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1 _Introduction

Dissipative systems are (roughly) systems in which the total energy decreases in time: a vector
field X is called dissipative if{1] (dE, X) < 0. Obviously energy is not conserved in such a
system, so we have to modify the formalism of geometric mechanics somewhat to take such
systems into account. After all, Lagrangian and Hamiltonian systems conserve energy.

Generally dissipation is introduced on the Lagrangian side. A dissipative Lagrangian system is
a vector field Z + Y, where Z is a Lagrangian vector field (with corresponding Lagrangian L)
and Y is a dissipative vector field. One then attempts to find a so-called Rayleigh dissipation
function R(g, ¢) so the equations of motion can be written (in coordinates) as

d(@L) 8L _ @R
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Unfortunately this method of introducing dissipation may not always work; particularly when
studying systems on Lie groups one must use a different approach.

In [2], Bloch et al. tackle the problem of dissipation on Lie groups. The particular type of
dissipation considered there is known as “double bracket dissipation”, as it manifests itself as
a nested Lie bracket in the equations of motion. For example, the equation

D=IxQ+allx (IIxN)

describes a damped rigid body; the first term generates the ordinary rigid body motion while
the second term is a dissipative term of the double bracket type. Bloch et al. start their
derivations on the Lagrangian side but finally switch to the Hamiltonian side, where they
express the dissipation by modifying the Poisson bracket on the Lie group:

F={FH}-{{FH}}

where H is the Hamiltonian, {F, H} is the ordinary Lie-Poisson bracket and {{F, H}} is the
(symmetric!) modification which causes the dissipation. We see that for this type of dissipation
the flow of the system is still generated by a Hamiltonian, but the bracket which generates the
dynamics is no longer Poisson (and hence the flow is not canonical, as expected.)

In this paper I will take a very different point of view. Suppose we have a Hamiltonian system
driven by white noise, i.e. some parameter in the Hamiltonian fluctuates randomly. The flow
generated by this system will obviously be inherently unpredictable, but by construction each
realization of the flow (i.e. the flow generated by a particular history of the random fluctuations)
will be canonical: after all, it is generated explicitly by a Hamiltonian. However, when we take
an ensemble of particles described by the noisy Hamiltonian and look at their average behavior,
we find that the ensemble can behave like a damped system.

An interesting aspect of this third approach to dissipation is that unlike the approaches outlined
above, we don’t need to introduce extra formalism in order to deal with damping; the flow
is generated by an “ordinary” Hamiltonian with the usual symplectic or Poisson structure.
The damping is obtained only at the end by averaging the equations of motion over the
realizations of the noise. In general, however, we will see that it is impossible to find a
closed-form expression for the mean evolution of the stochastic system. Rather, we can write



down an (infinite-dimensional) field equation describing the time evolution of the probability
density of the system. Whether this picture makes physical sense depends on the system under
consideration; we can use the formalism to introduce dissipation into field theories which are
derived from microscopic Hamiltonians.

In order to describe noisy processes we must venture into the world of stochastic analysis. In
section 2 I briefly review some of the major concepts of stochastic calculus in flat space. Next
we must talk about generalizing this to manifolds, which turns out to be somewhat problematic
in the usual Ité formulation. The insight gained from this, however, almost directly leads us
to dissipation when we apply this to mechanical systems.

I find the mechanics of random systems an extremely fascinating topic—it is unfortunate that
there appears to be very little literature about the subject. The theory has actually been
developed in depth by J.-M. Bismut in the late 1970s and is presented in his monograph [3].
For some reason the field appears to have been abandoned since then, and his work is hardly
cited. The book is remarkably readable, however, despite that it is horribly typeset and written
in French.

2 A crash course in stochastic calculus in R”

Probability spaces, random variables and mathematical expectation

Before embarking on the description of stochastic processes we must formalize the notion
of probabilities!. Suppose we are describing a system which can take values w € Q. w is
then called an elementary event. In order to describe the random structure of the system we
introduce the notion of probability; we could ask, for example, “what is the probability of the
system taking the value w”, or “what is the probability of the system taking either the value
wy or wy”, etc. Clearly a probability is associated not only to elements of 2, but also to sets
of elements in Q (where e.g. {w1,ws} denotes “w; or wsz”.) We call such subsets events.

In order to formalize this notion we introduce two objects, the o-algebra F and the probability
measure P associated to §2. F is a set of subsets of  which are “measurable”, i.e. it contains
all the events to which we can assign a probability. P is a map from F to the interval which
assigns a probability to each event. Clearly 7 and P must satisfy some elementary logic
requirements; e.g. if we can assign a probability to w; or ws and to w3 or w4, we must also
be able to assign a probability to w; or wa or w3 or wy, and this must be the sum of the two
probabilities if none of the elementary events coincide (we say the two events are independent.)
If all such logic requirements are satisfied we call the triplet (2, F, P) a probability space.

Definition 2.1 Let  be a set of elementary events. A a-algebra F on Q is a set {U; C 0}
8.l

1. oeF, NeF
2. UeFifUeF
3. For any finite or countebly infinite sequence {Ux € F} we have | J, Ux € F

There is a large amount of literature available on axiomatic probability and stochastic processes. An
excellent reference is [4].



Definition 2.2 The map u: F — R is a measure on (Q,F) if

1. u(@)=0

2. For any finite or countably infinite sequence {Uy € F|Upy NU = @ Yk # I} we have
sy Uk) = 3ok 1(Uk)

Definition 2.3 The map P : F — [0,1] is a probability measure on (2,F) if it is a
measure and P()) = 1. Then the triplet (0, F, P) is a probability space.

Now suppose the system expresses itself in some way by determining the value of another
variable, for instance a real number. This could correspond to a particular measurement of the
system or to a coupling of the random system to some other quantity. We express this notion
through the concept of a (real) random variable.

Definition 2.4 The real random variable £ : @ — R" on the probability space (R, F, P) is
F-measurable if £71(B) € F VB € B, where B is the o-algebra of Borel sets on R".

Note that we are assuming that we can determine the probability of getting any collection
of outputs from the random variables; this corresponds to all the Borel sets. Measurability
of a random varjable implies that this is consistent with the intrinsic probability structure of
the underlying probability space; i.e. it ensures that we cannot extract information from the
random variable that cannot be obtained directly from the underlying random system. This is
important as the random system directly determines the value of the random variable, so no
new information can be gained in this process.

Finally, we introduce the notion of mathematical ezpectation, which simply gives the mean
value of a random variable. Recall that the weighted mean of a set of random numbers {z;} is
given by Y, z;P(z;). Expressing this in terms of random variables and taking the continuous
limit gives the following definition:

Definition 2.5 The mathematical expectation E{ of ¢ random varicble £ on (Q,F, P) is
given by the Lebesgue integral

Et = /Q £(w)P(dw)

Stochastic processes and Brownian motion

We now extend the notion of a random variable to a fluctuating random quantity; this is known
as a stochastic process. It is defined as follows:

Definition 2.6 A parametrized collection of real random variables { X, },cr+ defined on a prob-
ability space (Q, F, P) is called a stochastic process.

The probability space on which the stochastic process lives is now bigger than the space of
a random variable: each w € Q gives a particular realization (or sample path or trajectory)
X.(w) : R* — R" of the system. At each fixed time ¢, X;(-) is a random variable.

Measurability is an important concept here. Suppose we perform some measurement of the
stochastic process at time ¢, which we express as a random variable &7 : @ — R™. Obviously
a measurement at time 7" (this could be, for instance, an estimate of some parameter of the



system) can only depend on the values of the process at times ¢ < T, otherwise causality
is violated. In order to capture this we introduce a family of o-algebras F; associated to the
stochastic process X; each F; is constructed in such a way that one cannot distinguish between
paths w of X; which are the same up to time ¢, but branch off later (i.e. all such w are always
grouped together in U € F;.) For causality to hold, clearly {7 must be Fr-measurable. If we
repeat the measurement of X, at different times and group all these measurements into a new
process &;, then & is said to be F-adapted if &1 is Fr-measurable for all T

Definition 2.7 Let F; be the o-algebra generated by Xs(-),s < t. A stochastic process Yy is
Fi-adapted if Y is Fp-measurable VT'.

Consider the probability distribution
_le—l
2t

pi(z,y) = (2mt) "2 exp [ P(ty,z15t2, 22+ -+ ) = pt; (0, 21)Pep -1, (21, T2} - -+
where 2, 2,y € R. P{t),z1;t2,Z2;--) is the probability of finding the particle at z; at time
t1, 2 at time ty, etc., i.e. this is the probability of a particular discrete trajectory. Taking the
continuous limit and constructing a corresponding probability space, we obtain a stochastic
process called Brownian motion W;. As stated here this process isn’t very well-defined, but
with some additional machinery the existance of this process and its underlying probability
space can be proved[4]. It has many nice properties which will be implicitly used in the
following, though going into details is beyond the scope of this paper. One suprising property
is that its sample paths are continuous (but not differentiable.) Note also that EW; = 0.

Stochastic differential equations and the Itd integral

In this paper (and in this general subject area) one usually generates a stochastic process by
driving a dynamical system with a white noise term, i.e., we want to give meaning to the

equation
dX,

dt
where £ is white noise (zero mean, unit variance). Stochastic processes are generally not
differentiable, however, so as it is written this equation doesn’t make sense. In order to define
what we mean by such a noise-driven dynamical system we write it in integral form:

= b(t, X;) +0(t, X0)&

t t
Xi=Xo+ / b(t,Xg)dt + / U(t, Xg)fgdt
0 0

This seems more reasonable, as we can give meaning (through Lebesgue or Stieltjes-like con-
structions) to integrals of all sorts of not-very-well-behaved functions. In this case we want to
define the integral over a stochastic process, and we expect the result to be another stochastic
process.

We immediately run into a snag, however. It turns out that white noise is not a stochastic
process; one can prove that there is no way to realize white noise as a continuous stochastic
process[4] (one can extend one’s notion of a stochastic process to include tempered distribu-
tions, but this is not desirable.) Fortunately, there is a way around this problem. Let’s replace
&dt by the increment dW; of an appropiate stochastic process W, such that

t
/ §edt =W,
0



where & is treated as a tempered distribution. It turns out W; is exactly the brownian motion
we defined earlier. Thus, we will write our dynamical system completely in terms of stochastic
processes as

¢ £
X=Xy +/ b(t,Xg)dt +/ O'(t, Xt)dI/Vg
0 0
or as a Stochastic Differential Equation (SDE)
dXt = b(t, Xt)dt + O'(t, Xt)dI’Vg

which is just a shorthand notation for the integral equation.

We must now give meaning to the stochastic integral. As usual we do this by replacing
the function we're integrating over by a sequence of approximations in terms of elementary
functions and taking the limit:

Definition 2.8 The Itd integral of a stochastic process is defined as

t
/0 Ui = i, 5 Uiy (Wi = W)

This expression is reminiscent of the Riemann-Stieltjes integral. Note however that we're
approximating U, by its value on the left side of the time interval n. In a Riemann-Stieltjes
integral it does not matter at which point ¢, € [tn,tn+1) in the bin the integrand is evaluated,
but it turns out that this choice gives very different results for stochastic integrals. This reflects
the fact that stochastic processes fluctuate so rapidly that the Riemann-Stieltjes construction
doesn’t hold.

In the next section we will discuss a different choice of ¢., leading to the Stratonovich integral
of a stochastic process. We will see that this integral makes much more sense from a geometric
point of view. In stochastic analysis, however, one mainly uses the Itd integral due to its nice
statistical properties. Note that the increment dX; is generated by the noise increment in each
time step, but it only depends on the value of X; at the beginning of the time step. This
ensures that in a sense the dynamics of the system is uncorrelated with the noise (though the
flow is obviously still driven by the noise), and we get the following theorem[4):

Theorem 2.1 Let F; be generated by Ws<;. Then fot U dW; is Fy-measurable; furthermore,
E [y UrdW; = 0.

Finally, the following theorem describes how (one-dimensional) Ité6 SDE behave under trans-
formations:

Theorem 2.2 (1-dimensional Ité formula) Let
dXy =udt +vdW, and Y; =g(t, X:)

Then we have o 3 L &
=99 9 L9
dY; = - dt + aXtht'i“ 2 8%

where (dX;)? is calculated using the Itd calculus dt? = dt dW, = dW, dt = 0, dW? = dt.

(dX:)?

We see that in order to obtain nice statistical properties of the stochastic integral we have
sacrificed the rules of calculus as they apply to ordinary differential equations. Thus, one
can’t naively interpret the Itd SDE as some noisy limit of an ordinary SDE. This is possible,
however, in the Stratonovich picture.



3 Stochastic calculus on manifolds: Stratonovich vs. Itd

From the It6 formula we see immediately that the “Itd differential” dX is not natural under
diffeomorphisms: ¢*dX # d¢*X. Thus such a notion does not make intrinsic sense on a
manifold. We can save the day by introducing a new calculus, as follows.

Definition 3.1 Let - denote the It6 calculus multiplication. We define the Stratonovich
calculus as Y odX =Y-dX+%dX~dY, dX odY =0.

In order to make this definition rigorous we have to define exactly what we mean by the It
algebra; for a formal exposition, see [5]. We proceed using the It3 rule and some intuition to

replace the technicalities:

Theorem 3.1 Let Y; = g(t, Xi); then dY; = Fdt + £ o dX,

Proof 3 3 ) 3
o9 99 9
X, odX; = X, -dXy + 2d (ax,) dX;
Expanding the second term using It6’s rule gives
g &g 8% 189 s
d (B.Xz) dXy = 6X¢3tdt+ X2 -dX: + = 26X3 -dX¢| - dX,

Now use the It6 calculus: dt - dX; = dX? = 0. We get

agdt-i— 99 ax, = %4, 99 dX¢+139

2 b—4
2t ax, a%t ox, 2ox; i =dh

where the last equality is by Itd’s rule. O

We see that a Stratonovich SDE dX; = udt + v o dW, transforms naturally under diffeomor-
phisms, and so we can make intrinsic sense of it on a manifold. The following theorem relates
the Stratonovich integral to the It6 integral:

Theorem 3.2 . U, +U.
. tn tn
/0 o dWi = fim, 37 =5t (W, = W)

Proof

Ui, + U, 1
3 A%(W,M, - We) =D Ut (Wi, - W) + 3 > Uty = Us) Wiy, — We)
n n

n
Thus we get

t t t
lim Mﬂ(mn+,—mn)=/ Ut-dW¢+l/ dUt-th=/ UodW, O
At—0 - 2 0 2 0 0

Once again, this can be made more precise by formalizing what we mean by the Ité6 and
Stratonovich calculus, but the derivation is intuitively clear. For more details, see [5].



The definition of the Stratonovich integral is more symmetric than the It integral, averaging
the value of the integrand over each bin. From a statistics point of view this leads to very unfor-
tunate results; the integral is no longer F;-adaped and its mean drifts around instead of being
nicely fixed at zero. From a geometric point of view this is very nice however. Particularly,
Bismut(3] shows (following a classic work by Wong and Zakai) that if we take differentiable
approximations to an SDE, i.e. we take a set of smooth vector fields Z" that converge to
E = u + v€ (where £ is some realization of white noise), then taking the corresponding limit
of the ordinary Riemann-Stieltjes integrals of these smooth dynamical systems gives exactly
the Stratonovich SDE dX; = udt + v o dW;. Thus in a sense the Stratonovich picture is much
more physical, being a singular limit of a “real” physical process. The result is that the system
dynamics gets funamentally entangled with the noise and we must do some work to find the
statistical properties of the system (i.e., convert to It6 form before doing statistics.)

This result suggests a natural way to extend the Stratonovich picture to manifolds. We already
know how to integrate smooth dynamical systems on manifolds; now take the appropiate
limit, & la Wong and Zakai, and we obtain a Stratonovich system on a manifold. I have seen
various other constructions in the literature, some using Whitney’s embedding theorem, others
patching together Stratonovich integrals on coordinate charts. The various methods appear to
agree and for the purposes of this paper I will assume that the Stratonovich picture is naturally
extended to manifolds, and that all such technicalities can be worked out.

It remains to find how to convert between Ité6 and Stratonovich forms of SDE.

Theorem 3.3 (It5-Stratonovich equivalence in one dimension)

dX, = udt +vaW, <= dXo={u- 220 dt+voaw,
20X,
v dv

dX; =udt +vodW, < dX;=[u+ oo )dt+vdW,
20X,

Proof Just use the conversion rule: for example,
vodW,; = u-dW}-{-%dv-th

Now use the It6 rule

Ov v 1 8%

dv - dW; = [—dt + —dX; + §W(dxt)2] dW, = -@-(‘UO d"Vg) - dW,
t

ot X, 0X;

Now use the conversion rule again,
(vodW,) - dW, = (v-th + %dv -th) dW; =vdt

The Ité-Stratonovich equivalence follows immediately. Reversing the procedure gives the
Stratonovich-Itd equivalence. O

Generally we will work in a dimension higher than one; the derivation of the higher-dimensional
analogs of these theorems is more tedious but straightforward. I will just state one result:



Theorem 3.4 (It6-Stratonovich equivalence in many dimensions) Let X; be an n-
dimensional process with components X{. Then

C . . R (RS .
dXj=1v'dt+v'dW, <+ dXi= u'-—ZvJ-aL. dt +v* o dW,
2j=l aX{

. . . . - n . i .
dXj{=u'dt+v'odW,; <<= dX|= u‘+lZv’av. dt +v' dW,
2j=l 6Xg

The correction term in these expressions is given explicitly in coordinates and does not seem to
make intrinsic sense without additional structure. However, one can make sense of this term on
a Riemannian manifold[3, 6, 7]; recall that transforming the connection coefficients I‘j-k gives
second derivatives, which is reminiscent of Ité’s rule. In fact Itd’s rule and the It6 correction
term can be expressed in a natural way in terms of covariant derivatives. I will say no more
about this here. However, it should be pointed out that the double bracket damping terms of
Bloch et al. are defined explicitly using a metric; their construction of the double bracket also
doesn’t appear to make sense without this additional structure on the manifold. In our case
it is the Itd correction which will play the role of the damping term.

4 Stochastic mechanics: a simple linear example

We will take for our configuration manifold Q = R, so the phase space is 7°Q ~ R? 3 (g, p).
The symplectic form in T*Q is = dg A dp. Consider the equations of motion

(8)=(5 %) (%)-xan

This describes 2 linearly damped free particle in one dimension; for example, think of a bead
moving on a wire and experiencing friction. Obviously this picture doesn’t lend itself very
well to a probabilistic interpretation, but it is still a nice demonstration of the origin of the
damping term.

The equations of motion are not Hamiltonian; after all,
dixQ = d(pdp +npdq) =ndpAdg #0

Our goal will be to “reverse-engineer” a noisy Hamiltonian which behaves like this dissipative
system on average.

To proceed, we first must know when such a linear system is Hamiltonian. Writing
é _ A B q !
(3)-(2 2)(5)-xwn

0 = dix/Q = d((Ag + Bp)dp — (Cq + Dp)dg) = (A+ D)dg A dp

and requiring

we see that X' is Hamiltonian iff A = —~D (we know it is globally Hamiltonian as we are
working in a vector space.)



Our strategy will be as follows. We assume our given equations of motion are actually the
ensemble average of a noisy equation. We postulate

()=(8 2)(5)e (G ) (5)

in the Itd sense. Taking the mathematical expectation of both sides gives, as everything is

linear,
(e )= (5 5) (&)

which is exactly what we want. Note that we must necessarily write an It6 equation, as the
mathematical expectation of a Stratonovich integral is not zero in general, but for the It
integral this is guaranteed by theorem 2.1. Thus we are now on the “statistical side” of the
picture. In order to find a corresponding Hamiltonian, we must switch to the “geometric side”.
To this end we convert to the Stratonovich picture using theorem 3.4:

(s‘;: ) =(—%(A20+BC) _n_%(;”BC) ) (z’f: )dt+(é >z ) (z:)odW,

Now that we are in the Stratonovich picture, the concept of a noisy Hamiltonian makes sense.
In order for this system to be Hamiltonian we require

1
S(A*+BC) = —n - %(A2 +BC)

One possibility is A =0, B = —C = /1. We obtain the Stratonovich system

(8)-(% ) (24 (50 F)(5) o

which is easily verified (by substituting into Hamilton’s equations) to come from the noisy
Hamiltonian

1 1 1
Hi(g,p) = 50° + 5nap + 5 Vilp" + ¢)ér
where &, is (physical) white noise. Such a solution was also found in [8].

What is the interpretation of this? As the damped system can be derived from a noisy Hamil-
tonian, we get that each sample path is canonical but the ensemble of particles is damped. In
a sense this is sort of obvious. We can see from the Hamiltonian that we add momentum noise
into the system; intuitively, at short times the system will “remember” its initial momentum
while at long times the momentum will be dominated by the noise, which averages out to zero.
Averaging this gives a net damping effect. The Stratonovich-It6 correspondence gives us a way
of extracting this information from the noise; the Itd correction term then plays the role of a
deterministic damping term, while the It6 noise averages out to zero by virtue of theorem 2.1.

Unfortunately, this method doesn’t generalize to nonlinear systems. To see the problem, let
us try to apply a similar procedure to the damped rigid body

II=IIxQ+allx (I x )
We start by adding a Hamiltonian It6 noise term
dll = (IT x Q + aIl x (IT x Q)) dt + II x VF(II)dW,

In the previous example we relied on the fact that we regain our original equation of motion if
we ensemble-average the stochastic equation. Unfortunately, this procedure fails in this case,

9



because E(IL;I1;) # EII; EIl;, etc. In order to get the equation for d(EII) we must obtain an
equation for E(ITx §2) in terms of EIT. But the equation for d(E(IL;II;)) (by It6’s rule) depends
on higher-order moments of IT (i.e. E(IL;I1;IIx)), not on lower-order moments! Thus there is no
closed-form equation for EII, but instead we get an infinite hierarchy of coupled equations for
the moments EIl;, E(ILII;), E(ILIL;IL), ... We see that the “reverse-engineering” procedure
described above only works for linear systems.

5 Field equations from microscopic stochastic Hamiltonians

We get much nicer results if we don't attempt to calculate the mean time evolution of a
stochastic system, but we look for the time evolution of the probability density on phase
space.

Let’s first recall how functions of phase space trajectories evolve in time in a deterministic
system. Let & = Xgy(x) and F; is the flow of Xp. We wish to calculate the time evolution of
A(z(t)). We proceed as follows:

2 A(alt)) = S F7 A(E(0)) = 7 Zx, A(0)) = Ly Al (D)

where we have used the Lie derivative formula and ¢*%x f = £ x¢*f. But by definition of
a Hamiltonian vector field,

4 A(t)) = Ly Alalt)) = X, Xn) = {4, H}

Let us now find a corresponding formula for a noisy Hamiltonian. We start with a Stratonovich

system
dz; = Xy(mt) dt + XF(:Bt) o dW,

which comes from the noisy Hamiltonian H + F&. For a function A we get (using ordinary
manifold calculus as we're in the Stratonovich picture)

dA; = ngAt dt + -i'poAt o dW,;
Now we switch to the Ito side. We need to calculate the Ito correction. Suprisingly, in this
case we don’t need a connection, as we can express the Itd correction completely in terms of
Lie derivatives(3, 9]:
1[0 1 1
‘2‘ I:a_‘Ag(ZXFAt)] (.ngAg) = §$XF$XFA3 = 52)2(1_./13
Thus we get the Itd equation

dA; = (.sfx,, + %2,%,,) Apdt + Lx A dW,

Replacing the Lie derivatives by Poisson brackets and taking the mathematical expectation,
we get

(= ({4, + JUAF)LF))

where (A) = EA.

10



‘We saw earlier that we can’t, in general, find a closed form of this expression for the mathe-
matical expectation (A) for a general A(z). Instead, we follow the method of Gardiner[10] to
obtain an equation of motion for the probability density p(z). By definition, for any A

(A((t) = /M A(@)p(z, t)dz

where M is the phase space and dz is its volume element. Taking the time derivative and
using the expression we derived above, we get

(A) = / A(X)p(z, 8)dz = / (_z’x,,A(m) + %$§FA(::;)) o(z, t)dz
M M
In order to simplify this equation we need the following lemma:

Lemma Let M be the phase space and g its volume form. Assume also that M is boundary-
less, or that f, g vanish on M. Let Xy be a Hamiltonian vector field. Then

Alf(fxuy)ﬂ=—A{g($fo)#

Proof
[ rxaoyn= [ Leuron) - [ o Lxayu= [ fo(Lan)

By Cartan’s magic formula, we have

/ Pxy(fon) = / (dixy (fon) +ixyd(fop))
M M

But the last term vanishes as d(fgu) = 0 (fgu is a form of the same dimension as the phase
space.) Using Stokes’ theorem we get

fM Lxu(fon) = /Mdixg(fgﬂ)= /a Mfg (ixyp) =0

as f, g vanish on the boundary. Next, we tackle the last term. Note that £, u = div, Xy =0,
as the flow of a Hamiltonian vector field is volume-preserving. Thus, the last term vanishes as
well, and we obtain the desired result. O

Using this Lemma we rewrite our previous equation as

= [ At ts = [ A0) (~Lrape,t) + 3 Lpol,0) do

As this equation holds for any A(z), we obtain a closed-form solution for the probability density
of the stochastic system:

% = ~{p, H} + 5 ({6, ), F)

In statistics this is known as a Fokker-Planck equatlon. We see that in a mechanical system,
the Fokker-Planck equation is expressed naturally in terms of Poisson brackets. A similar
result is found in [9] for non-white noise processes.

We can use this formalism to derive field theories from ensembles of particles for which we
specify some microscopic dynamics. An interesting example is the Vlasov-Poisson equation
from plasma physics. This field equation is

g+v-g—£%-ﬂ—0 V2¢f=e(/fd3v—1)



where f is the plasma particle number density. Bloch et al.[2] show that this equation can be

written of ]
5 = ~UhH}  Hp= §mzll\'ll2 + egs(x)
with the canonical Poisson bracket
1 /0g 8h 0Oh Og
h e | e—— e e e c— o c—
{o,h} m(@x ov  Ox 6v)

But this is exactly our Fokker-Planck equation without a noise term. This suggests that
the Vlasov-Poisson equation actually follows from microscopic dynamics of particles flowing
according to the microscopic Hamiltonian Hy. That the Hamiltonian depends on the whole
distribution f implies that the particles interact; in order to solve the motion of a single particle
we must know the position of all other particles. Thus the microscopic equations of motion can
only be solved self-consistently, where the motions of all the particles are used to update their
distribution. Obviously one doesn’t need to do this as one has the Vlasov-Poisson equation.
However, it is conceptually nice to think of it in this way in order to interpret the equation as
a Fokker-Planck equation.

Having made this observation, it is now trivial to see what the effect of a noise drive is on the
plasma. We can simply write

where F is a suitably chosen noise Hamiltonian.

It is interesting to compare this to the double bracket dissipation found in [2]:

% = —{f, Hy} + (£, {£ Hi})

The result looks entertainingly similar. It is unclear to me, however, that there should be any
similarity between the two expressions other than the aesthetic grouping of the curly brackets.

6 Conclusion

After a brief overview of classical stochastic analysis, I showed (albeit not very rigorously)
how these notions can be made sense of on manifolds. The basic lesson to be learned here is
that the two “pictures” of Stochastic analysis, the It and the Stratonovich picture, are both
neccessary in order to get anywhere. Geometry can be done on the Stratonovich side, while
statistics takes place on the Itd side. Connecting the two requires (in general) a Riemannian
structure on the manifold, but I have glossed over this issue. Finally, I showed how to introduce
the notion of a noisy Hamiltonian in mechanics, and the role played by the It6-Stratonovich
equivalence in this case. We also derived a closed-form Fokker-Planck equation in terms of
Poisson brackets.

This project originally started as an attempt to make sense of quantum measurement in a geo-
metric mechanics context. When a quantum system is subjected to (continuous) measurement,
quantum mechanics prescribes how the noise enters the system. The dynamics of a quantum
system under measurement can be written as a (nonlinear!) It6 SDE on Hilbert space{11],
much like the SDE I considered in this paper. Unfortunately, however, a quick calculation
shows that the quantum measurement SDE is not Hamiltonian.

Still, I think the ideas presented here can be useful in such a context. A particular lesson is that
one should do geometry on the Stratonovich side. If one wants to apply methods of geometric
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control to feedback control of quantum systems this could be an important issue—as far as I
know, most of the stochastic control theory is formulated on the It6 side. The observation that
one can do geometric control on the Stratonovich side appears to be the essence of a recent
article on feedback linearization of stochastic systems[12].
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