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1 Introduction

This paper describes work on nonholonomic systems with and without symmetry. This
report is based essentially on three papers. Various books were consulted for the necessary
background. The three papers are Bates and Sniatycki[l); Bloch, Krishnaprasad, Marsden,
and Murray([2]: and van der Schaft and Mascheke[6]. The following texts were frequently
consulted for background: Kobayashi and Nomizu[3], Marsden and Ratiu[4], and Spivak[5].
I began reading Bloch. Krishnaprasad, Marsden, and Murray[2] which is in preparation and
have included some of the results of that paper here. I read the Bates and Sniatycki[l] paper
but do not include directly the results in this report. 1 present most of the results in van
der Schaft and Mascheke[6] with additional and different explanations for the statements in
the paper. One of the goals of this report. besides learning more about this subject, was
to examine the pseudo-Poisson bracket. The bracket for these systems satisfies the first two
identities for the Poisson bracket but fails the Jacobi identity. This report sets out to further
understand the remainder of the Jacobi identity calculation.

The results in [2] and [6] are demonstrated in the vertical penny rolling on a horizontal
plane. The remainder in the Jacobi equation is calculated for this example and is shown
to be an equation involving the curvature of an Ehresmann connection defined by the non-
holonomic constraints. The report concludes with a conjecture for the remainder in the
Jacobi identity calculation that involves the curvature of the Ehresmann connection. On
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the pseudo-symplectic side, Bates and Sniatycki[l] calculate a formula for the remainder of
the exterior derivative for nonholonomic systems and relate it to the curvature of a principal
connection. Their two-form defines a corresponding bracket. The fact that their two form
is not closed implies that the bracket does not satisfy Jacobi’s identity. This report sets
out to conjecture a remainder equation for Jacobi’s identity for nonholonomic systems with
Ehresmann connections determined by the constraints. The conjectured equation resembles
the equation in Bates and Sniatycki[l).

The first section presents background from Bloch, Krishnaprasad, Marsden, and Murray|2]
on principal and Ehresmann connections. The momentum equation, a result from their pa-
per. is then presented. An exposition is then given on van der Schaft and Mascheke[6] which
calculates the equations on the constraint phase space followed by a formula for the bracket
tensor. A theorem is presented and proved showing that the bracket satisfies the Jacobi
identity if and only if the constraints are }olonomic. The paper concludes by analyzing
the vertical penny rolling on a horizontal plane using the results in Bloch, Krishnaprasad,
Marsden. and Murray[2] and in van der Schaft and Mascheke[6]. The momentum equation
is described for this example and is used to solve the equations of motion. Following the
development in van der Schaft and Mascheke[6], the equations of motion on the constraint
phase space are derived. The bracket and the remainder in Jacobi’s identity is calculated
and related to the curvature of the Ehresmann connection determined by the constraints.
The paper finally presents a conjectured equation for the remainder of the Jacobi identity
calculation.

2 A Few Results and Definitions from “Nonholonomic
Mechanical Systems with Symmetry”

In this section, a subset of the results from “Nonholonomic Mechanical Systems with Sym-
metry” are presented. Definitions and results from connection theory are discussed which
are needed for subsequent sections of the report. The report then develops the momentum
equation which arrives from consideration of the group invariance of the Lagrangian and the
nonholonomic constraints. In a later section, these results are used in an example.

2.1 Principal and Ehresmann Connections

In this report. connections provide a method of characterizing the nonholonomic constraints.
The allowable directions are given by the horizontal space of the connection. The results
presented in class on principal connections are given here. Some definitions and results of
Ehresmann connections are given which are used later in the report.

Let @ be a manifold and let a group G act on @ on the left. Let the action of G be free
and proper so that the quotient space, @/G. is a manifold. The manifold @ is a principal
bundle with the projection 7 : @ — Q/G. A (principal) connection on the bundle is a map
from the tangent space to the lie algebra and is denoted, % : TQ) — g. The connection is
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linear on each tangent space and is therefore a g-valued 1-form. The connection satisfies
these properties:

1. A(€olq)) =& for all £ € gand g € @, and
2. A(T,D,(v,)) =Ad,A(z,) for all v, € T,Q and g € G, where 9, is the given
action of G on Q.

The vertical space at a point ¢ € Q is the kernel of T,x and is denoted ver,. The vertical
projection of a tangent vector is

vergr, = (2 (vq))Q (g)
The horizontal space at a point ¢ € Q is
hor, = {v, € T,Q|%(v,) = 0}

The curvature of the connection is a g-valued form given by the exterior derivative of the
connection acting on horizontal projections of the vectors and is denoted

(1) B(X.Y) = d(hor X, hor¥'),

As presented in class. there are other forms of the curvature that are sometimes easier to
use than (1). Two equivalent equations for the curvature are

(2) B(X.Y) = ~2([horX.hor¥)) = dA(X,Y) - [A(X),.2(Y))

where the first bracket is the Jacob-Lie bracket of vector fields and the second bracket is the
Lie algebra bracket.

Ehresmann connections are now described. The Ehresmann connection provides the
ability to split 7,Q into horizontal parts and vertical parts as in the principal case; however,
the Ehresmann connection is a vertical-valued form and does not require a principal bundle.
Given a bundle = : @ — R where Q is the configuration manifold and R is called the base
space. the Ehresmann connection maps a tangent vector in T,Q to its vertical component.
As before. the vertical space is the kernel of Tyx and the horizontal space is the kernel of
A(g) at a point ¢ € Q. It is assumed that there are coordinates for the bundle (r°,s®)
where r® are coordinates for R and the remaining coordinates s® are the fiber coordinates.
In coordinates. the projection = acting on a point in @ returns the r® coordinates. The
connection can be represented as a vector valued form w® where

(3) w® =ds® + A} (r,s)dr®.

Notice that A3 is a function of the base and the fiber variables. In a later section of this
report. the vertical penny rolling on a plane is examined. In this case, A} is only a function
of the base variables. The snake board is an example where the coefficients are functions of
the fiber coordinates. The vertical projection in local coordinates is given by

(7°,8%) = (0,8° + A2 (r,8)7°),
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and the horizontal projection is given by
(r%,8%) = (F2, = A2 (r,s) ).

The constraint forms for nonholonomic constraints are often given in the form of (3). In this
case. a vector satisfies the constraints if and only if it is hor:zonta] The curvature of the
Ehresmann connection is given by

(4) B(X,,Y;) = —A(q) ([hor X, horY])

where X,.Y; € T,Q and the vector fields on the right are horizontal extensions of the vectors.
It is not clear that this definition is independent of the extension. If there exists a relationship
similar to the second equation in (2). then the curvature is independent of the extension.
The exterior derivative is not defined for an Ehresmann connection sin=e it is not a mapping
from the tangent space to the reals or to a vector space. In local coordinates, one can show
that the curvature is given by (1) where the exterior derivative of the local form (3) is taken,
and the bracket is the Jacobi-Lie bracket. This shows that it is independent of the extension
and gives a useful formula for calculating the curvature of the Ehresmann connection. In
the penny example. the curvature is calculated by taking the exterior derivative of the local
form of the constraints and applying it to horizontal vectors.

2.2 Momentum Equation

The momentum equation is now described which is a result developed in “Nonholonomic
Mechanical Systems with Symmetry™ that applies to nonholonomic systems with symmetry.
This development begins with a proof of Noether’s Theorem and then uses an analogous
procedure to develop the momentum equation. This development follows closely the presen-
tation in “Nonholonomic Mechanical Systems with Symmetry”.

For the following development, there is a Lie group G acting on a configuration manifold
@ and the action will be denoted ¢ — gg = &, (¢). The nonholonomic kinematic constraints
define a distribution Dy C T,Q where D is the distribution of allowable directions, i.e. in
the kernel of the constraint forms. It is also assumed that D, is invariant to the group action.
In other words.

T,®,- D, = D,,.

Given a configuration manifold and a G-invariaﬁt Lagrangian L : TQ — R, the corre-
sponding conserved momentum map is given by the mapping J : TQ — g* defined by

(5) (3 (vq).€) = (FL(v,),&q (¢))
where FL is the fiber derivative. In coordinates,

oL .
(6) Ja = 3q
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is the momentum equation where K are the action coefficients given by £o (¢') = Ki€20/84'.
Noether’s theorem states that the momentum given by (5) or (6) is constant in time for
solutions to the Euler-Lagrange equations. The “Nonholonomic Mechanical Systems with
Symmetry” paper presents a proof of Noether’s theorem which is restated here. Choose any
function o(t.s) of two variables such that ¢(a,s) = ¢(b,s) = ¢(¢,0) = 0 where a and b are
endpoints of the given solution of the Euler-Lagrange‘s equations. Since L is G-invariant,
the expression

b
(7) [ Liexp (8(2.9)6) - a,exp(8it,5)6) - ) dt
is independent of s for each Lie algebra element £ € g. The item in the second argument of the

Lagrangian is the tangent map of the group action acting on a tangent vector. Differentiating
this expression with respect to s and setting s = 0, gives

. _tfeL, . oL i
(8) , 0‘/.. (a—q,fq«» +a—¢(T£o-q) ¢)dt.

Consider the variation ¢(t,s) = - exp (o (t.s)€)-q(t). The corresponding variation (derivative
with respect to s) is é¢ (1) = ¢  (t)€o (g (¢)). Hamilton‘s principle states that

oL oL
9 0= / 226q" + o=0q | dt.
(9) ( g ¢+ = a7 q)
The time derivative of the variation with respect to ¢ is given by
(10) Sg=0'to+6 (Téa-4).
Substitute (10) into (9) and subtract (8) from the result to get
b 9L
0 = a : ({Q) ¢dt

(11) --[2 (cq)wt

The last result follows from integration by parts. Since ¢ is arbitrary, except for the endpoint
conditions. the integrand is zero, and, therefore, the time derivative of the momentum map
is zero.

The authors of “Nonholonomic Mechanical Systems with Symmetry” now introduce ad-
ditional notation for the development of the momentum equation. Define the vertical sub-
bundle Vert of TQ, with the fiber at g given by

(Vert), = span (o€ € g) .



Now define Dysery to be the union over g of D, N (Vert) . Now consider a section of Dyjery,
i.e., a mapping that takes ¢ to an element of (DVert)q° An element in the image of this

map is denoted ). The corresponding Lie algebra element £7 is the element of g that gives
rise to the infinitesimal generator £3.

Define variations analogous to the variations in the proof of Noether’s theorem where ¢
is replaced with €9, i.e., ¢(t,s) = exp (qb(i,s) E"(‘)) - g (t). The infinitesimal variation is then

bg(t) = ¢ () €5 (g(1)). Let O€° denote the derivative of £? with respect to g so that

(12) b=+ 4 |(Teg®-4) + (06 q) ).

The variations satisfy the constraints and the curve g (t) satisfies the Euler-Lagrange equa-
tions so that Hamilton's principle holds given in equation (9). Also, equation (8) holds with
€ replaced with £9();

(13) 0=/b( (Eq(f)) (TEQU) ‘)i¢') di.

Using (12) in (9) and subtracting (13) from the result gives

Theorem 2.1 Using the notation introduced above, any solution of the Lagrange-d’Alembert
equalions for a nonholonomic system must satisfy, in addition to the given kinematic con-
siraints, the momentum equation:

) =G g e

where J¢ ({Q‘”) =5 ({""’)'Q is the nonholonomic momentum map.

Q

The use of this equation is demonstrated in the rolling vertical penny example in a
following section.

3 Exposition on “On the Hamiltonian Formulation of
Nonholonomic Mechanical Systems”

In this section, most of the results in “On the Hamiltonian Formulation of Nonholonomic
Mechanical Systems” are presented. The nonholonomic constraints in terms of a matrix
equation are described and related to the notation above. The Lagrange-d’Alembert equa-
tions of motion with Lagrange multipliers are then presented. This equation is then trans-
lated to Hamilton's equations with multipliers. Through a specific choice of coordinates, the
multipliers are eliminated giving an equation on the constrained phase space. The result-
ing equations possess a bracket that shares two properties of the Poisson bracket but does
not necessarily satisfy Jacobi’s identity. The main result of the paper is that the resulting
bracket satisfies Jacobi’s identity if and only if the constraints are holonomic.
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3.1 Hamilton’s Equations with Constraints

As before. Q is the configuration manifold with local coordinates 9 =1(q1,92,-" .q2). The
Lagrangian is assumed to be regular. The k constraints which are assumed to be linear on
the velocities are given by

(14) AT(q)g=0

where AT is a k x n,k < n matrix and is assumed to have rank equal to k for every
configuration. The rows of AT (the columns of A) define the constraint 1-forms. The
distribution of allowable directions , D, is given by the kernel of AT (¢). The constraints are
holonomic if the distribution is involutive (X,Y € D = [X,Y] € D) by Frobenius’ theorem.
The constraints are nonholonomic if the distribution is not involutive.

The equations of motion for the mechanical system : re given by

d (0L JL
a(a—o)‘a—q = AlA
(15) AT(g)g = 0

where the derivatives are column vectors and A (¢) € R*.
The Hamiltonian is defined by the Legendre transformation of the Lagrangian to give

; . oL .
H(q.p) = pig" — L(q.9). Pi= 55 i=1---n.

The transformed equations on T°Q are

i = o)
oH
16 ) = ——(g,p)+ A
(16) P 74 (g,p)

H
0 = AT(q)%—q(q,p)-

This paper provides a coordinate change that removes the dependence of the equations
on A. Choose a matrix whose columns span the null space of AT and call it S (g), i.e.,

AT (g)S(g)=0.
Such a matrix exists at least locally. Choose new coordinates,

P = ST(q)p
OH
- =2 T
(17) ¥ = A (‘1)—6p
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where ' € R"~* and p* € R*. This is a coordinate transformation since it is assumed that

r, \OH
(18) detA”(g) o7 (9:P) Al9) #0. g€ Q.
Showing that it is a coordinate transformation comes down to showing that the matrix
ST
(19) ( 2 )
ATaSpH

is full rank. A mechanical system is assumed in this exposition so that Q-;’,’- M~1(q), the
inverse of the positive definite mass matrix. In the original coordinates, the equations take
the form

. g\ _ (g,p) 0 T, \oH _
20) (ﬁ)_J( ’?'(qp)) (A(q))'\’ A% lap)=

where
0, I,
=( 55

is the standard matrix for the Poisson bracket. 1 used these equations to calculate the
equations in the new coordinates. After a messy calculation, I confirmed that the equations
are given by

g‘l ) 3 (0:P) 0
(2]) }3 = J(‘]-i’) apl (Q7p) + .0 /\f
Alg)
p 28 (q,p) g
P =0

where H is the Hamiltonian in the new coordinates. Through the same calculation, it is
determined that A is a full rank & x k matrix. The Hamiltonian i m the new coordmates
obtains a block structure where there are no cross terms between ' and p? so that 2 7; at
p* = 0 is 0. This calculation was performed for a mechanical system with an invertible
mass matrix which is only a function of the coordinates. The equations on the constraint
manifold.

M= {(q‘p) € T"Q|A” (q) %—1: (¢,p) = 0},

are then

5 g\ _ 2 (2= Ag,
(§)-s0n (s

ﬁa 'Bl

-
S g
N’
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where (g.p') are coordinates for the constraint manifold, J, is J with p*=0and H, is H
with p> = 0. The matrix J, has the form

y 0, 5(q)
(23) J: (9.5") = ( -57(q) (-p"15:,5;) C) - )

where 5; is the ith column of S. This form of J, comes out of the messy calculation mentjoned
earlier. The matrix J, defines a bracket on M where

T T . 2G:
(24) {F..G,}, (q,i”) = @Fa—;a;:,l) Jr (‘1’131) (38%3,- )

This bracket satisfies two properties of the Poisson bracket, namely, skew-symmetry and
Leibniz’ rule. The Jacobi identity is not necessarily satisfied. The major theorem of “On
the Hamiltonian Formulation of Nonholonomic Mechanical Systems™ is the follow: ag:

Theorem 3.1 The bracket {,}, on M satisfies the Jacobi-identity if and only if the con-
straints AT (¢)¢ = 0 are holonomic.

Proof. (If) Suppose the constraints are holonomic. It is then possible to choose local co-
ordinates so that the constraints are give by (Gn-k+1,°+* 14a) = 0. In this form, AT (g) =
[ 0 Iy ] Since this is a point transformation, momentum coordinates p = (p",p%) can be
chosen where j! is n — k dimensional and p? is k dimensional so that the equations are given

as in (20). With the choice of new coordinates given by (17), J = OI I(;‘ ) transforms
—in
to
0 0 In—k *
: 0 0 0 =
J = ~Iix 0 0 =«
* * %* *

where * elements are unspecified. This follows since ST (9) = [ I.., 0 ] The J, matrix is
the upper left 2n — k block. Since J, is constant, {, }. satisfies Jacobi’s identity.

(Only If) Suppose the bracket {, }_ satisfies the Jacobi identity. Denote the Hamiltonian
vector fields with respect to J, with Hamiltonians ¢, - - - g2, P BT by X, y Xpnet.
The Hamiltonian vector fields are just the columns of J,. The fact that

(X5 Xp) = ~Xpppyini =1, ,n—k

implies that [X,-,., X,;,] is in the span of the columns of J,. This follows since Xy = J (DH)T.

The first n factors of the vector fields of the form X are just the ith column of S (¢) denoted

Si. It is then seen that [S;.S;) € ImS(q) fori,j=1,--- ,n—k. Therefore, the distribution

D (¢) = ImS (q) is involutive and hence the constraints are holonomic by Frobenius’ theorem.
D

In the next section. these calculations are demonstrated for the penny rolling vertically
on a horizontal plane.



Figure 1: Penny Rolling Vertically on a Horizontal Plane

4 Penny Example

In this section. the penny rolling vertically on a horizontal plane is examined. The momentum
equation is used to determine the equations of motion. The momentum equation leads to two
conservation laws that along with the constraints completely solve the equations of motion.
The calculations in Section 3 are carried out to determine the equations of motion on the
constraint manifold and the bracket that does not satisfy the Jacobi equation. Next, the
remainder in the Jacobi equation is calculated and related to the curvature of the connection
determined by the constraints. The section ends by conjecturing a formula for the remainder
in the Jacobi equation that involves the curvature of the connection. This penny system
is simple but illustrates the ideas and leads to a conjecture for nonholonomic mechanical
svstems.

The notation for the penny model is now presented. The model for the vertical penny is
shown in Figure 1. The coordinates of the point of contact, point Q, is denoted (z,y). The
angle from Q to a reference point P measured about a normal on the flat face hidden from
view and using the right hand rule is §. The line tangent to the direction of the penny’s
heading intersects the z-axis. This angle is denoted . The fiber coordinates are chosen to
be r and y and the base coordinates are chosen to be 8 and ». The mass of the penny is m,
the moment of inertia about the 8 axis is I, and the moment of inertia about the ¢ axis is
J. The constraint equations are

:i'=R(cos<p)é

(25) § = R(sing) 4.

In the notation of Ehresmann connections, A} = —R(cos¢), A2 = —R(siny), and the
remaining coefficients are zero. The Lagrangian is

v __] +2 .2 1 32 1 22
(26) L= m(i +y)+§le + 578"

¢
-
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4.1 The Penny and the Momentum Equation

First observe that the constraints (and the Lagrangian) are invariant under an SE (2) action
given by

(27) (,y.0.9) = (rcosa —ysina + d.,zsina + ysina + d,, 0,9 + a)

where (d..d,.c) parameterize SE (2). The SE (2) action is a rotation about the z axis, the
a variable. followed by a translation of the contact point, the d, and d, terms.

Also observe that the constraints (and the Lagrangian) are invariant under an R? x S*
action given by

(28) (.9.6.9) = (z+ Ay +p,0 + 8.9}

where (A, p. 3) parameterizes the R? x S? group.
The tangent to the group orbits for the SE (2) action is

0 0 0
SE(2) _
T,0rb, = span { 32 3y 3,/}

The tangent to the group orbits for the R? x S? action is

a 8 9
8z’ By 90"

The distribution of allowable directions is given by the kernel of the constraint forms. As
in the background presented in Section 2, the constraint distribution is denoted D,. In this
example,

TOrb"‘ xSt o span{

. i) 0 a 0
(29) D, -span{aY Rcos,,al_-{—Rsmoa— -370-}

Calculating the intersections between the tangents to the group orbits and the constraint
distribution gives

0
(30) D, N T,0rb35? = span {%}
and
2 1 a 6 a
BixSt _ R T
(31) D, NT,0rb; = span {Rcosgpa +Rsmaay 60}'

Now specify sections of the intersections described above. For the SE (2), take the vector
field to be

(32) 3

OH=
"
o



with the corresponding Lie algebra element
(33) £ =(0,0,1).

Notice that this Lie algebra element is independent of the fiber and the base coordinates and
therefore leads directly to a conservation law. For the R? x S!, take the vector field to be

(34) & =Rcos¢6—i+Rsinp%+%

with corresponding Lie algebra element
(33) £ = (Rcosy, Rsing,1).

Notice that the third coordinate of the Lie algebra element is again independent of the base
and fiber coordinates.

The momentum equation is now calculated for these two group actions. For the SE (2)
action. the nonholonomic momentum map is

(36) JS = % (€3) = g5

Since the right hand side of the momentum equation is zero, it follows that » = w is a
constant. For the R? x S'. the momentum equation is

oL

(37) =5z

(€)' = miRcosp + myRsin + I6.

The momentum equation is then

(38) % (miRcos o + myRsing + 16) = m:i‘% (Rcosy) + my)-‘% (Rsin ).
Equation (38) reduces to

(39) Rcos pmi + Rsinpmij + 16 = 0.

Using the constraint equations to eliminate # and § gives

(40) (mR*+1)é=0.

This implies that § = Q is a constant. The equation for 8 is § = Q¢ + 6o and for ¢ is
¢ = wl + 0. Putting these into the constraints gives

T = QR cos (wt + ¢o)
¥ = QRsin (wt + ¢p) .
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Integrating these equations results in
Q.. ,
= :Rsm (wt + ¢0) + xo
Q
y = ;R cos (wt + éo) + yo-

This example demonstrates the use of the momentum equation and shows that it agrees with
other methods of generating the equations of motion. This example also provides one with
intuition for the definitions presented earlier.

4.2 The “Hamiltonian” Equations for the Penny

For the following development. it is assumed for simplicity that m = 1,7 = 1.J = 1, and
R = 1. The Hamiltonian is J (p§ + p§ + pi + pi) With this assumption, the constraints are
I —cosyof =0 and y —sin o0 = 0. In this case,

N PR nd E
and. therefore.
0 cosy
S(g)= 8 Sirlw
1 0

Using the coordinate change in equation (17) gives

nh = p;
(41) P2 = pot+prcosyp+pysing
P3 = pr—pscosy

P = py—pssineg.
Furthermore. M = {(x.y.0. 2, p:, py, Ps,p.:) |Ps = 0, ps = 0} and the bracket matrix is
[ 0 0 0 o

0 cosy ]
0 0 0 0 0 sing
; _ 0 0 0 0 0 1
0 0 0 -1 0 0O
| —cosp sinpy =1 0 0 O |

These equations can be inverted by hand or in Mathematica[7] to calculate the new Hamil-
tonian. It is seen that the new Hamiltonian has no cross terms between p, or j; and the ps
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and py terms. The new Hamiltonian on M is given by H, = }p3 + 1p. The equations on
M are

.i.' = jpcosp P o= 0
§ = jhsing  p =0
S
¥ = h ps = 0.

4.3 The Remainder in Jacobi’s Equation for the Penny

In this section. J, in equation (42) is examined and the remainder in the equation in the
Jacobi identity.

(13) {FAG.H),), +{G.{H.F),}, + {H{F.G} },,

is calculated.

To determine the remainder. only the remainder for the coordinate functions is calculated
since the above equation is equivalent to

OF 8G OH {T {JJ,rk}r}’ + {xi, {a—k,xi}r}r {zk’ {xiqxi},},] .

(44)

dr' 8z? dr*

To calculate the remainder, the following coefficients are determined:

(45) Cip = {a' {a?. 2"} } +{a' {a" 2} } {*{s"2} } -

Since there are three indices that range between 1 and 6, there is a potential of having
63 = 216 coefficients. The cyclic nature in the coefficients leads to only 76 terms. Some of
these 76 terms are related by minus signs. It is also useful to note that {z;,z;} is the ¢, jth
element of J,. After performing this calculation and utilizing the relationships between the
indices. only twelve nonzero terms remain. These twelve terms are

Cies = Ces1 = Csig = sing

Cise = Cse1 = Co1s = —siny
(46) Ca2s6 = Csg2 = Cgas = cosg

C2es = Cos2 = Cs26 = —cosp.

Using this result and placing it back into equation (44) gives

y 95 Op; 3p1 952 Oy sz By op,
oF 0G 6H oF 0G BH OF 60GoH
By 0p; 0pr aPz Op1 Oy 3p1 By 0

von(43) = sine [OEOGOH  OF 9GOH  OF 0GoH
cquation = smy 3z 3p2 3p1 3p2 op, Oz 3p1 bz 0p,
_ snw(OFOGOH OF8GoH  OF 3G 8H
¥\ 3z 351 05, * 0 95, 0z | p, Bz Op,
(47) + )

(BF oG 6H OF 0G 6H OF 0G 0H
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After showing these equations to Professor Marsden, he conjectured that this equation might
be equal to (dF. B (Xs.Xy)) + cyclic F,G. H where B is the Ehresmann curvature for the
connection determined by the constraint forms and Xy is the Hamiltonian vector field for
the pseudo-bracket. The connection is vertical valued and this means that for coordinate
calculations.

@ (X) = [(dz — cos pdb) (Xo)]
(45) r(Xo) = [ldy —sinodd) (Xe)] o

These Hamiltonian vector fields are horizontal as can be checked or by seeing that the vector
fields satisfy the constraints by construction. In local coordinates, the curvature of the
Ehresinann connection is given by

(49) B(X.¥) = dA(X,Y) - [A(X).A(Y)].

Since the pseudo-Hamiltonian vector fields are horizontal. just take the exterior derivative
of the constraints and apply them to the pseudo-Hamiltonian vector fields to calculate the
curvature. Therefore.

. 4 td 6 4 a
B(Xg,Xy) = duy(X6.Xy) o= + dw; (Xe, Xy)
or dy
, TN ;9
(50) = (—singdd Adys(Xg,. ”))E + (cos df A dp (Xg,. H))a—y.

The matrix J; is used to calculate the pseudo-Hamiltonian vector fields. I performed these
calculations and found out that for this particular example,

{FAG.H),}, + {G{H.F),), + {H{F,G},}, =
(31) —({dF.B(Xg.Xy)) = (dG,B (Xy,Xr)} — (dH, B (XF, Xg)).
An equivalent way of writing this equation without a minus sign is
{{G.H), .F}, + ({H.F)},.G), + ({F.G)}, . H}, =
(52) (dF.B(X¢. Xy)) + (dG, B (Xy, XF)) + (dH, B(XF, Xg)).
These calculations lead to the following conjecture for nonholonomic mechanical systems:

Conjecture 4.1 Given a nonholonomic mechanical system with the constraints given by
the horizontal distribution of an Ekresmann connection, the remainder after performing the
calculations for the Jacobi identity is given by the following formula:

_ {{G.H}.F}+{{H.F},G} + {{F.G} ,H} =
(dF. B (Xg.Xp)) + (dG, B(Xy, XF)) + (dH, B (Xr, X;)).

where the bracket. {,}. is the bracket on the constraint manifold.
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5 Conclusion

This report examined nonholonomic mechanical systems and was based on the three papers
discussed in the introduction. This report demonstrated how tools in differential geometry
are used to examine a nonholonomic system such as the vertical penny. The penny example in
turn leads one to conjecture an equation for all nonholonomic systems. Further work involves
understanding the role of connections in mechanics as well as control theory. Also, proving
or disproving the conjecture is a step to be done. In conclusion, this report introduced the
author to an interesting area and was a satisfying learning experience. It is hoped that this
report will make it easier for anyone tryving to understand any of the three papers.
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