~130.

or




where zo(f) and yo(t) denote the body coordinates of our long pendulum if
the Earth’s rotation is ignored.

Upon analyzing (3), one discovers that indeed, after one day (t = ¢, =
]2(—;5[), z(t) and y(t) have rotated from “where they should be” in the body
frame by an amount Q.tp = 27 sin(f), as claimed.

Many reputable mechanics texts usually insist on explaining this coun-
terintuitive result by modeling the phase shift as a result of a “fictional”
coriolis force due to the constant angular velocity of the Earth and hence of
the rotating body frame.? The reason it is called a fictional force, as opposed
to a “real” force, is because it is the force that must be applied to the pendu-
lum in the body frame to turn the body frame into an inertial one. Viewed
relative to an inertial frame (for example, the Sun, ignoring the Earth’s orbit
about the Sun), this force “does not exist.” For an analogy, suppose you are
at the North Pole and you throw a ball. Relative to you in the body frame,
the ball behaves as if it is being acted on by a force equal to the coriolis force.
This force is “fictional” in the sense that if we viewed this experiment from
the sun, the ball would not appear to experience this force.

But there is a serious problem with this way of thinking in our pendulum
example; for after one day, the earth returns to its original position in space
and hence, relative to an inertial frame like the sun the pendulum has phase
shifted as well. Hence a supposedly “fictional” force has accounted for a
very real action in an inertial frame. Introductory mechanics is full of this
confusion between rotating observers (throwing a ball off the North pole)
and rotating systems (our Foucault pendulum example).

In this paper, we shall bypass this confusion by examining the phase
shift of the pendulum in purely geometric terms. Briefly, we shall show the
phase shift occurs due to the curvature of the earth, where the pendulum
is constrained to lie. We shall first give a simple geometric explanation of
this phase shift and then, after a brief explanation of parallel translation, we
rigorously derive this intuitive geometric result.

We provide an intuitive explanation by first putting a cone “hat” on the
earth, tangent to the earth at the latitude @ the pendulum swings at as in
figure 2. We make this cone by first starting with a flat circular disk with

See, for example, Arnolds book, pp. 130-31. The theorem there is not wrong of
course, but it lends no insight as to the difference between rotating observers and rotating
systems. The geometric approach explicitly underlines this difference.



center O and radius
R = E cot(8),

where E denotes the radius of the Earth, and 8 # 0, and 8 # #/2, so that
we are neither at the equator nor the North pole. Draw a bunch of parallel
lines on the disk as in figure 3. Mark a point A on the edge of the disk, and
measure around the disk a distance of

21 E cos(9),

which is the distance around the Earth at its latitude 8, and call this point
B. Since we are at neither the equator nor the North pole, A # B. We then
remove the wedge from B to A from the disk, identify OA with OB, and we
have made a conical hat for the Earth that fits at it’s latitude 8, as desired.

The key to understanding the phase shift is to notice how the tangents
to the parallel lines we have drawn on the cone at its base vary as we move
around the base. Suppose we start the pendulum swinging at B + ¢, a point
just to the right of OB as in figure 4, and suppose its plane of oscillation
coincides with the direction of the line we have drawn there. We claim that
after almost one period of rotation, the pendulum will of course return to a
point B — ¢, but its plane of oscillation will still correspond to the direction
of the line at B — e. A quick glance at figure 4 should convince the reader
that the plane will not be where it began one day ago, but will in fact have

phase shifted. In fact, by examining figure 3, we can calculate this phase

shift as
2n E cos(6)

R

which happily corresponds to the result we know to be true. Now if § = 0
(equator), this cone degenerates into a cylinder, so that the parallel lines
experience no phase shift at all; similarly, if we are at the North pole, our
cone degenerates into the flat disk of figure 3, where we see the phase shift
is 27, all as expected from (4).

This geometrical argument is intuitively appealing, but as yet we have
proven nothing. We are suggesting that somehow the geometrical constraint
of the pendulum swinging on a fixed latitude in S? is somehow responsible
for the observed phase shift. Instead of calling the coriolis force that arises in
the standard analysis a “fictitious force,” we should instead think of it as a
byproduct of this constraint, observable both in the inertial and body frames.

= 2 sin(4), (4)
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In order to prove that this simple geometric picture is the correct one and not
some unfortunate fluke, we first need to understand (if only in an elementary
way) the concept of parallel displacement of vectors on manifolds. We shall
restrict our attention to the manifold S? as Earth, but most of what we say
can be extended to higher-dimensional Riemannian manifolds.

To begin our discussion of parallel displacement, embed $2? in IR3 and
ask the following simple question: How can we move a vector X € 7,52
along a curve Pry C 5% to a vector Y € T,82 so that, in some sense, X
is parallel to Y'? If we were doing this in on a flat manifold like IR2 the
answer is obvious: we just move X along P,, parallel to itself with respect
to a global coordinate system we introduce on IR?, as in figure 5. For S2, we
simply exploit its locally flat nature and move X along P,, parallel to itself
with respect to a local coordinate system. This procedure is referred to as
the parallel displacement of X along P,,.

It is clear from figure 5 that in a globally flat manifold like IR2, parallel
displacement does not depend on the path P,, taken. It might be tempting
to conclude that the path is irrelevant in any manifold. In fact, however,
a simple example will show that P., is crucial. Consider for example, two
points z and y on the Earth’s equator, and a vector X in T,5? pointing North
as in figure 6. Consider parallel translation of X along two different paths:
the first path P, goes from x to y around the equator; the second path P,
goes up the geodesic through z to the North Pole, and then comes down the
geodesic through y. Parallel translation along geodesics is easy, because for
all z € $2, there is a local coordinate system at z that preserves geodesics;
by this we mean that locally, images of geodesics through = on $2 map to
geodesics (straight lines) through the origin in the coordinate system. As a
result, parallel translation of X along a geodesic can be locally performed by
maintaining the angle between X and the geodesic. 3

Thus, parallel translation of X along the equator (P;) results in a vector
Yp pointing North at y. Along P;, we first parallel translate X through the
geodesic to the North pole, which results in a vector pointing West at the
North pole, and then translate this vector down through the geodesic to y,
which gives us a vector Yp, pointing West, not North, as shown in figure 6.

3In fact, Arnold uses this as a definition of parallel displacement on geodesics of $2, and
then defines parallel displacement along any curve in $? as a limiting procedure, where
the curve is approximated by piecewise geodesic arcs (Arnold, pp. 301-302).



Hence parallel translation along two different paths has given two different
results.

In the Foucault pendulum, we are particularly interested in parallel trans-
lating a vector X around the latitude §. We prove that such a translation
results in a phase shift of the vector by 27sin(4). An easy way to see this
is recalling that about each point on the latitude in 52, there is a local co-
ordinate system that preserves geodesics. Such a coordinate system can be
made by putting a cone hat tangent to the Earth as we did earlier and as
is shown in figures 2-4. The cone has no curvature, hence geodesics in the
plane (straight lines) in figure 3 are the geodesics on the cone in figure 4.
As a result, we parallel translate a vector around a latitude on the Earth
by simply parallel translating it with respect to the geodesic lines we have
drawn on the cone, which in turn is equivalent to parallel translating it with
respect to the straight lines of the unrolled cone in figure 3, which in turn
gives us the proper phase shift 27 sin(6).

Another way to show this is by using results from metric geometry?.
This method is important because it introduces techniques and terminology
we will use later. To begin, introduce curvilinear coordinates z* = (é1,92)
on 5? as shown in figure 9 with a metric given by

ds® = gypdz*dz®,

where we shall frequently employ the summation convention, in which re-
peated indices (in this case, u and v) are summed over. Since ds? = dz? +
dy® 4 d2?, in the embedding space IR we can find g,, by expressing z, v,
and 2 in terms of our curvilinear coordinate system obtaining

Guo = ( cosﬁo(qs’) (1) ) : ()

The inverse of this matrix will be denoted

o = ( 1/ co(s]2(¢2) (1; )

(6)

Note the coordinate system singularity at ¢, = 7 /2 (the North pole), but this
presents no problem if § # 7 /2. Now it is a result from metric geometry® that

4See, for example, Dirac, pp. 9-14.
5Dirac, p. 14



parallel translation of a vector X* along a (local) path dzf of a Riemannian
manifold M is given by _ ‘

dX' = -I Xt4dz®, (7
(sum on u and v) where the T, are called the Christoffel symbols or the
connection on M and are given by

_ 1,99 0gur OGuv i
=5(0es T w229 ®
The Christoffel symbols may be thought of as telling us how to perform
parallel translation on M. In our case, M = S2, so that there are eight
symbols, and by using (5) and (6), they are

T

I3 = cos(¢2)sin(¢;)
I;=Th = —tan(4),
with all others being 0. We expand the terms in (7) and get
dX' = -T},X'd2? T}, X?da?
= tan(¢s)(X'd¢? + X2dg!)
dX? = —I'?, Xda?

— cos(¢2) sin( o) X1de!.

Along a latitude, ¢, = 8 and d¢? = 0, so the motion of X' as we parallel
translate it around a latitude 6 satisfies the differential equation

):{ 1 0 tan(6) X!
X? —cos(f)sin(d) 0 X?
1
- A( X
where - denotes differentiation with respect to ¢;. Now (9) has the solution
X1 As [ X3
xz ) =€ Xz )
which yields

( X1 ) _ ( cos(sin(8)¢,) H%Tsin(sin(a)él) X3
X? ] 7\ —cos(6) sin(sin(0)¢;) cos(sin(8)¢,;) Xt )’

X2

6



where (X3, X3)T denotes the initial condition. Finally, by the change of
variables Y?! = c0s(8)X! and Y? = X?, we obtain

(37) = (ol @) (4) oo

By examining (10), it is obvious that after parallel translating a vector Y =
(Y1, Y?)T about a latitude # by an angle ¢,, the vector has rotated an amount
¢1sin(f). In particular, after one complete rotation of the Earth (¢; = 2r)
the vector has rotated an amount 2 sin(6), as claimed. Moreover, if d¢, /dt
is constant (as is true with the Earth’s rotation), the angular velocity of the
plane’s procession is constant as well.

Our final job is to show that the plane of oscillation of Foucault’s pendu-
lum parallel translates around §2. This has been done for a general path on
an arbitrary two-dimensional surface by Hart, Miller and Mills®. To begin, by

assuming the pendulum is long, we may approximate it by a two-dimensional
harmonic oscillator

&y = —w?(zh — yi(2)), (11)
where z} are local Cartesian coordinates on the surface, and y§(t) denotes the
trajectory of the base point in these local coordinates. In terms of curvilinear
coordinates z = (2!, 22) = (¢4, ¢2), (11) becomes

£ + T3, (z(2))2%27 = —w?(z* — y2(2)), (12)

where I'g.(-) is the familiar connection on our surface as in (8), evaluated
at a point z(t) on the surface. By using the adiabatic assumption, we may
assume z% = z§ + €%, where €* is a small (fast) oscillation about zg, and
approximate (12) by the linear equation

€ 4 2I'5 (y(£))7Pe" + w?e™ = 0. 13
By

At this point, it is instructive to compare (13) with (2). The former explicitly
contains information on the geometry of the constraint via the I'3,’s, while
the latter contains this information rather less explicitly via 2, = | sin(8).
We consider the geometric information less explicit in (2) because it is a
function of 2, a non-geometric quantity.

6See Hart, p. 69



Finally, to solve (13), let e*(t) = (“(¢)e~*“*, where (once again using the
adibiatic assumption) (%(t) varies slowly with respect to e~**, As a result,
we may interpret ((t) as defining the plane of oscillation of the pendulum.
Now (13) becomes

§* — 26l + 2T, (y(£)§*(¢7 — iw(?) = 0.

Finally, because of the adibiatic assumption, (* and {7 are negligible com-
pared to terms containing w and we have

= —T3,(u(1)3°¢",

or, for a small time interval and dropping the explicit dependence of the s,
on y(2),
d¢* = —T4.dy?(, (14)

which is the result for parallel translation have from (7), since the Christoffel
symbols are symmetric in their lower two indices. This means that the plane
of oscillation of the pendulum, described by the vector (* undergoes parallel
translation as the Earth rotates, as hoped.

Performing the analysis geometrically in this fashion has shed some light
onto exactly what is causing the phase shift in Foucault’s pendulum. Notice
that although the adibiatic assumption allows one to approximate the motion
by (14), it is clear that the actual phase shift of the pendulum is due entirely
to the (non adibiatic) procedure of parallel translating a vector on a curved
geometric surface. It does not matter how fast we parallel translate a vector
around the Earth; the result is the same. The only difference is without the
adiabatic assumption, we can no longer claim the dynamics of the Foucault’s
pendulum is modeled by (14). The role of the geometric constraint in the
phase shift of Foucault’s pendulum is not obvious in the classical approach to
solving this problem which results in equations (2) and (3). In fact, the Fou-
cault’s pendulum is only one of a large number of problems whose dynamics
is significantly affected by similar geometric constraints.
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Figure 7. Coordinates on the Sphere
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Figure 1. Foucault’s pendulum Figure 2. Putting a cone hat on the Earth
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Figure 5. Parallel translation in the plane Figure 6. Parallel translation depends on path



