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Abstract

A multisymplectic structure is imposed on the 3-d (three dimen-
sional) general Schrödinger equation. From the multisymplectic form
formula, a multisymplectic conservation law is extracted for the 3-d
general Schrödinger equation. For the case of infinite spatial domain,
the multisymplectic form formula is shown to reduce to a form that
coincides with the quantum-mechanical symplectic form, which is de-
fined in terms of the imaginary part of the quantum mechanical Her-
mitian inner product on the complex Hilbert space of square integrable
wavefunctions. Furthermore, the interpretation of the multisymplectic
form formula in application to the 3-d general Schrödinger equation
with infinite spatial domain and bounded time domain, is that the
integrals over the two boundaries at each temporal endpoint are equal
in magnitude, and yet opposite in orientation.
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1 Introduction

In 1925, Erwin Schrödinger suggested that the Schrödinger equation would
govern the behavior of very small particles. The Schrödinger equation pro-
vided the link between the motion of particles and their dependence on time
and spatial position, subject to forces external to the system. The time de-
pendent and the time independent Schrödinger equation comes in various
forms depending on the system of application.

The part that differentiates one form of the Schrödinger equation from
another can be seen in the quantum mechanical Hamiltonian operator. The
type of system under study, and the type of information that is desired to
attain, is what determines the form of the system’s Hamiltonian operator
that will be employed by the Schrödinger equation. The free Hamiltonian
operator in its most basic sense comprises of a kinetic energy operator and
some type of potential energy operator. The potential energy function is de-
pendent on the number of particles in the system of study, as well as the type
of particles under study, and what type of interaction these particles have
with one another. In addition, to the free Hamiltonian operator, a pertur-
bation Hamiltonian is often added. For example, a magnetic field imposed
onto a system of particles with intrinsic spin will introduce a perturbation
Hamiltonian to be added to the free Hamiltonian.

The goal of this paper is to set up the geometric structure in a mathe-
matical sense, for the general three dimensional Schrödinger equation. The
term ”general” in used in this paper in the sense that arbitary perturbation
Hamiltonians may be added to the free Hamiltonian, as long as perturbations
depend only on space, time, and the wavefunction itself.
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2 The General Schrödinger Equation

For the purposes of this paper, the general Schrödinger equation is defined in
this paper in the following manner. Let Ψ ∈ C be the wavefunction, where
C denotes a complex Hilbert space with the well known Hermitian inner
product

〈〈Ψ, Φ〉〉 =

∫
Ψ∗Φ dτ.

The well known general Schrödinger equation is

i~
∂Ψ(r, t)

∂t
= HopΨ(r, t).

where r is a position vector. Let Hop be defined as a possibly perturbed
Hamiltoninan operator

Hop = H0 + H1

where H0 is the unperturbed Hamiltonian operator, and H1 is the pertur-
bation to the Hamiltonian operator. Recall that H0 itself comprises of the
sum of a kinetic energy operator and a potential energy operator

H0 = Top + Vop.

where the kinetic energy operator is the real operator Top = − ~2

2m
4r, and

the potential energy operator is a complex valued function. The general
Schrödinger equation can be written then as

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
4r + Vop(r, t) + H1(r, t, Ψ(r, t))

)
Ψ(r, t).

Letting V̄op(r̄, t̄) = T
~ Vop(r, t), H̄1

op(r̄, t̄, Ψ(r̄, t̄)) = T
~ H1

op(r, t, Ψ(r, t)), r̄ =√
2m
T~ r, and t̄ = t

T
, for some time period T , the general Schrödinger equation

is recast as

i
∂Ψ(r̄, t̄)

∂t̄
=

(
−4r̄ + V̄op(r, t) + H̄1(r̄, t̄, Ψ(r̄, t̄))

)
Ψ(r̄, t̄).

Letting Z̄(r̄, t̄, Ψ(r̄, t̄)) =
(
V̄op(r̄, t̄) + H̄1(r̄, t̄, Ψ(r̄, t̄))

)
Ψ(r̄, t̄), and then drop-

ping the bar notation yields the dimensionless general Schrödinger equation

i
∂Ψ(r, t)

∂t
= −4rΨ(r, t) + Z(r, t, Ψ(r, t)). (1)
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Note that Z(r, t, Ψ(r, t)) takes values in the complex set of numbers, and is
a function of time and spatial coordinates, as well as the wavefunction itself.

To facilitate geometrizing of the general Schródinger equation, the imag-
inary number i is eliminated from the equation by separating out the imag-
inary and real part of the wavefunction. This is accomplished by letting
Ψ(r, t) = p(r, t) + iq(r, t). Therefore equation 1 may be rewritten as

pt +4q − Im{Z(r, t, p(r, t), q(r, t))} = 0
qt −4p + Re{Z(r, t, p(r, t), q(r, t))} = 0.

(2)

Please pay special attention to the fact that in general

Re{Z(r, t, p(r, t), q(r, t))} 6= Re{Z(r, t, Ψ(r, t))}
Im{Z(r, t, p(r, t), q(r, t))} 6= Im{Z(r, t, Ψ(r, t))}

Now suppose there exists a function C such that

∂C
∂p

= Re{Z(r, t, p(r, t), q(r, t))}
∂C
∂q

= Im{Z(r, t, p(r, t), q(r, t))}.

Consequently the equations in 2 become

pt +4q − ∂C
∂q

= 0

qt −4p + ∂C
∂p

= 0.
(3)

Throughout this paper Cartesian coordinates will be utilized, and thus 4 =
∂2

∂x
+ ∂2

∂y
+ ∂2

∂z
for r = (x, y, z).

3 Geometrizing the General Schrödinger Equa-

tion

3.1 A Fiber Bundle Structure Imposed on the General
Schrödinger Equation

Let πXY : Y → X be a fiber bundle over the oriented manifold X, and
let φ : U ⊂ X → Y be a section of πXY . For the three dimensional time
dependent Schrödinger equation, the base space X of the fiber bundle is the
spatial and time domain, and therefore is coordinated by {xµ} = (x, y, z, t),
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where µ ∈ {1, . . . , (n + 1) = 4}, and thus the dimesion of X is four. The
fibers over X are elements of Y , where Y is coordinated by the set {yA} (A ∈
{1, . . . , N}), where for the general Schrödinger equation, these coordinates
are φ(x, y, z, t) = (p, q), and the dimension of Y is N = 2. The tangent
map of φ at k ∈ X, Tkφ, is an element of J1(Y )φ(k), where J1(Y ) is the
first jet bundle over Y . Elements of J1(Y ), can be thought of as fibers over
both X and Y , and are defined to be the maps from TY to TX. The first
jet bundle J1(Y ) is coordinated by the set {vA

µ }, and thus the dimension of
J1(Y ) is N ∗ (n+1). For the case of the general Schrödinger equation, J1(Y )
is coordinated by (pt, qt, px, qx, py, qy, pz, qz), and the dimension of J1(Y ) is
N ∗ (N + 1) = 2 ∗ 4 = 8.

The first jet, or first prolongation of φ, denoted by j1φ, is the map from
the base space X to the first jet bundle J1(Y ). Note that j1(φ) ∈ Γ(πX,J1(Y ))
is a section of J1(Y ). The coordinates of j1(φ) at a point k = {xµ} ∈ X are

j1
k(φ) =

(
xµ, φA(xµ),

∂φA(xµ)

∂xν

)
For the 3-d (three dimensional) general Schrödinger equation, j1(φ) at a point
k = (x, y, z, t) ∈ X is

j1
k(φ) = ((x, y, z, t), (p, q), (pt, qt, px, qx, py, qy, pz, qz)).

3.2 Multisymplectic Manifold / Covariant Phase Space

The dual jet bundle is denoted by J1(Y )?. The dual jet bundle consists of
the set of affine maps from J1(Y ) to Λ(n+1)(X), where Λ(n+1)(X) is the set of
(n+1)-forms on X (Recall that (n+1) is the dimension of the base space X).
To define a multisymplectic manifold, first define the bundle of (n+1) forms
on Y , denoted by Λ := Λ(n+1)(Y ), with projection map πY Λ : Λ → Y . A
noteworthy subbundle of Λ is denoted by Z ⊂ Λ, and this subbundle consists
of the fibers

Zy = {z ∈ Λy| iv(iwz) = 0, ∀v, w ∈ VyY }. (4)

Interestingly, the spaces Z and J1(Y )? are isormophic. This fact becomes
important later when defining canonical forms on J1(Y )?. Denote the canon-
ical (n+1) and (n+2) forms on Λ(n+1)(Y ) as ΘΛ and ΩΛ. By employing the
inclusion map, iΛZ : Z → Λ, the canonical (n + 1) and (n + 2) forms on Z
are

Θ = i∗ΛZΘΛ
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and
Ω = −dΘ = i∗ΛZΩΛ.

Now that all of the necessary structures have been described, it is proper
to define the multisymplectic manifold, multiphase space, or covariant phase
space, as the pair (Z, Ω), or rather, in words, the subbundle of Λ described
in 4, together with the canonical (n + 2) form on Z.

Due to the fact that the spaces Z and J1(Y )? are isomorphic, for every
form on Z there exists a corresponding form on J1(Y )?. Because these spaces
are isormorphic, denote the (n+1) and (n+2) form on J1(Y )? with the same
notation, as Θ and Ω. These forms are needed to define forms on J1(Y ).

The Lagrangian density L ∈ J1(Y )? is a smooth bundle map L : J1(Y ) →
Λn+1(X). For a point γ ∈ J1(Y ), coordinated by γ = (xµ, yA, vA

µ ), L in
coordinates is given by

L(γ) = L(xµ, yA, vA
µ )dn+1x.

Correspondingly, the fiber preserving map over Y associated with L is FL :
J1(Y ) → J1(Y )?, and is called the covariant Legendre transformation. Let
γ, γ′ ∈ J1(Y )y, then FL is defined as

FL · γ′ = L(γ) +
d

dε
|ε=0 L(γ + ε(γ′ − γ)).

The coordinates of the covariant Legendre transformation are

fµ
A =

∂L

∂vA
µ

, f = L− ∂L

∂vA
µ

vA
µ .

Finally, the Cartan form is the canonical (n + 1) form on J1(Y ), defined to
be the pullback of Θ by FL onto J1(Y )

ΘL = (FL)∗Θ.

The canonical (n + 2) form is similarly defined by

ΩL = −dΩL = (FL)∗Ω.

In coordinates, these forms are

ΘL =
∂L

∂vA
µ

dyA ∧ dnxµ + L− ∂L

∂vA
µ

vA
µ dn+1x
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ΩL = dyA ∧ d

(
∂L

∂vA
µ

)
∧ dnxµ − d

(
L− ∂L

∂vA
µ

vA
µ

)
∧ dn+1x.

Recall that for the 3-d general Schrödinger equation, the coordinates of
X are (x, y, z, t), the coordinates of Y are (p, q), and the coordinates of
J1(Y ) are (pt, qt, px, qx, py, qy, pz, qz). Then the Lagrangian density for the
3-d general Schrödinger equation is

L(j1(φ)) =
1

2

[
qtp− ptq + p2

x + p2
y + p2

z + q2
x + q2

y + q2
z + 2C

]
dx∧dy∧dz∧dt.

(5)
Consequently the canonical 4-form on J1(Y ) is

ΘL = q
2
dp ∧ dx ∧ dy ∧ dz − p

2
dq ∧ dx ∧ dy ∧ dz + pxdp ∧ dy ∧ dz ∧ dt

+ qxdq ∧ dy ∧ dz ∧ dt + pydp ∧ dz ∧ dx ∧ dt + qydq ∧ dz ∧ dx ∧ dt
+ pzdp ∧ dx ∧ dy ∧ dt + qzdq ∧ dx ∧ dy ∧ dt
− 1

2

(
p2

x + p2
y + p2

z + q2
x + q2

y + q2
z − 2C

)
dx ∧ dy ∧ dz ∧ dt,

and the canonical 5-form on J1(Y ), is

ΩL = dp ∧ dq ∧ dx ∧ dy ∧ dz + dp ∧ dpx ∧ dy ∧ dz ∧ dt
+ dq ∧ dqx ∧ dy ∧ dz ∧ dt + dp ∧ dpy ∧ dz ∧ dx ∧ dt
+ dq ∧ dqy ∧ dz ∧ dx ∧ dt + dp ∧ dpz ∧ dx ∧ dy ∧ dt
+ dq ∧ dqz ∧ dx ∧ dy ∧ dt + dpx ∧ dx ∧ dy ∧ dz ∧ dt
+ dqx ∧ dx ∧ dy ∧ dz ∧ dt + dpy ∧ dx ∧ dy ∧ dz ∧ dt
+ dqy ∧ dx ∧ dy ∧ dz ∧ dt + dpz ∧ dx ∧ dy ∧ dz ∧ dt
+ dqz ∧ dx ∧ dy ∧ dz ∧ dt − ∂C

∂p
dp ∧ dx ∧ dy ∧ dz ∧ dt

− ∂C
∂q

dq ∧ dx ∧ dy ∧ dz ∧ dt.

3.3 The Euler-Lagrange Equations

To derive the Euler-Lagrange equations of motion, one takes finite variations
of the action function with respect to φ ∈ Γ(πXY ). The action function is
defined to be

S(φ) =

∫
U

L(j1(φλ))

where φ : U → Y , and U ∈ X is a submanifold of X with piecewise smooth
closed boundary. For a vertical vector field, V on Y , with compact support
in U , let ηY be the flow of V . Then the curve φλ = ηλ ◦φ is a finite variation
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of φ. The map, φ, is called a stationary point, extremum, or critical point of
the action, if for all variations φλ of φ,

dS · V =
d

dλ
|λ=0

∫
U

L(j1(φλ)) = 0. (6)

From equation 6, the Euler Lagrange equations are extracted after the follow-
ing manipulations. Using the fact that for all holonomic sections z ∈ J1(Y ),
L(z) = z∗ΘL, equation 6 becomes

dS · V =
d

dλ
|λ=0

∫
U

j1(φλ)
∗ΘL.

Then because φλ = ηλ ◦ φ as defined above,

dS · V =
d

dλ
|λ=0

∫
U

j1(ηλ ◦ φ)∗ΘL.

Note that j1(ηλ ◦ φ) is the same things as

j1(ηλ ◦ φ) = j1(ηλ) ◦ j1(φ),

and therefore,
j1(ηλ ◦ φ)∗ = j1(φ)∗ ◦ j1(ηλ)

∗.

Consequently, equation 6 can be written as

dS · V =
d

dλ
|λ=0

∫
U

j1(φ)∗j1(ηλ
Y )∗ΘL.

Now because nλ is the flow of V , by definition

d

dλ
|λ=0j

1(ηλ) = Lj1(V ).

Thus, equation 6 may be written

dS · V =

∫
U

j1(φ)∗Lj1(V )ΘL.
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Recall that Cartan’s magic formula says Lj1(V )ΘL = ij1(V )dΘL + d ij1(V )ΘL.
Also, by definition, dΘL = −ΩL. Accordingly, equation 6 becomes

dS · V =
∫
U

j1(φ)∗
(
ij1(V )dΘL + d ij1(V )ΘL

)
=

∫
U

j1(φ)∗
(
ij1(V )ΩL + d ij1(V )ΘL

)
=

∫
U

j1(φ)∗ij1(V )ΩL +
∫
U

j1(φ)∗d ij1(V )ΘL.

Employing Stokes theorem

dS · V =

∫
U

j1(φ)∗ij1(V )ΩL +

∫
∂U

j1(φ)∗ij1(V )ΘL. (7)

In order for φ to an extremum of S, both terms in 7 must disappear. The
multisymplectic form formula, (stated later), employs in its proof the second
term of 7, which is ∫

∂U

j1(φ)∗ij1(V )ΘL = 0.

This is to be discussed later. However, the first term in equation 7,∫
U

j1(φ)∗ij1(V )ΩL = 0,

is to be discussed here, because it is from this term that the Euler Lagrange
equations are extracted. The above condition is true, whenever j1(V ) =
W ∈ TJ1(Y ), where TJ1(Y ) consists of vector fields on J1(Y ) that are
πY,J1(Y ) vertical, or tangent to j1(φ). Thus, φ is said to be a solution to the
Euler-Lagrange equations whenever

j1(φ)∗iW ΩL = 0 (8)

for some W ∈ TJ1(Y ). This very expression, in equation 8, written in
coordinates, is the set of Euler-Lagrange equations

∂L

∂yA
(j1(φ))− ∂

∂xµ

(
∂L

∂vA
µ

(j1(φ))

)
= 0.

Note that as mentioned before, {xµ} are coordinates of the base manifold
X, {yA} are coordinates Y , which is the fiber bundle over X, and {vA

µ } are
coordinates of J1(Y ), which is the first jet bundle over Y .
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3.4 The Lagrangian Formulation Applied to the Gen-
eral Schrödinger Equation

Recall that for the 3-d general Schrödinger equation, φ : U ⊂ X → Y , where
φ(x, y, z, t) = (p, q), and j1(φ) in coordinates is

j1(φ) = ((x, y, z, t), (p, q), (pt, qt, px, qx, py, qy, pz, qz)).

Then set of Euler-Lagrange equations for the 3-d general Schrödinger equa-
tion, expounded in coordinates is

∂L

∂q
− ∂

∂t

∂L

∂qt

− ∂

∂x

∂L

∂qx

− ∂

∂y

∂L

∂qy

− ∂

∂z

∂L

∂qz

= 0, (9)

which is equivalent to the original equation of motion

pt +4q − ∂C

∂q
= 0,

and
∂L

∂p
− ∂

∂t

∂L

∂pt

− ∂

∂x

∂L

∂px

− ∂

∂y

∂L

∂py

− ∂

∂z

∂L

∂pz

= 0 (10)

which is equivalent to the original equation of motion

qt −4p +
∂C

∂p
= 0.

Since φ(x, y, z, t) = (p, q) is an extremum of the action principle, it is a
solution to the Euler-Lagrange equations.

3.5 The Hamiltonian Formulation

The Hamiltonian Formulation is a way of exploring the equations from the
perspective of the covariant spaces of the imposed geometric structure, for
example, J1(Y )?. However, a few more spaces should be described before
proceeding, so that a deeper understanding of these structures and their
implications may be attained.

The primary constraint manifold, denoted PL, is defined to be the im-
age of the covariant Legendre transformation of the first jet bundle PL =
FL(J1(Y )), with the necessity that FL is a diffeomorphism onto PL, and
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PL = FL(J1(Y )) is a smooth submanifold of J1(Y )?. In this case, the La-
grangian density, L is called regular.

Define the connection on Y , as U : TY → V Y , such that U : TyY → VyY
satisfies

U = Identity on V Y.

The space V Y is the vertical subbundle of TY , whose fibers are

VyY = {v ∈ TyY |TπXY · v = 0}.

Note that TyY =image(γ) ⊕ VyY , where γ ∈ J1(Y )y. Also, the horizontal
space is defined as hory = ker(Uy), so that TyY = hory ⊕ VyY . Thus, for an
element γ ∈ J1(Y )y, the image(γ) is isomorphic to ker(Uy). The covariant
Hamiltonian H : PL → Λn+1(X) may then be defined by

H(FL(γ)) = DUL(γ) · γ − L(γ).

Thus, written in coordinates, H is

H = Hdn+1xµ =

(
∂L

∂vA

(vA
µ + UA

µ )− L

)
dn+1xµ.

By defining the inclusion map i∗J1(Y ), PL : PL → J1(Y )?, the canonical (n+1)

form, and the (n + 2) form on J1(Y )?, can be pulled back to the primary
constraint manifold PL as

ΘH = i∗J1(Y )?,PL
Θ

ΩH = i∗J1(Y )?,PL
Ω.

These canonical forms on PL are important in explaining the equivalence
between the Lagrangian formulation and the Hamiltonian formulation. A
few more additional notions should be defined before attempting to explain
this equivalence.

If j1(φ) is the first jet of the section φ ∈ Γ(πXY ), then the conjugate to
j1(φ) is defined by

j̃1(φ) = FL ◦ j1(φ).

Note that j̃1(φ) ∈ Γ(πX,PL) is also a holonomic section of πX,PL . Furthermore,
z = j1(φ), is said to be Hamiltonian if

z∗(iF ΩH) = 0 (11)
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for all F ∈ T (PL). Equation 11 is the set of multihamiltonian equations. The
set of multihamiltonian equations and the set of Euler-Lagrange equations
are said to be implicative of each other. This implication is stated in the
following Lemma that was extracted from Marsden, and Shkoller 1.

Lemma 1. If FL : J1(Y ) → PL is a fiber bundle diffeomorphism over Y ,
and φ ∈ Γ(πXY ), then the following are equivalent

(i) j̃1(φ)∗iUΩH = 0, ∀U ∈ T (PL);
(ii) j1(φ)∗iW ΩL = 0, ∀W ∈ T (J1(Y )).

Note that (i) is the set of multihamiltonian equations, and (ii) is the set of
Euler-Lagrange equations.

The proof of Lemma 1 can be found in Marsden, and Shkoller 1. The
following theorem was also extracted from Marsden, and Shkoller 1, explains
the equivalence of the solution of the Euler-Lagrange equations to the solution
of multihamiltonian equations.

Theorem 1. If FL : J1(Y ) → PL is a fiber bundle diffeomorphism over Y ,
and φ ∈ ΓπXY , then the following are equivalent:

(i) φ is a stationary point of
∫

X
L(j1(φ));

(ii) j̃1(φ) is a Hamiltonian section for H.

Note that φ is a solution to the Euler-Lagrange equations, and j̃1(φ) solves the
set of multihamiltonian equations. Thus, solving the Euler-Lagrange equa-
tions is equivalent to solving the multihamiltonian equations.

The following proposition is also taken from Marsden, and Shkoller 1.

Proposition 1. If FL : J1(Y ) → PL is a fiber diffeomorphism and φ ∈
Γ(πXY , then j̃1(φ) is a Hamiltonian system for H if and only if

i ∂
∂xµ

j̃1(φ)(dfµ ∧ dφ) = −dH(j̃1(φ)). (12)

where µ ∈ {1, . . . , (n + 1)}.
It is noteworthy that 12 is equivalent to the equation in Bridges3.

Mµ ∂n

∂xµ
= −∇nH(n),

where the index µ denotes a sum over all coordinates in the base space, and
n is the vector n = (yA, vA

ν ), where ν denotes the νth spatial coordinate in
the base space. If the dimension of n is (m× 1), then each Mµ is a m×m
matrix, Mµ ∈ Rm×m.
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3.6 The Hamiltonian Formulation Applied to Schödinger
Equation

Recall that the Hamiltonian density of the 3-d general Schrödinger equation,
written in coordinates, is

H = Hdn+1xµ =

(
∂L

∂vA

(vA
µ + UA

µ )− L

)
dn+1xµ.

Thus, a connection, U, must be employed before proceeding. In this case, the
trivial connection is selected. The trivial connection is merely the natural
projection, where the action is coordinated by (0, vA), and thus, UA

µ = 0.
Consequently, the covariant Hamiltonian for the 3-d general Schrödinger
equation is regarded as H = Hdx ∧ dy ∧ dz ∧ dt, where

H =
∂L

∂pt

pt +
∂L

∂qt

qt +
∂L

∂px

px +
∂L

∂qx

qx +
∂L

∂py

py +
∂L

∂qy

qy +
∂L

∂pz

pz +
∂L

∂qz

qz − L

and thusly,

H =
1

2

(
p2

x + p2
y + p2

z + q2
x + q2

y + q2
z − 2C

)
. (13)

To case the equations of motion in a hamiltonian formulation, the following
change of coordinates is utilized

v1 = ∂L
∂px

= px w1 = ∂L
∂qx

= qx

v2 = ∂L
∂py

= py w2 = ∂L
∂qy

= qy

v3 = ∂L
∂pz

= pz w3 = ∂L
∂qz

= qz.

Recasting equation 3 using these coordinates yields the first order equations

qt − v1x − v2y − v3y = −∂C
∂p

−pt − w1x − w2y − w3y = −∂C
∂q

px = v1

qx = w1

py = v2

qy = w2

pz = v3

qz = w3.

(14)
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Also, H in the new coordinates becomes

H =
1

2

(
v2

1 + v2
2 + v2

3 + w2
1 + w2

2 + w2
3 − 2C

)
. (15)

Then by letting n = (p, q, v1, w1, v2, w2, v3, w3)
T , the equations in 14 are

written in compact notation as

M
∂n

∂t
+ Kx

∂n

∂x
+ Ky

∂n

∂y
+ Kz

∂n

∂z
= −∇nH(n), (16)

where the matrices in the above equation are defined by

M =



0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,Kx =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Ky =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,Kz =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0


.

These matrices, M, Kx, Ky, and Kz, will be useful in the development of
the multisymplectic structure, and the multisymplectic conservation law, in
the next section.

It is easy to see that equation 16 is Bridges equation defined in Proposition
1. Thus, by a combination of Theorem 1 and Proposition 1, solving equation
16 is equivalent to solving the Euler-Lagrange equations.

4 The Multisymplectic Structure

To define a multisymplectic structure, the notion of a presymplectic form
must be defined. A presymplectic form is a bilinear 2-form that is closed,
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skew-symmetric, but not necessarily nondegenerate. A set of presymplectic
forms together with a manifold comprise a multisymplectic structure. For the
matrices M, Kx, Ky, and Kz, in the previous section, define the presym-
plectic forms:

ω(a, b) = 〈Ma, b〉
κx(a, b) = 〈Kxa, b〉
κy(a, b) = 〈Kya, b〉
κz(a, b) = 〈Kza, b〉

where the matrix representation of these forms is defined by

g(a, b) = 〈Ga, b〉 = aT GT b,

where G ∈ R8×8. Then (TJ1(Y ), ω, κx, κy, κz) is a multisymplectic structure
of the general Schrödinger equation.

5 The Multisymplectic Form Formula

Before stating the multisymplectic form formula, it is necessary to classify
the types of sections and vector fields that are employed in theorem, so that
it will hold true.

Suppose U ⊂ X is a smooth submanifold, with piecewise smooth closed
boundary. Then C∞ is the set of smooth maps

C∞ = {φ : U → Y }|πXY ◦ φ : U → X is an embedding}.

Define C as the infinite dimensional manifold that is the closure of C∞ in
the Hilbert space. Next, define the set of solutions to the Euler-Lagrange
equations

P = {φ ∈ C|j1(φ)∗iW ΩL = 0, ∀W ∈ TJ1(Y )}.

Lastly, define the set of vector fields that solve the first variation equation to
the Euler-Lagrange equations (in equation 6)

F = {V ∈ TφC|j1(φ)∗Lj1(V )iBΩL = 0, ∀B ∈ TJ1(Y )}.

Now that all of the necessary components have been stated, the multisym-
plectic form formula may be introduced.

16



Theorem 2. The Multisymplectic Form Formula
If φ ∈ P (φ is a solution to the Euler-Lagrange equations), then ∀V, W ∈ F
(for all V and W that solve the first variation equations (equation 6) of the
Euler-Lagrange equations),∫

∂U

j1(φ)∗ij1(V )ij1(W )ΩL = 0

where j1(V ), j1(W ) ∈ J1(Y ).

The proof of this theorem can be found in Marsden, Patrick, and Shkoller2.
It is noteworthy that several implicating theorems can be extracted from the
multisymplectic structure and the multisymplectic form formula. A few of
these implicating theorems will be discussed in what follows.

Theorem 3. The multisymplectic form formula implies the multisymplectic
conservation law.

∂ω

∂t
+

∂κx

∂x
+

∂κy

∂y
+

∂κz

∂z
= 0

Proof. Let V, W ∈ F , and j1(V ), j1(W ) ∈ X(J1(Y )) be πX,J1(Y ) vertical
vector fields. The vector fields j1(V ), j1(W ) on J1(Y ) are coordinated by
the expressions

j1(V ) = V p ∂
∂p

+ V q ∂
∂q

+ V pt ∂
∂pt

+ V qt ∂
∂qt

+ V px ∂
∂px

+

V qx ∂
∂qx

+ V py ∂
∂py

+ V qy ∂
∂qy

+ V pz ∂
∂pz

+ V qz ∂
∂qz

,

and

j1(W ) = W p ∂
∂p

+ W q ∂
∂q

+ W pt ∂
∂pt

+ W qt ∂
∂qt

+ W px ∂
∂px

+

W qx ∂
∂qx

+ W py ∂
∂py

+ W qy ∂
∂qy

+ W pz ∂
∂pz

+ W qz ∂
∂qz

.

The expression ij1(V )ij1(W )ΩL is the 3 form

ij1(V )ij1(W )ΩL = (V qW p − V pW q) dx ∧ dy ∧ dz
+ (V pxW p + V qxW q − V pW px − V qW qx) dy ∧ dz ∧ dt
+ (V pyW p + V qyW q − V pW py − V qW qy) dz ∧ dx ∧ dt
+ (V pzW p + V qzW q − V pW pz − V qW qz) dx ∧ dy ∧ dt

(17)
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However, it is also the case that

ω(j1(V ), j1(W )) = V pW q − V qW p

κx(j
1(V ), j1(W )) = V pxW p + V qxW q − V pW px − V qW qx

κy(j
1(V ), j1(W )) = V pyW p + V qyW q − V pW py − V qW qy

κz(j
1(V ), j1(W )) = V pzW p + V qzW q − V pW pz − V qW qz .

As a result, ij1(V )ij1(W )ΩL can be expressed in terms of the presymplectic
forms

ij1(V )ij1(W )ΩL = −ω(j1(V ), j1(W ))dx ∧ dy ∧ dz + κx(j
1(V ), j1(W ))dy ∧ dz ∧ dt

+κy(j
1(V ), j1(W ))dz ∧ dx ∧ dt + κz(j

1(V ), j1(W ))dx ∧ dy ∧ dt.
(18)

Recall that the multisymplectic form formula states∫
∂U

j1(φ)∗ij1(V )ij1(W )ΩL = 0.

Thus∫
∂U

−ω(?)dx∧dy∧dz+κx(?)dy∧dz∧dt+κy(?)dz∧dx∧dt+κz(?)dx∧dy∧dt = 0

(19)
where (?) = (j1(V ), j1(W )). As defined previously, U is a smooth four dimen-
sional submanifold of X with piecewise smooth closed boundary. Therefore
after applying Stokes’ Theorem to equation 19, it becomes∫

U

(
∂

∂t
ω(?) +

∂

∂x
κx(?) +

∂

∂y
κy(?) +

∂

∂z
κz(?)

)
dx ∧ dy ∧ dz ∧ dt = 0. (20)

Now, because j1(V ) and j1(W ) are arbitrary vector fields on J1(Y ), and
U is an arbitrary smooth submanifold of X,

∂ω

∂t
+

∂κx

∂x
+

∂κy

∂y
+

∂κz

∂z
= 0,

which is the multisymplectic conservation law.
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Theorem 4. For the case where the base space U ⊂ X is coordinated with
infinite spatial domain, in other words, if

U = {(x, y, z, t) ∈ R3 × R | x ∈ (−∞,∞), y ∈ (−∞,∞), & z ∈ (−∞,∞)},

then the relationship between the quantum mechanical symplectic form, Ω(Ψ, Φ),
and the presymplectic form, ω (j1(V ), j1(W )), is

Ω(Ψ, Φ) = −2

∫
∂U

ω
(
j1(V ), j1(W )

)
dx ∧ dy ∧ dz.

Please note that in this case, j1(V ) is associated with the wavefunction Ψ,
and j1(W ) is associated with the wavefunction Φ, in the following manner

j1(V ) = pΨ ∂
∂p

+ qΨ ∂
∂q

+ V pt ∂
∂pt

+ V qt ∂
∂qt

+ V px ∂
∂px

+

V qx ∂
∂qx

+ V py ∂
∂py

+ V qy ∂
∂qy

+ V pz ∂
∂pz

+ V qz ∂
∂qz

and

j1(W ) = pΦ ∂
∂p

+ qΦ ∂
∂q

+ W pt ∂
∂pt

+ W qt ∂
∂qt

+ W px ∂
∂px

+

W qx ∂
∂qx

+ W py ∂
∂py

+ W qy ∂
∂qy

+ W pz ∂
∂pz

+ W qz ∂
∂qz

.

where pΨ = Re{Ψ}, qΨ = Im{Ψ}, and pΦ = Re{Φ}, qΨ = Im{Φ}.

Note that the quantum mechanical symplectic form is defined in terms of
the ordinary quantum mechancial Hermitian inner product on the complex
Hilbert space of L2 wavefunctions 4, 〈〈Ψ, Φ〉〉, as

Ω(Ψ, Φ) = −2Im〈〈Ψ, Φ〉〉.

Proof. The presymplectic form, ω(·, ·), acting on the vector fields, j1(V ), j1(W ) ∈
TJ1(Y ), as defined above, is

ω
(
j1(V ), j1(W )

)
= pΨqΦ − qΨpΦ.

Thus∫
∂U

ω
(
j1(V ), j1(W )

)
dx ∧ dy ∧ dz =

∫
∂U

(
pΨqΦ − qΨpΦ

)
dx ∧ dy ∧ dz. (21)
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As stated in the theorem, the quantum mechanical symplectic form is de-
fined in terms of the ordinary quantum mechancial Hermitian inner product
on the complex Hilbert space of L2 wavefunctions, 〈〈Ψ, Φ〉〉, as

Ω(Ψ, Φ) = −2Im〈〈Ψ, Φ〉〉,

where

〈〈Ψ, Φ〉〉 =

∫
Ψ?Φ dτ

which in Cartesian coordinates is

〈〈Ψ, Φ〉〉 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ψ?Φ dx ∧ dy ∧ dz.

Let Ψ = Re{Ψ}+ iIm{Ψ}, and Φ = Re{Φ}+ iIm{Φ}. Then the Hermitian
inner product of Ψ and Φ is

〈〈Ψ, Φ〉〉 =

∫
Ψ?Φ dτ =

∫
(Re{Ψ} − iIm{Ψ}) (Re{Φ}+ iIm{Φ}) dτ.

Expanding the above product yields,

〈〈Ψ, Φ〉〉 =

∫
(Re{Ψ}Re{Φ}+ Im{Ψ}Im{Φ}) dτ+i

∫
(Re{Ψ}Im{Φ} − Im{Ψ}Re{Φ} ) dτ.

Now let Re{Ψ} = pΨ, Im{Ψ} = qΨ, Re{Φ} = pΦ, Im{Φ} = qΦ. Then the
Hermitian inner product of Ψ and Φ becomes

〈〈Ψ, Φ〉〉 =

∫ (
pΨpΦ + qΨqΦ

)
dτ + i

∫ (
pΨqΦ − qΨpΦ

)
dτ

The symplectic form for quantum mechanics is

Ω(Ψ, Φ) = −2Im〈〈Ψ, Φ〉〉 = −2

∫ (
pΨqΦ − qΨpΦ

)
dτ.

In Cartesian coordinates this is

Ω(Ψ, Φ) = −2Im〈〈Ψ, Φ〉〉 = −2

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
pΨqΦ − qΨpΦ

)
dx ∧ dy ∧ dz.
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But because

U = {(x, y, z, t) ∈ R3 × R | x ∈ (−∞,∞), y ∈ (−∞,∞), & z ∈ (−∞,∞)},

then∫
∂U

ω
(
j1(V ), j1(W )

)
dx∧dy∧dz =

∞∫
−∞

∞∫
−∞

∞∫
−∞

ω
(
j1(V ), j1(W )

)
dx∧dy∧dz = Im〈〈Ψ, Φ〉〉.

and consequently

Ω(Ψ, Φ) = −2

∞∫
−∞

∞∫
−∞

∞∫
−∞

ω
(
j1(V ), j1(W )

)
dx ∧ dy ∧ dz.

Therefore, it is proven that:

Ω(Ψ, Φ) = −2

∫
∂U

ω
(
j1(V ), j1(W )

)
dx ∧ dy ∧ dz.

Theorem 5. For the 3-d general Schrodinger equation with infinite spatial
domain, and bounded time domain, t ∈ [T1, T2], the integrals along the bound-
aries at t = T1 and t = T2 are equal in magnitude but opposite in orientation.
In other words∫

∂UT1

ω(j1(V ), j1(W ))dx ∧ dy ∧ dz = −
∫

∂UT2

ω(j1(V ), j1(W ))dx ∧ dy ∧ dz.

Proof. From the proof of 5, the multisymplectic form formula implies that∫
∂U

−ω(?)dx∧dy∧dz+κx(?)dy∧dz∧dt+κy(?)dz∧dx∧dt+κz(?)dx∧dy∧dt = 0.

(22)
Now, for reasons explained after the following statement, the multisymplectic
form formula applied to a system with an infinite spatial domain but bounded
time domain reduces to∫

∂U

ω(j1(V ), j1(W ))dx ∧ dy ∧ dz = 0. (23)
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This phenomena occurs due to the fact that in the multisymplectic form
formula, the integration takes place along the boundary of the domain U . Yet,
for the case that the system possesses bounded time domain, and unbounded,
or infinite spatial domain, there does not exist a boundary that proceeds along
the temporal domain, upon which to integrate. Thus, each form in 22 that
includes the term dt, simply disappears.

Now because the time coordinate is bounded, this means that there is an
upper limit in time, and a lower limit in time. Thus, for each integration in
the triple integral, there are two boundaries to integrate along in equation
23. Denote the lower boundary by ∂UT1 , and the upper boundary by ∂UT2 .
Then equation 23 becomes∫
∂UT1

ω(j1(V ), j1(W ))dx ∧ dy ∧ dz +

∫
∂UT2

ω(j1(V ), j1(W ))dx ∧ dy ∧ dz = 0.

As a result,∫
∂UT1

ω(j1(V ), j1(W ))dx ∧ dy ∧ dz = −
∫

∂UT2

ω(j1(V ), j1(W ))dx ∧ dy ∧ dz.

Thus, the integrals along the boundaries at time t = T1 and time t = T2, that
is, the integrals along ∂UT1 and ∂UT2 , are equal in magnitude, but opposite
in orientation.
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6 Conclusion

The methodology in this paper can certainly be easily extended to higher
dimensional systems. For example, for a system with N particles, the 3N -
dimensional Schrödinger equation can be geometrized in an analogous fash-
ion, with the base space being coordinated by 3N spatial coordinates instead
of 3. Additionally, the base space may be coordinated by any other depen-
dent variable that one may wish to consider, that the wavefunction is related
to.

The geometric framework presented in this paper can be utilized to de-
rive integrators for various partial differential equations. For example, the
Veselov-type discretization, normally applied to the regular Lagrangian for-
mulation, may be applied to multisymplectic field theory for the purpose of
deriving variational integrators1. This method was applied in Chen5 to the
nonlinear Schrödinger equation. It is hoped that the work presented here has
laid the groundwork for Veselov-type discretization techniques to be applied
to the general Schrödinger equation.

Optimistically, the geometric structure imposed on the Schrödinger equa-
tion will lead to greater insight in one’s study of theoretical physics and
chemistry. The trick is to relate the mathematical objects in this framework
to an object or idea that corresponds to reality in the physical world. For
example, what does the multisymplectic conservation law correspond to in
the ”real world”? Most likely this idea has already been explored. However,
asking such types of question will lead to either 1) a higher level of knowledge
that is already known, 2) a higher level of discovery in quantum mechanics,
or 3) a wider area of application. All three areas are well worth the effort
that will take to pose and answer such questions.
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