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1 Introduction

In this paper we discuss the applications of the Hamilton-Pontryagin variational principle
for designing time-adaptive variational integrators. First, we review the multisymplectic
formalism of field theories. Next, we review the Hamilton-Pontryagin principle and show
how it can be used to handle time reparametrizations in a very natural way. Finally, we
derive a time-adaptive variational integrator for a mechanical system and present the results
of our numerical simulations.

2 Multisymplectic formalism of field theories

2.1 The jet bundle

The tangent bundle is the basic arena for the Lagrangian description of particle mechanics.
The analog of the tangent bundle for field theories is the jet bundle. Let us review the basic
definitions. For more details see [1]. Let X be an oriented manifold and let πXY : Y → X

be a finite-dimensional fiber bundle called the covariant configuration bundle. In physical
applications X represents spacetime. Let Yx denote the fiber π−1

XY (x) of Y . The physical
fields are sections of this bundle. The role of the tangent bundle is played by J1Y , the first
jet bundle of Y , which we define as follows. Let φ1, φ2 ∈ Γ(Y ) be two sections of Y . We
introduce the equivalence relation at x ∈ X

φ1 ∼x φ2 ⇔ φ1(x) = φ2(x) ∧ Txφ1 = Txφ2. (1)

We define the first jet bundle as the set of all equivalence classes

J1Y =
{

[φ]x

∣

∣

∣
φ ∈ Γ(Y ), x ∈ X

}

. (2)

1



J1Y can be naturally identified with the affine bundle over Y whose fiber above y ∈ Yx

consists of those linear mappings γ : TxX → TyY satisfying

TπXY ◦ γ = IdTxX . (3)

The map γ represents the tangent mapping Txφ for a section φ. The vector bundle underlying
this affine bundle is the bundle whose fiber over y ∈ Yx is the space of linear mappings
L(TxX,VyY ), where

VyY =
{

w ∈ TyY
∣

∣

∣
TπXY (w) = 0

}

(4)

is the fiber above y of the vertical subbundle V Y ⊂ TY . Let dim X = n + 1 and the fiber
dimension of Y be N . Let xµ, µ = 0, 1, ..., n be coordinates on X and let yA, A = 1, ..., N
denote fiber coordinates on Y . These induce coordinates vA

µ on the fibers of J1Y . Let
φ ∈ Γ(Y ) be a section of Y . We define its first jet prolongation j1φ as the section of J1Y

(regarded as a bundle over X) such that

j1φ : X ∋ x → Txφ ∈ J1
φ(x)Y. (5)

Such sections are called holonomic. In coordinates j1φ is given by

xµ →
(

xµ, φ(xµ), ∂µφ
A(xµ)

)

. (6)

Since later we investigate numerical algorithms for mechanical systems, let us point out what
J1Y is in that case. For a non-relativistic classical particle with configuration space Q, we
let X = R (parameter time) and Y = R × Q, with πXY : Y ∋ (t, q) → t ∈ X. The first
jet bundle J1Y is the bundle whose holonomic sections are tangents of sections φ : X → Y ,
so we can identify J1Y = R × TQ. Coordinates (t, qA) on R × Q induce the coordinates
(t, qA, vA) on J1Y .

2.2 The dual jet bundle

Just as the tangent bundle is the arena for Lagrangian dynamics, so is the cotangent bundle
for Hamiltonian dynamics. The role of the cotangent bundle for field theories is played by
the dual jet bundle J1Y ∗, whose definition we review in what follows. We define J1Y ∗ to be
the vector bundle over Y whose fiber at y ∈ Yx is the set of affine maps from J1

yY to Λn+1
x X.

Since Λn+1
x X is one-dimensional, an affine map can be given in coordinates by

vA
µ → (p + p

µ
AvA

µ )dn+1x, (7)

where dn+1x = dx0 ∧ ... ∧ dxn+1. This induces fiber coordinates (p, pµ
A) on J1

yY ∗. It turns
out that J1Y ∗ can be canonically identified with another vector bundle more useful in ap-
plications. Namely, let Z ⊂ Λn+1Y be a subbundle whose fiber over y ∈ Y is

Zy =
{

z ∈ Λn+1
y Y

∣

∣

∣
iviwz = 0 for all u, v ∈ VyY

}

. (8)
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Elements of Z can be written uniquely as z = pdn+1x + p
µ
AdyA ∧ dnxµ, where dnxµ =

i∂µ
dn+1x. Equating the coordinates (xµ, yA, p, p

µ
A) of Z and of J1Y ∗ defines a vector bundle

isomorphism.
We recall that the cotangent bundle carries a natural symplectic structure. In the same
manner a natural ‘multisymplectic’ (n+2)-form can be defined on the dual jet bundle. This
canonical (n + 2)-form on J1Y ∗ ∼ Z can be defined in coordinates by

Ω = dyA ∧ dp
µ
A ∧ dnxµ − dp ∧ dn+1x. (9)

The multisymplectic form can also be defined in a more intrinsic way. For details see [1]. Let
us work out what J1Y ∗ in the case of particle mechanics is. As mentioned earlier, we have
X = R, Y = R×Q. Then Z = T ∗Y = T ∗

R× T ∗Q has coordinates (t, p, q1, ..., qN , p1, ..., pN)
and the canonical 2-form is

Ω = dqA ∧ dpA + dt ∧ dp, (10)

that is the multisymplectic approach reduces to the extended state space formulation of
classical mechanics.

2.3 Lagrangian dynamics

Let L : J1Y → Λn+1X be a given smooth bundle map over X, which we are going to call
the Lagrangian density. In coordinates

L = L(xµ, yA, vA
µ ) dn+1x. (11)

Our goal is to introduce a multisymplectic structure on the jet bundle J1Y . We do that by
defining the covariant Legendre transform associated with L. This is a fiber-preserving map

FL : J1Y → J1Y ∗ ∼ Z (12)

given in coordinates by

p
µ
A =

∂L

∂vA
µ

, (13)

p = L − ∂L

∂vA
µ

vA
µ . (14)

For a more intrinsic definition see [1]. We are now in a position to introduce the canonical
(n + 2)-form on the jet bundle by pulling back the multisymplectic form on the dual jet
bundle

ΩL = FL∗Ω. (15)

In coordinates this gives the expression

ΩL = dyA ∧ d
( ∂L

∂vA
µ

)

∧ dnxµ − d
(

L − ∂L

∂vA
µ

vA
µ

)

∧ dn+1x. (16)
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Lagrangian dynamics is governed by the least action principle, which states that a field-
theoretic system evolves according to a section of the configuration bundle φ ∈ Γ(Y ) iff φ is
a stationary point of the action functional S : Γ(Y ) → R given by

S[φ] =

∫

X

L(j1φ). (17)

It can be proved that this holds iff the Euler-Lagrange equations are satisfied in coordinates

∂L

∂yA
(j1φ) − ∂

∂xµ

( ∂L

∂vA
µ

(j1φ)
)

= 0. (18)

3 Hamilton-Pontryagin principle

Most physical field theories are fully covariant in the sense that no distinction exists between
space and time. However, sometimes it is useful to choose one particulate coordinate time,
which leads to a slicing of spacetime. A slicing is determined by the lapse function and the
shift vector. The lapse function N determines the rate at which the ’proper’ time changes
from one hypersurface to the next. The shift vector M describes the distortion of the initial
hypersurface, if you think of the slicing as a time evolution of the initial hypersurface. This
is for instance useful in numerical computations, as one can construct adaptive algorithms
for solving field equations. In this section we show how a slicing can be handled in the
variational way with the help of the Hamilton-Pontryagin principle on jet bundles. Since
in subsequent sections we investigate integrators for mechanical systems, let us restrict our-
selves to discussing the Hamilton-Pontryagin approach for particle mechanics only. For a
more general discussion see [3].
In addition to the configuration bundle Y and the jest bundle J1Y (with coordinates
(t, qA, vB)) described in the previous sections, define the linear dual Π as the bundle over Y

whose total space is given by

Π = TR ⊗ V ∗Y = R × V ∗Y, (19)

where V ∗Y is the dual of the vertical bundle V Y ⊂ TY . The bundle Π has coordinates
(t, qA, pB). Given a Lagrangian L : J1Y → R we introduce a covariant Lagrangian L̃ as
follows. We introduce the extended configuration bundle Ỹ = R × Y = R × (R × Q) with
coordinates (τ, t, qA). This way we put the physical time t on equal footing with the dynamic
variables qA and consider it a function of the new parameter τ . The first jet bundle J1Ỹ

has now coordinates (τ, t, qA, N, wB). We also introduce the bundle Π̃ with coordinates
(τ, t, qA, E, pB). The Lagrangian L on J1Y induces a Lagrangian L̃ on J1Ỹ

L̃(τ, t, q, N,w) = L(t, q, wN−1)N. (20)

Let us now form the Hamilton-Pontryagin bundle J1Ỹ ×Ỹ Π̃. Consider the action functional
S defined on the set of sections of this bundle

S =

∫ τ2

τ1

[

L(t, q, wN−1)N − E(ṫ − N) + pA(q̇A − wA)
]

dτ, (21)
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where the dot denotes derivatives with respect to τ . Note that we have enforced the con-
straints ṫ = N and q̇A = wA. By the Hamilton-Pontryagin variational principle, we vary this
action to obtain the following equations of motion

ṫ = N (22)

q̇A = wA (23)

Ė = −∂L̃

∂t
= −∂L

∂t
N (24)

ṗA =
∂L̃

∂q
=

∂L

∂q
N (25)

and the constraints

pA =
∂L̃

∂wA
=

∂L

∂vA
(26)

E = − ∂L̃

∂N
=

∂L

∂vB

wB

N
− L. (27)

Note that the evolution of N is not specified. In fact N is completely arbitrary, which reflects
the reparametrization invariance of particle mechanics. This fact is of great significance for
applications in numerical analysis. It gives one the ability to choose N to one’s liking, and
since the lapse function N determines the rate of change of the physical time with respect to
the ‘simulation’ time, this allows time adaptation of the algorithm used for solving the above
equations of motion. Moreover, since the equations of motion have an underlying variational
structure, this approach offers a way of constructing time-adaptive variational integrators.
We investigate this further in the following section.

4 Time-adaptive variational integrators

In this section we show how the Hamilton-Pontryagin approach can be used to design a time-
adaptive variational integrator. We basically reproduce the results obtained by Desbrun et
al (see [4]). However, we do that in a different way, starting directly at the continuum level
and explicitly showing the variational origin of the algorithm.
Let us consider a 1-dimensional mechanical system described by the Lagrangian of the form

L(q, v) =
1

2
v2 − V (q), (28)

where V (q) is some potential. Let us write the covariant action principle (21)

S =

∫ τ2

τ1

[

(
1

2
v2 − V (q))N − E(ṫ − N) + p(q̇ − vN)

]

dτ, (29)

where for computational convenience we stick to the physical velocity v rather then w = vN .
As pointed out in the previous section, the lapse function N is completely arbitrary at the
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continuum level, so we can set N = N(τ) however we like. Nevertheless, in practice we want
the algorithm to adapt the time step according to some criterion depending on the current
configuration of the system, that is we want to prescribe some general rule N = Γ(q, v).
We can enforce this condition by adding an additional Lagrange multiplier in our action
functional

S =

∫ τ2

τ1

[

(
1

2
v2 − V (q))N − E(ṫ − N) + p(q̇ − vN) + λ(N − Γ(q, v))

]

dτ. (30)

We are further going to assume Γ(q, v) = Γ(q) for simplicity. We discretize (30) on a uniform
mesh with the step h in the τ space, i.e. τk+1 = τk +h. Use the following discrete Lagrangian

Ld = h ·
[(1

2
v2

k−V (qk)
)

Nk−Ek

(tk+1 − tk

h
−Nk

)

+pk

(qk+1 − qk

h
−vkNk

)

+λk

(

Nk−Γ(qk)
)]

.

(31)

The resulting discrete Euler-Lagrange equations are

λm : Nm = Γ(qm) (32)

Em : tm+1 = tm + Nmh (33)

pm : qm+1 = qm + vmNmh (34)

tm : Em+1 = Em (35)

qm :
pm+1 − pm

h
= −V ′(qm+1)Nm+1 − λm+1Γ

′(qm+1) (36)

Nm : Em + λm = pmvm −
(1

2
v2

m − V (qm)
)

(37)

vm : pm = vm. (38)

Note that (32) gives us the prescribed time-adaption and (35) states that the quantity Em

is conserved. Looking at (37) we see that Em is related to the total energy of the system.
In fact, as long as λm stays small, the numerical energy of the system is approximately
conserved. The above numerical algorithm can be put more succinctly

tm+1 = tm + Nmh (39)

qm+1 = qm + vmNmh (40)

1

2
v2

m+1 + V (qm+1) − λm+1 =
1

2
v2

m + V (qm) − λm (41)

vm+1 = vm − λm+1Γ
′(qm+1)h − V ′(qm+1)Γ(qm+1), (42)

where the first two equations are explicit update rules and the last two equations have to
be simultaneously solved for vm+1 and λm+1. We have implemented this algorithm for the
pendulum, that is for the potential

V (q) = 1 − cos q. (43)

We have tested two adaption strategies suggested in [4], namely
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1. equispaced poses Γ(qk) = 1√
E0−V (qk)+ǫ

2. equispaced phase space points Γ(qk) = 1√
E0−V (qk)+V ′(qk)2+ǫ

where E0 is the initial energy of the system and ǫ is a regularization parameter preventing
the blow-up of Γ(q) at the turning points. Since ǫ > 0, the poses/phase space points are
only approximately equispaced. The results of the simulations are presented in Fig. 1-12.
We used h = 0.01 and ǫ = 0.01. Notice the very good behavior of the numerical energy in
Fig. 6 and Fig. 12.

5 Final thoughts and future work

Although the algorithm presented in the previous section basically reproduces the results
obtained by Desbrun et al, our approach has an important advantage. In Desbrun et al
time adaption is introduced ad hoc at the discrete level already. In our approach we use the
Hamilton-Pontryagin principle to introduce time reparametrization at the continuum level.
In this way we exactly know what we are discretizing. Moreover, taking a more sophisticated
discretization of our action functional we will end up with an essentially new time-adaptive
numerical scheme, otherwise difficult or even impossible to come up with.
The Hamilton-Pontryagin approach also seems to offer a way to design a variational integra-
tor that preserves energy exactly. If we discretize the action functional (29), then one of the
discrete Euler-Lagrange equations will be energy conservation. Unfortunately, a one-step
method obtained this way has a difficulty near the turning points of the system. While it
doesn’t technically break down, it ceases to be useful, since the time steps become so small,
that the simulation virtually does not progress in time. One way to circumvent this problem
could be to design a multistep scheme in which energy preservation is supposed to hold every
other step for instance. We have some promising results with an integrator like that, but
several other computational issues have to be addressed. This is work in progress.
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Figure 1: The phase plot of the pendulum (equispaced poses)

0 2 4 6 8 10
Τ0

2

4

6

8

10

12
N

Figure 2: The lapse function versus the parameter time τ (equispaced poses)
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Figure 3: The physical time t versus the parameter time τ (equispaced poses)
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Figure 4: The position of the pendulum versus the physical time t (equispaced poses)
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Figure 5: The distance between consecutive positions of the pendulum versus the parameter
time τ (equispaced poses)
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Figure 6: The energy of the pendulum versus the physical time τ (equispaced poses)
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Figure 7: The phase plot of the pendulum (equispaced phase space points)
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Figure 8: The lapse function versus the parameter time τ (equispaced phase space points)
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Figure 9: The physical time t versus the parameter time τ (equispaced phase space points)
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Figure 10: The position of the pendulum versus the physical time t (equispaced phase space
points)
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Figure 11: The distance between consecutive points in the phase space versus the parameter
time τ (equispaced phase space points)
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Figure 12: The energy of the pendulum versus the physical time τ (equispaced phase space
points)
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