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Abstract

This paper focuses on the problem of reorienting a satellite which has two mo-
mentum wheels. Viewed as a path planning problem, it bears some resemblance
to parallel parking a car and these similarities will be explored. The path plan-
ning problem is manifestly non-holonomic. The kinematics for the satellite will
be derived as will methods for finding inputs steering the system. Methods for
choosing inputs minimizing the control effort which steer the system are also be
presented. These are patterned loosely after the work of Montgomery{Mon90]
on falling cats reorienting themselves as they fall.
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1 Introduction

Attitude control of a satellite can be achieved using carefully placed rocket
thrusters. This method consumes rocket fuel and so has proven expensive. In
addition, reservicing the craft often is out of the question, and so once the
limited supply of rocket fuel is exhausted, control is lost. The solution to this
problem is to attach rotors orthogonally to the craft. By spinning them, the
attitude of the craft may be controlled.

We will be making several assumptions throughout the paper. The first two
assumptions are mild in the sense that any satellite with rotors may be expected
to satisfy them.

Assumption 1 The rotors are symmetric about their axis of rotation.

Assumption 2 The rotors are attached so that their axis of rotation will in-
tersect and will do so at only one point. The one point is needed so we
may conclude that the axes are not collinear.

Assumption 3 We will assume that total linear and angular momentum is
zero with respect to the inertial frame we choose. These conditions may
be dropped but it will complicate the discussion a great deal.

The paper itself is divided into two sections. The first derives the equations
of motion for the satellite given our assumptions. The equations are written in
a kinematic format to facilitate the path planning. The last section will give a
steering algorithm and will explore both optimization and similarities to steering
a unicycle.

2 The Kinematic Equations

We will represent the satellite with two rotors as three linked, rigid bodies. We
will define the notation as it is needed. First, we will define the parameters de-
scribing physical system. Body 0 will be the satellite, the rotors being bodies 1
and 2 respectively. The orientation of each body with respect to a fixed inertial
frame will be represented by the rotation matrix needed to rotate the body’s
frame onto the inertial frame. These will be denoted Ry, R, R, respectively.
The space of such matrixes will be denoted SO(3), or special orthogonal ma-
trixes. Besides being orthogonal, these matrixes will be orientation preserving
and thus have determinant equal to one.

Now we will specify the relative positions of each of the bodies. Draw a line
through the axis of rotation of each rotor. Assume they intersect, and take that
intersection to be the origin of the satellite body’s frame. Set dp,dy,ds € R®
to be the coordinates of the centers of mass of each body in this frame. Notice
that for this system they are constants provided the rotors are symmetric. Set



Figure 1: Satellite with Two Rotors

¢(t) € R3 to be the position of the origin of the satellite frame with respect to
an inertial frame at some time ¢.

Any point in the satellite system may be specified in inertial frame coordi-
nates by using the matrices Ry, Ry, R2 and ¢(t). So this will specify our config-
uration space Q. Define Q to be SO(3)3 x R3. Of course, the rotors themselves
only have one degree of freedom so our choice of Q has four extra dimensions.
We will worry about those hinge constraints later.

2.1 The Lagrangian

In the absence of any potential field, the kinetic energy is the Lagrangian. This
can be computed by finding the mass and the square of the velocity of each
point on the system with respect to the inertial frame, and then integrating in
the usual way. Like Patrick [Pat90], denote po(g), p1(g), p2(g) as the the density
of each respective body at a point ¢ as measured in the inertial frame when
the system is in the home configuration. We may then write the Lagrangian as
follows,
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At this point we may substitute and eliminate all of the integrals. Define
mj and I; to be the mass and inertial matrix respectively for the 7** body.
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First thing to note is that R;d; will be zero for j = 1,2 because of the choice
of dj. The vector d; points along the axis of rotation of each rotor. Following
the methods of Patrick [Pat90], we note that we can translate the inertial frame
without changing the kinetic energy of the system. Thus L(c, Ro, Ry, Ra, ) =
L(c + é¢c, Ry, Ry, R, ...) for all 6¢ € R3. This defines an action on the configu-
ration space ls. : @ — Q under which the value of the Lagrangian is preserved.

This tells us we can reduce the dimensions of the problem with the appro-
priate substitution. If we assume that linear momentum is zero, the problem
will reduce as follows. Set CM to be the center of mass of the entire system.
Let m = mg + my + my be the total mass of the system.
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At the end of this section we will collect all of the various assumptions and
discuss them. The two facts simplify the expression for the Lagrangian after
some algebra.
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I.; is defined to incorporate all of the physical constants of the system involved
with Ro. Also, identify TSO(3) with SO(3) x R? in the usual way. We are in-
terested in expressing angular velocity in terms of body coordinates. In keeping
with Patrick [Pat90], notice that in the following calculation that a similarity

transform does not change the value of the eigenvalues, and hence does not
change the trace of the matrix.

%trace (RjIjRjT) = %trace (R}'RjIjRjTR_,-)
= gtrace ((w;)j(w;x)T)
= %trace (w}'wjl_,- - ij;rl)
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Jj = trace(l;)I — I;
So in this manner define Jé, J1,J2,wo, w1, wy. The final form of the Lagrangian,

ignoring the hinge constraints, is given below. Notice that the Lagrangian in
these coordinates is not dependent on the configuration.
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In deriving this formula, we have used many of our initial assumptions. If we
do not assume that the axis of rotation for the momentum wheels intersect, the
problem becomes more of a mess algebraically but is at heart the same problem.
Dropping the assumption on zero linear momentum would only complicate the
reconstruction of the state of the system but as before, the problem is not
changed qualitatively. Dropping the assumptions that the rotors are symmetric
about their axis of rotation, however, destroys the Lagrangian’s independace of
configuration. This changes the problem entirely.

2.2 The Momentum Map

Construct the following action on the configuration space by the group SO(3).
Given any A € SO(3) define the action to be I4 : @ — Q;(Rq, Ry, R2) —
(ARo, ARy, AR3). This action lifts to the velocity phase space of the system.
Notice that the Lagrangian is invariant under this action, so we can form a
momentum map to the lie algebra of the group giving us a new conserved quan-
tity, namely the angular momentum which by Noether’s theorem is conserved.
Denote angular momentum by AM.
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= J:)wo + Jiw; + Jowz

AM

Notice that J; and J, are the normal inertial matrixes, and that J(', is merely
and augmented version of the satellite’s normal inertial matrix.

2.3 The Kinematic Equations

Now we will assume the total angular momentum is zero. This simplifies the
dynamics greatly and makes reconstructing the state of the system from the
reduced coordinates easy. Now we should apply the hinge constraints. In doing
80, it i8 useful to define the normals in the direction of d; and dy. The rate of
each wheel will be denoted 8, 8, respectively.

1
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Given these hinge constraints, solve for the angular momentum in terms of
wg, 01, 0>.

AM = Jowo+ J\RTRo (wo+ ni6: ) + 12 RE Ro (o + nads )

Notice that because of our choice of ny and n, and because the rotor is symetric
about its axis of rotation, that the following identities will hold.

RTRomB'l = n10'1
Rg‘Ronge-z = n20.2
JWRTRy = ]
JoRTRy = Ja

Now we can write the angular momentum without the dependencies on config-
uration that we had earlier.

AM = (J:,+J1+Jz)wo+.]1n10'1+Jgn2ég

Define V := (J(', +Jy + Jz) and assume it is invertible. In this way, we may
solve for wp and obtain the kinematic map.

wg = V'1J1n191+V"ngn252

If we consider the velocities of the rotors as our inputs to this system, we
now have a kinematic model of the satellite. This is the model we will use to
plan trajectories for the space craft. It is useful to define b,, b, € s0(3).

b = Viam
bz = V-lJznz
(1
The reconstruction of the actual state of the system is fairly straightforward

with zero momentum. Given an initial configuration of the body, 49 € SO(3),

and the two inputs to the rotors él(t),az(t) we can solve for the body twist
wo(t) for any time.

The trajectory of the body 0’s orientation will just be the solution of this
differential equation.

Ro = Ro (ng)
In the special case of piecewise constant wy(t); we can solve for the final
orientaion more directly.
€ = wol(t)Vte[0,1)
Ro(1) = Ro(0)el€® )
This just coresponds to a twist in the body frame about the axis £ by one

radian. This solution will suffice for most of the motions the path planner will
generate.



3 Parallel Parking the Satellite

This section develops an algorithm for steering the system from one orientation
to another. We will assume that the positions of the rotors are not important,
so the algorithm will only steer the orientation of the body. The algorithm
developed will be in no way optimal. The last section considers the optimal
case in the sense of control effort.

Already the kinematic equations developed in the last section look a great
deal like the kinematic equations for the simple car model, the unicycle. The
technique of steering by sinusoids of Murray and Sastry[RM90] may be applied
here with success.

3.1 The Non-Holonomy

We will first establish the nonholonomic nature of the satellite and then prove
controllability via Chow’s Theorem|[Isi89). Suppose there existed some smooth
function whose derivative was the two input vector fields of our control system.

Then, for the our manifold, that would imply that the cross product of the
two input vector fields was zero at every point. However, this is not true for any
point so it is falso that the input vector fields are the partials of some function.

Controlliblity is defined as folows. Given any initial and final configuration
there exists some time T" and some input defined on the interval [0, T] so that the
configuration at ¢ = 0 is the starting one and the configuration at t = T is the
final one. For the case of the satellite, we only care about the final orientation of
the satellite body, and so it will be considered controllable if any two orientoins
can be joined by an admissable path through SO(3).

For systems without drift like ours, Chow’s theorem assures controllability if
the involutive closure of the input vector fields spans the tangent space at every
point in the configuration space.

Finding the involutive closure involves taking the Lie Brackets of the input
vector fields. For our case only one level of Brackets are needed to span the
tangent space at every point. Taking the Lie Bracket in SO(3) amounts to
taking the cross prodect of the twist axis. Provided that the are not dependent,
this will trivially complete the basis.

Assumption number two of the introduction assures controllability by de-
manding that the axis of rotation intersect at one and only one point.

3.2 The Geometric Phase

The idea will be to reduce the configuration space to one in which we know how
to move; one that is holonomic. Any configuration space of this type we will
call shape space. Given that a system was controllable, the task will now focus
on the job of finding out how movement in the shape space relates to motions
in the configuration space.



Figure 2: The Rotation Group as a Circle Bundle

The process of finding the unreduced state given a path in shape space and
an intial condition is called reconstruction. The change that can not be seen in
the reduced state will be denoted the geometric phase of the path.

From a path planning standpoint, the division of the space into the holo-
nomic and nonholonomic parts clarifies the issue. In general, the reconstruction
proccedure will provide the link and tell the planner how to move in shape space
as to affect the desired changes in position in configuration space.

For the problem of the satellite, we will again ignore the orientation of the
rotors. As before, the orientation of the satellite body will be given by Ry €
SO(3). Define by as follows.

bIsz

b —_—
° ] &y x by ||

To form the shape space, identify any two configurations related to each other
by any rotation through the axis given by bs. Shape space is then SO(3)/S! =
S2. To visualize this space, one can think of Poncaire’s representation os SO(3)
as a circle bundle over the two shere. Shape space may be embedded in R® by
the projection map SO(3) — S® € R3 : Rybg It may be easily checked that in
this space the system may move holonomically, for Rgb,, Rob2 span the tangent
space by constuction.

This choice of the shape space makes the reconstruction straight forward.
Suppose the path given is a positively oriented simple closed curve. Then the
geometric phase for the path is merely the area enclosed by the curve on the
shape space as embedded in R3,

Consider the projected initial point of the path, and attach a reference frame
which will span the tangent space of the unit sphere at that point. As we travel
along this path, this frame will keep track of any spin about the by axis. But,
by construction, the input vector field may induce spins about axes which are
strictly perpendicular to the by axis and thus there can be no spin about the bg
axis. Therefore, the frame is parallel transported along this path. Assume the
path is constructed out of finitely many smooth segments parameterized by arc



length. Label each one of these segments C; and the region they enclose R. An
application of the Gauss-Bonnet Theorem [Car84] will then finish the proof, for
it states:

27x(R) = > /C kg(s)ds + /R Kdo+> _6;

Where x(R) is the Euler-Poincaré characteristic of the region, K being the
curvature at each point, k, being the geodesic curvature of curve C;, and 8;
being the exterior angle at each discontinuity in the path.

In this case, x(R) is equal to 1, so we may disregard the left term with x(R)
for it is a multiple of 27. In addition, the curvature of the unit sphere is constant
and equal to 1 therefore the surface integral will just give us area enclosed by
the path. Finally the two summations give the net phase shift in the parallel
transported frame. O

This result may be generalized to more complicated paths in the following
manner. We will divide the problem into three increasingly complicated pieces.

Case 1 The path is a simple closed curve. We will also assume it is positively
oriented. If not, the sign of the geometric phase is reversed. The rotation
around the bo axis is then just the equal to the area enclosed by the path.

Case 2 The path is a self-intersecting closed curve. In this case the path may
be broken into simple closed curves, some positively oriented and others
negatively oriented. Apply case 1 to each piece, and add the result together
to obtain the amount rotated around the by axis.

Case 3 The path is an open smooth curve. Then, join the end points by a
geodesic. In this case, this would just be a great circle. This will form
the second case. From the result gained by appling case 2, subtract the
phase generated by moving along the geodesic, which although is not zero
is fairly simple to compute.

The path planner will only use the first case in little steps. For the linearized
unicycle of Murray and Sastry[RM90], the shape space is the cylinder, R x §!,
and once again the geomtric phase they obtain by motions in shape space will be
equal to the area enclosed by the the path, modulo the sign. Not every system
has such a simple relationship. A more subtle system with a two dimensional
shape space would be the system of three linked, rigid bodies skating on ice with
motors at the joints. Here the shape space is the two torus, and the geometric
phase is equal to a density function integrated over the area enclosed by the

loops. The density factor for our case and for the linearized unicycle is just a
constant.
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Figure 3: The Parallel Park Maneuver for the Satellite

3.3 Steering Algorithm

Given any starting configuration A € SO(3) and any final configuration 4, €
SO(3), a two step planner can always find a path. Because the density factor of
the geometric phase is always equal to a constant, sinusoidal steering will work
starting in any configuration. The procedure is then as follows.

Step 1 Drive the two input fields withe constant inputs as to drive the system

in shape space coordinates to the destination configuration mod the S!
bundle coordinate.

This is akin to lining the unicycle up in front of the desired parking space
before the parallel park manuver. In that case, the sidewise direction of
the car is the difficult direction to move in and in this step is ignored.

Step 2 Now that we have lined the system up in shape space, all that is left to
do is move along the fiber attached at this point. Keep a note of how far

this error is. Now drive the system through the b, vector field until Robg
has moved through 904¢8,

Now move in along the great circle perpendicular to the last motion. Move
the system until we have rotated through the same amount as the error.

The final leg will just be driving along the geodesic connecting us back to
A]bo.

The second step is akin to parallel parking the linearzed unicycle. Because
shape space there is a cylinder, four instead of three straight line pieces are
required to enclose a non-trivial section of the space. This would coorespond
to driving forward, then tturning the wheels, driving backwards, then returning
the wheels to their original postion.

Of course one may commute the actions and get the same result. So you
could turn the wheel, drive forward, trun the wheel back, and drive backwards.
This encloses the same area in shape space and yeilds the same geometric phase.
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Figure 4: Parallel Parking for the Unicycle

3.4 Optimal Steering

Now that we know a path can be found, the next question is how to find the
optimal path in regards to control effort. If friction is the bearings of our
momentum wheels dominates the cost of moving the rotors, the cost is them

given by:
1 - -
Cost = / (af'+922) dt
0

To solve this problem easily we will make a few assumptions. They simplify the
optimization.

Assumption 4 The rotors are identicle except being mounted orthogonally.

Assumption 5 The axis of rotation of the rotors intersect at the center of mass
of the satellite.

This algorithm will find the optimal loop in shape space given we need a
some geometric phase. In this case, minimizing this integral is the same as
finding the shortest length path in the shape space becuase of Assumption 5.
With that in mind, the optimization becomes as easy as the the optimization
of the loop for the linearized unicycle of Murray and Sastry [RM90). For the
unicycle, shape space was T2 and the optimal trajectories were merely circles
as a circle encloses the most area with the minimum perimeter.

For the satellite, the answer is the same. A circle on the two sphere which
will enclose the maximum area with a minimum perimeter. The solid angle of
the circle completley detrmines it. The geometric phase is given by a simple
formula. Let ¢ be the solid angle.

phase = 2 (1 - cos(¢))

This solution is akin to the optimization of Richard Montgomery[Mon90] on the
falling cat.
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