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Abstract

In this course project. [ trv to motivate the dvnamics of the rotating
string by studving an example in detail - the dyvnamics of a particle in i
freely rotating hoop. [t has been shown by reduction that there ace saper-
critical bifurcations for the relative equilibrium ¢ = 0 when the angular
momentum reaches to certain values. The dynamics of this ¢xample is
very similar to the example in Section 2.10 in the texthook.

1 Introduction

The study of the dynamics of the rotating string can go back to ).
Bernoulli and L. Euler. They derived the solutions for the lincarized
equations of the whirling chain. As long as | know. the nonlinear
effects on the rotating string has not been studied until 1955 by 1.
Kolodner. He studied the motion of a heavy string with one end
free. He showed that the string can rotate at anv frequency when
w > wy(w, is frequency of the first mode ) and there are exactly
n distinct modes of rotation for each w, < « < wayy. Caughey
studied the same problem except that the boundary canditions for
the upper end are circular periodic oscillations in the (.. y) plane.
He showed that if w > w;(w is the frequency of the upper end). then
for each mode, there are three solutions: tow of them are <table
and the third is unstable. Caughey also consider the case when the
upper end is fixed and the lower end the lower end is allowed 10 slide
freely along the z-axis. He got the same result as those for the free
rotating case by Kolodner. He further showed that the modes are
orbitally stable. He also consider the same problem exeept that the
string is elastic. He derived the exact solutions for the slastic string
and shoed that the solutions are orbitally stable. Healey analyzed




the stability of a family of axial motion solutions for homogencous.
nonlinealy elastic strings. He found that the total circulation.i.c..
the integral of the tangent component of the velocity over the length
of the string, is conserved for any sufficientiv «mooth motion.

2 An example for motivation - a particle on a
rotating hoop

Consider the problem of a particle moves freely in a rotating hoop.
while the hoop is not forced rotating as in Section 2.10 of the text-
book. First we suppose that there are no frictions anvwhere. \We
set the coordinate system as in the following figure which is taken
from page 77 in the textbook.
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Let M be the mass of the hoop, m be the mass of the particle. 7 ’;4()/3 NA
is the radius-of_the hoop, w = ¢ is the angular velocity of the hoop f'}" JMT-}"'
and(% = %MRZ.\is the inertia of the hoop rotating around :-axis.)/ Q g Mﬂ(/"
The kinefic energy of the hoop is onf\ ”

Ky = %w b

The kinetic energy of the particle is

K, = %m(Réf + %—m(Rsin 0-u)°

The total kinetic energy is
K=K,+ K, = 41MR'2¢:>2 + %mﬂzﬁ'2 + %mRzrbzsin"H
The total potential energy of the system is
V' = —-mgRcost

Hence, the Lagrangian of the system is

L(0,$,6,4)=T—V = %1nﬁz(%+sin‘(})é)‘+ ;l;m[iz()"+mglicusO

Substitute the Lagrangian into the Euler-Lagrange equations

4oL, oL _
dt’ 98 00
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We then get the Euler-Lagrangian equations for the system

0 + %sin 8 - sir. O cos 062 = 0

(=— +sin0)d + 246sinfcosh = 0
2m
Now we derive the Hamilton's equations for the svstem. Lot
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Then using the Legendre Transform. we get the Hamiltonian of
the system

H(as 4’1 Pa, pé) = (paé + pPhl"-;’ - L(0~ 0. 9 (‘;))‘(9.0.0‘.6)—)(0.04'« o)
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= 27’:122(‘21_1:1 +sin®9) + Z/I:flf.* —mgRcosd
ence, the Hamilton’s equations for the system are
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Now we make reductions to the system. We have the following
famous Routh’s theorem:

Theorem 2.1 Suppose the Lagrangian of a system can be wrilten
as

L=L(le°'-eQm-dls---sq'm’dm+l ----- qn)
Let

pa=%;-:canst:ﬂa,a:erl,...,n.




Define the Routhian

r=m+1

=R(g1,. - GmyGree e Gms Brmgrn .. 30)

Then we have the reduced-order Euler-Lagrange equations. called
the Routh’s equations

Now we make reduction on the Euler-Lagrange cquations of the

example using the Routh’s theorem. In the example. the Lagrangian
looks like

L = L(01 ¢a 0.! ¢2) = L(a' 0-’ é)
so, from the Hamilton’s equations
ps = const :=G
i.e. v
mR’(% +sin%0)¢ = G
Then, by Routh’s theorem
R(8,0;G) = (L(6,6,0) — poo)|

. »
po—G‘Q'—_mR‘.( !"i. +s|ﬂ"‘”
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Substitute the Routhian into the Routh’s equation

we get the reduced-order orderEulerEuler-Lagrange equatios:
G
i ()

(M T S0y sinfcosf + %sinf? =10
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Then we get
1. IGL @\/E, then the equilibria are

0 =0,%m:

2.IfG > M{‘—Z\/I, then the equilibria arce

6 =0, 0.0 < |0.] < 5).

Now we begin to study the stability of the equilibrin. \We lirst
introduce the Lagrange-Dirichlet Theorem for Hamiltonian svstems,

Theorem 2.2 If the 2n x 2n matrir 62 H of second parlial derviva-
tives evaluated at (qe.p.)is positive- or negative-difinite then (q. . p)
is stable.

A powerful,yet direct conclusion of the Lagrange-Dirichlet 'heorem
is the following theorem.

Theorem 2.3 For a classical mechanical system, (g.,0) is e sta-
ble eguilibrium, provided the matriz §2V(q.) of second order par-
tial derivatives of the potential V at q. is positive-definite(or, more
generally,q. is a strictly local minimum for V).If 82V at q. has a
negative-definite direction, then g, is an unstable equilibrium.

Now we apply the Lagrange-Dirichlet Theorem to the example

be computing the second derivatives of 1" at the equilibrin. We have
62{/ q 204 2
502 (-0 = )
9V g 2G|,
fG> @\/ﬂ; := (G, then
%
W(:I:He) > 0.

Therefore, we conclude that if G < G,, then there are only two
equilibria: § = 0 is a center, # = 7 is a saddle: I[ & > (., there
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are four equilibria: 8 = 0 is a saddle, § = = is a saddle,f = 6. are
centers. So supercritical pichfork bifurcations for the equilibrium
0 = 0 occur when G = G..
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Hence, If we compare this problem with the example in Section
2.10 of the textbook, in which the hoop is forced to rotate around
z-axis with constant speed w., we find that these two cases are very
similar. Both of them have supercritical pichfork bifurcations when
G or w passes certain values.

Dr. Marsden,

I also got some preliminary results on the rotating string:

1. I came up with the Lagrangian and Hamiltonian for the ex-
ample in Healey’s paper. From these | derived the Euler-Lagrange
equations and also the Hamilton’s equations for the example.

2. 1 found that there are symmetries between the .r-direction
and y-direction in the whirling of a heavy chain and in the rotating
string in which we do not consider the greavity. But [ did not find
either the Lagrangian or Hamiltonian for a general rotating string.

Because I'll go back to China today for about a month 1 did not
have enough time to write these things down into the project. Next

term I’ll still select this course and [ will continue to do this project.
Best wishes.

Yong Wang




