My original goal at the beginning of this endeavor was to examine nonequivariant momentum
maps and how to define a central extension in order to make them equivariant. I also wanted to look at
other aspects of nonequivariance. As the principle text I used Soriau [1970], unfortunately I did not receive
it until Wednesday evening because it had been checked out of the library. In a moment of desperation I
finagled the borrowers name from the librarian to get it. I have spent the remainder of the time attempting
to understand the terminology of the book and where the equivariance came up due to the different
language. Instead of providing the report I wanted to, I have here the translation into Marsden-ease of what
I did get from the book. I feel a little guilty because this seems like a copout, but time restraints have kept
me from putting in all I desired. Some of it may seem like a rehash, but it was learning for me. I suppose
in the end that’s all that counts.

1 apologize for it being late, but the actuat result that I was looking for did not have a large

blinking sign and required a lot of reading between the lines. In fact it simply shows up as a comment in
the book. I guess there’s a lesson somewhere in that. ®

Patricio.
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1 Introduction
Let us begin with the definitions as obtained from Marsden[1999].
We are given a Lie algebra g, which acts (canonically on the left) on a Poisson manifold P.

Definition 1.1. Given a linear map J : g—F(P) that satisfies X, = £p for all £ € g, the momentum map
J : P - gofthe action of the Lie algebra g on the Poisson manifold P, is defined by

(3(2).8)=JEX=) (1.1)

Definition 1.2. A mapping J:P - g’ is equivariant if Ad;.. °oJ=Jo®,
1.2)

Closely related to the idea of equivariance is infinitesimal equivariance.

Definition 1.3. A mapping J : P »g’ and its related mapping J : g — F(P) are called infinitesimally
equivariant if one of the following equations holds:

JED={J (), J(m)} (1.3)

or
T,3-np(2)=-ad,J(2) (1.4)

Infinitesimal equivariance is related to the vanishing of the C(P)-valued 2-cocycle £ . Equivariance implies
infinitesimal equivariance by differentiating (1.2).

One thing to note about the case that Souriau treats is that it is on symplectic manifolds. A symplectic
manifold is already imbued with a Poisson structure as determined by the symplectic form .
{F.G}=0(Xr, X5) (1.5)

For the momemtum map to be equivariant in the symplectic case means that it simply has to be a canonical
transformation with respect to the symplectic form, ie.

¢’ {F.G}=p"F.0°G} (1.6)
When the cohomology class is not equal to zero, the momentum map fails to be symplectic. The goal is to

then extend the symplectic manifold M to another one M’ for which the cohomology is zero. How this
ocurs in Souriau [1970] is not obvious.

Let’s go to the treatise of this topic by Souriau. Prior to delving in, we need some background information
since Souriau does not tackle the problem directly. Instead he chooses to define a prequantum manifold
and derive the result from that. Before the prequantum manifold I go through some stuff about dynamical
groups and cohomologies leaving out many (almost all) of the proofs due to time constraints, although
some are pretty in their own right.

2 Dynamical Groups

Definition 2.1. A presymplectic manifold U is a manifold on which the differentiable 2-form £ has
ker({Q}=constant dimension >0 and d2 = 0.

Definition 2.2. Let (M,02) be a symplectic (or presymplectic manifold). A Lie group G acting canonically
on M is a dynamical group. (A canonical action will mean from the symplectic perspective, eq (§))
(1



Given the above definition, there is a natural way to obtain a moment of the G-action, otherwise called a
momentum map.

Definition 2.3. If G is a dynamical group of a symplectic or presymplectic manifold (M,Q2), we will call
the moment of the G-action if there exists a momentum mapping J : P = g such that

D Ep)=-diJ(2)-E] VEeg 2.1)
and u = J(z). If M is symplectic then the moment can also be defined by vector field equation
Ep=X 3E (2.2)

Sometimes we will use u for J(z). This is the form that Souriau prefers.

Theorom 2.1. Let G be a dynamical group of a symplectic manifold (M,£2).
a) If G possesses a moment y, then adding a constant & € g’ results again in a moment. All moments
of G are obtained this way if M is connected.
b) IfM is Hausdorff and simply connected, then every dynamical group possesses a moment.
¢) Ifthe Lie algebra of G coincides with its derived algebra, then G possesses a moment.
Proof,
a) If J and H satisfy (7), then d[(J - H)(2)-E] =0, thus (J — H)-§ is constant and since M is connected
we have that J-H is constant since & is arbitrary.
[

Suppose that the symplectic form () arises from the exterior derivative of a 1-form ©, the above definitions
result in a momentum map definition using the 1-form.

Theorom 2.2. Let G act on a symplectic manifold (M,(2), where the symplectic form is exact and is
derived from {2 = -d@© such that the action of G leaves ® invariant. Then G is a dynamical group of M and
possesses a moment yt defined by

p-E=3(z)-E=0Ep) (2.3)
Proof.

That G acts canonically is given since exterior differentiation and push-forward are interchangeable.
Take the Lie derivative of ® with respect to £ and apply Cartan’s formula to obtain the result, since the Lie
derivative is equal to zero.

]

Theorom 2.3. (Noether’s). Let M be a prsymplectic manifold and let 1« be a moment of a dynamical group
of V. Then u is constant on each leaf of the characteristic foliation of M.

3 Cohomology of Dynamical Groups

Recall that when G acts on a manifold, we define the action of G on M by, ® g M-o>M.

The adjoint action of G on its Lie algebra g is given by 4d,, : g~g, 4d,(§)=T, (Rg_. oL X&)

Related to adjoint is the coadjoint, Ad : g9, which is derived from (o, 4 £)= (Ad;a,e,) foraeg,

£ € g. This gives the coadjoint action @, =Ad;_, .

If the manifold Af is a Banach space, then we refer to a linear action @, as a (linear) representation.

Theorom 3.1. Let (M,Q) be a connected symplectic (or presymplectic) manifold a let G be a dynamical

group of M possessing a moment 1, whose momentum map is denoted by J : M/—g". Then the
following hold:

a) 3 differentiable map 8:G-g’ defined by



8(a)=J o ®,(x)- D, o J(x) 3.1
b) The map O satisfies the condition

8(ab)=6(a)+ D, -8(b) (3.2)
c) The derivative f=D(0)(e), where e is the identity element of G, is a 2-form on the Lie algebra g
of G which satisfies:
JEMED+ /G &)+ /(n[C.ED=0 (3.3)
d) The following identities hold:
D@Yx)E p (x))=d(x)-ad(€)+ f(€) (EX)
QEp,np)=J(EnD+SE M) (3.5)
Proof.
[ ]
4 Cohomology of Lie Groups

Definition 4.1. Let G be a Lie group and &, a linear representation of G acting on E. An E~cocycle of G is
any differentiable map #from G to E such that

6(ab)=6(a)+ D, -6(b) @“4.))
If for x € E we define
A(x)(@)=D,(x)-x 4.2)
then A(x) is an E-cocycle of G called the coboundary of x.
(Sorry for not giving A)
Proof.
[ ]

Two cocycles of g are said to be cohomologous if their difference is a coboundary. Cohomology is an
equivalence relation in the vector space of E-cocycles of g.

§ Cohomology of Lie Algebras

Theorom S.1. Let G be a Lie group, e its identity element, and g its Lie algebra. Furthermore, let ®, be a
linear representation of G. Then:

a) {Eni=[Epr.npl (CR))
b) If@isan E-cocycle of G and if we define f'= D(f)(e), the fis a linear map from g to E satisfying
DO@Xa)E(@)=E£(8(a)) + f(€)

9(eXP(§)(e))=[:I]exp(t§s)dt](f(§)) (5.2bc)
S D=1z EN-E5 (D)
c) IfGis connected and if fis zero, then @ is zero.

Proof.

6 Symplectic Manifolds and Lie Groups

Let 8 be an E-cocycle of a Lie group G. If we define
¥, (x)=P,(x)+6(a) 6.1)



it follows that the map ¥, defines an action of Gon E.

Let g be the Lie algebra of G. For & € g the associated vector field of ¥, is given by

a=g(W)+ f(§) (6.2)
where /' = D(6)(e) is the cocycle of the Lie algebra associated with 8.

Definition 6.1 Let G be a Lie group, g its Lie algebra, and g. will be called a symplectic cocycle of G if
0(ab)=0(a)+ D, - 6(b) [9is a g'-cocycle] (6.3)
J =D(B)(e)is antisymmetric

Example. The Galilean Moment (Souriau pg. 144)

Let’s look at the Galilei group diffeomorphic to SO(3)xR’ given by:

(A b ¢
a=({0 1 e| AeS0@3),b,ceR’ecR
0 01
It’s Lie algebra is given by
(& B 7]
E=|0 0 | weR)ByeR’eceR
0 0 o]

The moment u is given by:
~ 1@ = (L, o)~ (g B)+{p,7)+Ee, LgpeR,EeR

and we have,
QEg, )=-d[p-&]
]

The moment can be adjusted to the center of mass decomposition.

Theorom 6.1. Let G be a dynamical group acting on a connected symplectic manifold M and possessing a
moment 4 to which is associated a momentum map J. Let 6 be the corresponding cocycle. Then,
a) Let G be a Lie subgroup of G with Lie algebra g. Then G is a dynamical group of V possessing a
moment | induced from u:

FEE) = @) £eg

b) Suppose initially that G is a normal subgroup of G. Denote J the map from M to », and by 5;
the representation of G dual to the representation induced on g by the adjoint representation of G,

and by 6’ the map
&'(a) = 6(a)
then
J(@,(x)- 2, (I(x)=06'(a)
Proof.
(]

Theorom 6.2. Let G be a dynamical group of a connected symplectic manifold M possessing a moment .
(ww\ Assume that G is connected and abelian and that the 2-form f'is injective. Then
a) @is an isomorphism between the Lie group G and the additive group g’.



b) If we define e,8) =a f'(H), g’ becomes a symplectic vector space.

¢) The map J induces a symplectomorphism between each G-orbitinMand g'.

d) M is symplectomorphic either to g or to the direct product g° x Mo where M, is the submanifold
of M defined by u = 0 with the induced symplectic structure.

Proof.
.
7 Prequantum Manifold
Definition 7.1. Consider a Hausdorff manifold Y with a differentiable 1-form ©. If the following
properties are satisfied
dim(ker(d®)) =1 (1.1)
dim(ker(®)Nker(d®)) =0 (7.2)

the covector field given by @ is said to define a conract structure on Y.

From © we can obtain a 2-form, 3 = -d®, whose rank must be even. Condition (7.1) then implies that the
dimension of Y is odd. Since dime(ker({2)) is constant, Y is a presymplectic manifold, its leaves are curves
(lines of force). Let us suppose that the curves are closed. It is possible to show that the action integral

a=§®%ds (1.3)

integrated over the leaf passing through y, satisfies o4 /4y, = 0 . Thus it is constant on every connected
component of Y. We will say that ¥ is a prequantum manifold if a=2x. Let’s introduce the vector
iy () defined by the two linear equations

QGr()=0

Oy O =1
The first equation shows that iy (y) is tangent to the line of force through y, the second gives its
magnitude.

(7.4)

Definition 7.2. A Hausdorff manifold Y will be called a prequantum manifold if
a) There exists a differentiable covector field given by © on Y, which defines a contact structure on

Y.
b) Thetorus T acts on Y in such a way that
$.: Y7, d.(V)=ye>z=1 zeT
QGy (»),)=0 (1.5)

Oy =1



where the action of zon Y is ¢, = exp(siy (), where z=¢” € T. It should be noted that the structure of
the prequantum manifold Y is entirely defined by the manifold structure of Y and the 1-form © since the
action of T is defined using © and its exterior derivative 2. Using the fact that the orbits of T are compact,
one can show that the characteristic foliation of Y is sectionable. Therefore, the set U of lines of force
admits the structure of a symplectic manifold whose symplectic form is defined by

Qu, v)=Q(E,n) (7.6)
where u,v are the projections of £ of TY onto TU. U'is called the base of the prequantum manifold Y, its
dimension being one less than Y.

Conversely, given a Hausdorff symplectic manifold (U,{2), we can construct a prequantum manifold Y.
This process is called prequantization and results in a canonical transformation 4 between the base of Y and
U. Denoting x = A(Orb(y)) and P : Y - U, P(y)=x, then

Y is a prequantum manifold

P is a differentiable map from ¥ to U

ker(D(P)(£)) is generated by ify), Vye Y (0.7

x € U =5 P(x)is an orbit of T (acting on ¥)

Qy €M)=y (,v)

On the other hand if we have a prequantum manifold ¥ and a map P satisfying (7.7) it follows that there
exists a canonical transformation 4 from the base of Y onto U such that P(y) = 4(Orb(y)). Prequantizing a
Hausdorff symplectic manifold U is the same as constructing a pair (¥,P) satisfying the axioms (7.7).
When it is possible to make such a prequantization, then U is called prequantizable.

The following theoroms are given without proof .

Theorom 7.3. Let U be a Hausdorff symplectic manifold and let {U ,} be an open cover of U such that (i)

every Uj is simply connected and (ii) the symplectic form Q admits a potential ® on U, If Uis
prequantizable, there exist differentiable maps xt-z; from each of the (nonempty) UNU, to the torus such
that

Gk(t:)—@j(u)zia;—jz YueT(U;NU,) (7.8)
where 8z ; is a the tangent vector of z ; and

xelU; ' = zy=1

xeU,;NU, = 242 =1 7.9

xeU,NU, NU, = ZpZyzy =1

Theorom 7.4. Let Ube a Hausdorff symplectic manifold and {U .} an open cover of U. Assume that there

exist potentials @ for the 2-form Q defined on U, and differentiable maps x - z; from U;N Upto T
satisfying (7.8) and (7.9). Then U is prequantizable.

If (U Q) is a symplectic manifold admitting a potential, Q=-d®, then we can apply Theorom (18.22) with
the open cover {U/,} consisting of the single set U.

Theorom 7.5. Every Hausdorff symplectic manifold U admitting apotential is prequantizablr. Moreover,
one can take the prequantum manifold ¥ to be the direct product U/x T with

O, a)= ?—zz--i- Oy ()

4z (,2)=(,22)
P(y,z)=y



This result applies especially to the case when U is a symplectic vector space.

8 Quantization of dynamical groups

Let (Y,P) be a prequantization of the symplectic manifold U and let G be alie group which acts
canonically on U. It is clear that G is a dynamical group of the manifold U. It can be extended to the
presymplectic manifold ¥ to become a dynamical group acting on Y via the equation

P@, 0N =D,(P() @8.1)
If the converse holds, G is a dynamical group for ¥, then via the same equation (8.1) we can make G into a
dynamical group for U. Using the theorom from the §2, we know that the prequantum manifold Y together

with the dynamical group G possesses a moment. Since G must act on Y preserving the 1-form, using
Theorom (2.2) it is possible to obtain a moment u of G

rE=0E, V) Véeg
and we know that the associated symplectic cocycle 8 is zero. (11.21). We also note that via (2.2)
X O)=Er ()

The generalized version of Noether’s Theorom (Theorom 2.3) shows that 4 depends on y only via x , and
that x is also a moment of G seen as a dynamical group of U. It is immediate that the cocycle associated
with the latter moment is also zero, that is

Jod, (x) =D, 0 J(x)
We have shown the following proposition.

Proposition 8.1. If a dynamical group of a symplectic manifold is quantizable, then its symplectic
cohomology is zero.

This final proposition gives us the conclusion we have long awaited.
Example. Let £ be a symplectic vector space. As an additive group, E acts on itself by translations.

O, (x)=x+a Va,xeE
from which we obtain,

Ee=§
The dynamical group E thus has the moment,

u=iQ

The associated cocycle is equal to {2 and thus its cohomology class is not zero. The symplectic structure of
E therefore does not give an equivariant momentum map. E, however, admits a prequantiation (¥,P):
Y=ExT
O, a)= -8_—z-+li§Q(x)
iz 2

P(x,z)=x
The dynamical group G still may act on Y, therefore using Proposition (8.1) we have that the prequantum

manifold Y then has an equivariant momentum map, because it’s symplectic cohomology class is zero.
(How anticlimatic)
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