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Abstract

The stability of axial motions of nonlinear elastic strings has been studied using the energy-momentum
methed, which is basically the same as the constructions of Liapunov functions in [1]. The dynamics of
the whirling strings has also been formulated in a more geometric setting in this report . Though this
problem has not been soved for some boundary conditions.

1 Introduction

The dynamics of rotating strings is so complex that it is not fully understood today even
though it has been received extensive studies. The linearized solutions were obtained by
D. Bernoulli and L. Euler in the 16th century. According to the solutions of the linearized
system, a string can only rotate at certain angular velocities which is not consistent with
experimental results. In 1955 Kolodner [5] studied the problem of free swirling of a heavy
chain and showed that it can rotate at any angular velocity w > w, and for each w, < w <
wn+1, there are exactly n distinct modes of rotation. Here wy,n = 1,2,... are the eigenvalues
of the linearized equations. The dynamics of rotating strings depends on the boundary
conditions. Caughey [2. 3] derived the planar modes and their stabilities for certain w for
two different boundary conditions for certain w. In [4], Caughey also derived the planar
modes and their stabilities for the case when the string is elastic.

In this report some geometric properties of the dynamics of rotating strings were investi-
gated. We formulated the configuration spaces, the Hamiltonians and the Lagrangians. We
studied the symmetries of the Hamiltonians including constructing the momentum maps.

Another interesting problem is the axial motion of a closed elastic string. Healy [1]
derived the stability of a class of axial motions using Liapunov functions constructed from
the conservation of energy and circulation. His method of studying stability is actually
the energy-momntum method, though he did not mention that. In this report we also
formulate this procedure explicitly using the energy-momentum method by constructing the
Hamiltonian and the momentum maps.

2 The Energy-Momentum Method

Let P be a Poisson manifold, G be a Lie group acting on P, g be the Lie algebra. Sppose
z. is a relative equilibrium and is regular, i.e., g,, = {0}. Let J: P — g* be the momentum
map. Suppose u = J(z.) is a generic point, i.e., its orbit is of maximal dimension.

Let S C T,, P satisfy



1) S C KerDJ(z.),
i7) S is transverse to the G,-orbit within ker DJ(z.),

then the energy momentum method is

?) find £ € g such that  H¢(z.) = 0,
i1) test 62 He(z,) for definiteness on S.

The following Energy-Momentum Theorem is due to Simo, Posbergh and Marsden.

Theorem 2.1 If §2H¢(z.) is definite, then z. is G, orbitally stable in J~' (1) and G-orbitally
stable in P.

One should be careful about applying the Energy-Momentum Theorem to the infinite
dimensional Poisson manifold. There is an example in three-dimensional elasticity theory
given by Ball and Marsden that §2H(z.) is positive definite, but z, is not a local minimum
of H. Two possible versions of the Energy-Momentum Method are

t) Arnold’s convexity hypotheses,

i1) employing Sobolev spaces such that the energy norm defined by §H(z,.) to be equiv-
alent to a Sobolev norm.

3 Application of the energy-momentum method to the stability
of axial motions of elastic strings

The stability of axial motions for a closed loop elastic string was studied by Healey [1]. His
method of constructing the Liapunov function using the conserved quantities such as the
conservation of energy and the conservation of circulation is basically the energy momentum
method. In this section we approach the problem in a more geometric way by constructing
the configuration space, the Lagrangian, the Hamiltonian and the momentum maps. Then
we formulate Healey’s procedure of proving the stability by the energy-momentum method.

Now we state the physical problem. Consider a closed loop of elastic string. Let { and
p be the natural length and the mass per unit length. Without loss of generality, suppose
[ =1, p=1. Let s denote the arclength of a material pointin the string(s € R(modl)).

We view the string at time ¢ as a manifold embedded in R® denoted by M,. Then M,, is
diffeomorphic to M, for arbitrary ¢,,t; € R. M, is also diffeomorphic to R(mod1). Hence
the configuration space @ is the embedding of M, in R3, i.e.,

Q= EmbRS(M:)

2(s,t)
s> r(s,t) = ( (s,t) ), (1)
(s,2)

where r(s,t) denotes the spatial position of the material point s.
Specifically, we require that @ = H*(R(modl)), where

IS

x (>
HYR(modl) = {u= Y an.e?™,a, € C,a, =a,,[ull = Y n*a,/? < o0},

n=—<oo n==00



k=1,2,...

The inner product of u =520 ___a,e?™ and v=73 oo __ b.e?™ in H* is defined by
oo
(u,v), = Z n**a_.b,.
n==—00

The spaces H* are norm equivalent to the ususal Sobolev spaces W2¥((0, 1), R?).
Let v = r;, then we have

TQ = H*(R(modl)) x H'(R(modl)).
Since TQ is a Hilbert space, we can identify the tangent bundle of @ as
TQ = H%:(R(modl)) x H!(R(modl)).

We assume that there is a potential of elastic forces for the string W : R* — R. Suppose
W(l) =0 and W” > 0 on (0, c0).

T = W'(|r,|).
The Lagrangian of the systemis L : TQ — R,
1
L(r,v) = / (3v-v = W(Ir.)))ds.
o -~

The Hamiltonian of the systemis H : T*@Q — R,

H(r,v) = /0 (%v - v + W(|r,|))ds.

Now we derive the Hamilton’s equations for the system.

1 1
ﬁ - dvds 6—H - dvds
o Ot o OV

) 1
= ES%[H(r,v + edv) — H(I‘,V)]Z

1
= liml / [l(v +€dv) - (v + edv) — lv - v]ds
0o 2 2

c—0 €
1
= /v.évds,
0
la_v érds = ‘J_H ord

» ] 1
= —Lm[H(r + edr,v) - H(r,v)]=
e—=0

= —lim%/ [(W(Irs + €(dr),]) — W(Ir,|))ds
0
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U dw Olrs|
= - | dp e (s

- - / W’(]r,|)|—°"-d(6r)

= —Wrl) e+ / (W (Iel) 2 - drds

- f [W’|,[)‘ 1, - vds.

Hence the Hamilton’s equations for the system is

or

g_t =V, (2)
v I

E = (W l OI)I sl)s (3)

The Poisson structure on 7@ is canonical, i.e.

where F,G : T*Q — R.
The Hamilton’s equations is
F ={F H).

Let P = T*Q, then (P, {,}) is a Poisson manifold. Now we check some symmetries for

the system. Let gactson @by g: @ — Q, s — s’ = s+ . Let g acts on T*Q by the
cotagent lift. Then

Ho¢

H{x(s +£,0),v(s +£)
[ GV + €0 vis + 6.0+ Wllr(s + £,0),)ds

I

1+€1
- /f (59(s8) - ¥(s', 1) + Wle(s', 1) ) )ds
_ /0 (%v(s,t) V(s £) + W(|e(s, 1), ]))ds

Hence,
Hof(=H,
i.e., H is g-invariant,.

It is clear that g = R. so we identify g with R. Now we construct the momentum map as
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J.P=TQoR=g

1
J(r,v) :=j£v-dr=/ V- ryds
0

It is also clear that J is g-invariant, i.e.,
J ol = J

Now we prove that (J,£) =€-J: P — R is a Casimir function.

we.m = [(EE.A_XeD Sy,

0
oy / (=) - v = (W) 22, - . ]ds

I

= — (Il — € / [va v = Wl ) s

'l
= — —v-v—W(|r;s])]sd
05/0 [3v-v - W(lr.luds

Since (J,&) = &J is invariant along the trajectories, J is invariant along the trajectories.
Let

J(l‘, v)=p

Now we consider the following axial motions

ct
r(s,t) = Ap(s + —A—),p' p =1 (4)
We construct the new Hamiltonian

[I(r’v) = H(r, v)— (J(P,V) - N’f)‘

(SH(C, n) = —H(r + al, v + an)ja=o = f [¢- (Ww'(| s|) —&v) + - (€ry — v)]ds

||

We require that § H = 0, so we have

fry, = v (3)
v = W(Ir sl)l e (6)



Substitute the axial motion (4) to (3) and the Hamilton equations (5) and (6), we get

A= AEd) (7)
¢ = ofp)= /\(‘Zz) (8)
¢ = s(u)=§(% (9)

where (7) is the solution of the algebraic equation
, %
W\ =33
Hence the axial motions can be denoted by

My = {(r,V)i(r,v) = (Mp")p,c{u)p),p € H,p' - p' = 1}.
It is clear that M, is an infinite dimensional differentiable manifold in P = T*Q =
H? x H.
Let (ra, Va) = (A(1?)Par c(#)P;) € Moy, then

PRGN = Az H(ra + o v+ om)luso (10
= [n-ewer+ oo - TRED e e, an

By the assumptions on W, it can be shown that 3Ag > 0, such that

(/\)
for 1 < A < Ag.

It can be derived from (11) that JZI:I(C, n) = 0if and only if (¢, ) € T, M,. Furthermore,
it can also be shown that T,M, is also a closed subspace of the phase space P = T*Q =
H? x M, which is a Hilbert space. So we have

P=TMp, ®T.aM,* .

Now we can use the Energy-Momentum theorem to prove the stability of the axial motions

because this is the second version of the Energy-Momentum Theorem for infinite dimensional
Poisson manifolds which was givee in Section 2.

4 Some Geometrical Properties for Rotating Strings

In this section we give geometrical formulations for the dynamics of rotating strings. We
establish the configuration space, the Lagrangian, the Hamiltonian and the momentum maps.
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We first suppose that the string is inextensible. Let © — [0, L], M; be the manifolds that
is diffeomorphic and isometric to §2. Let @ be the embedding of M, in R?, i.e.,

Q= Fi.(9)
z(s,t)
s—=r(s,t)=1 yls,t) |, (12)
z(s, 1)

and r(s,t) satisfies |r,| = 1.

Now we consider several different boundary conditions. See (1), (3) and (1). It can be
shown that the Lagrangian L : TQ — R is

Ll L L
Leyrat) = [ golnt+ [ ogerds— [ T(s,00ds
0 «~ 0 0

where r, is the velocity, p is the mass per unit length. g is the gravitational acceleration.
T'(s,t) is the tension.

The Euler-Lagrange equations can be derive as

(Prt)t = pg + (Trs)sv

with the constraints |r,| = 1.
It can be shown that the Hamiltonian H : T*Q — R is

L 1 L L
H(r,p,t)= | =Ipl’~ | pg-rds+ | T(s,t)ds,
2
a <P i 0

where p = pr;.

The Hamilton’s equations are

o= (13)
P¢ g+ (T(S, t)rs)s (14)
|rs[ = 1 (15)

Let g be the rotation around the z-axis, then g = R. We define the momentum map as

L
Jz(r) p) = / (p X l‘) * Zods,
0

where zg is the unit vector in the z-direction. It can be shown that J is conserved.

If the string is linearly elastic, then we have the stress-strain law

T — To = EA(|r,| - 1),



The Lagrangian is

L L L
L(r,r,,t) = / —p|r:f? +/ pg - rds —-f W (|rs])ds,
o 2 0 0
where W(|r,| = (T0 — EA)|r,| + EA|r,|%.
The Hamiltonian is
L 1 L L
Heupit) = [ oolol = [ ogerds+ [ W(irdas,
o =P 0 0

where p = pry.

The Hamilton’s equations are

r = % (16)
pe = pg+(W'(|r,|)|§—:l), (17)
‘ral = 1 (18)

The momentum map for this case is the same as for the inextensible case.

5 Sammary

We gave the geometrical formulations for the axial motions of nolinear elastic closed loops
and for the rotating strings. The future works is to investigate stability of the planar modes
using the energy-momentum method.
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Figure 1: Figure 1, T(L,?) = 0,r(0,t) =0
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Figure 2: Figure 2, r(0,¢) =0,r(L,t)=0
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Figure 3: Figure 3, T(L,T) = 0,r(0,2) = (¢,0,0)
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