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This is a report on my project. I choose to write it in an informal letter format to avoid
unnecessary boredom to you while reading this. I should actually say that this is a
"progress"” report. I have become very interested in my subject: the Berry-Hannay phase.
When I was doing the research for my project I came across a great deal of quantum
mechanical applications of the phase. However, I noted a lack of much work with the
classical applications. Granted, my search was not exhaustive, but still, there seem to be
many more quantum applications than classical ones. This seems odd to me because Jan
Segert (1987) argues that Berry's phase should be "viewed as a classical rather than
quantum effect”. Even then, it seems only Hannay has done much work with the classical
manifestations of the phase. There seems to be a wealth of topics to be investigated.

My original intent was to calculate a Berry's phase for particles circling a particle
accelerator on the surface of the earth. I work at LBL with a group that does a great deal of
work on particle accelerators. It seems no one has thought of this application. I believe
that the phase would be observable after a day (one rotation of the earth). Storage rings
could provide an unusual verification of the Berry-Hannay phase! Unfortunately, the
calculation was too difficult for me to perform. I understand that the relativistic
manifestation of the phase is do to "a lack of synchrony of clocks in the rotating frame."
Apparently a similar calculation for ring gyroscopes has been done by Forder (1984). 1
was unable to find this paper. Another complication arose when I could not find simple
derivations of any classical applications. In light of all this I had to set my goals to a much
more modest level.

In the back of this letter is a hand written appendix of the calculation you gave in your notes
(sec. 1.6). I have gone through and corrected the typographical errors in your draft. I
noticed that there was one seemingly unnecessary assumption in the planer rigid hoop
example. The calculation can be carried out without assuming the hoop is rotated in its
plane. Below I go through the corrections necessary to prove this generalized case.
I begin with the equation marked with a (*) in the appendix.

§ - (@XQe(@Xq)+q *(Wxq =0

Now I let the loop lie at an angle 8 with respect to the axis of rotation. The diagram below
illustrates the geometry.



[Diagram of the geometry]

The cross product terms may be simplified. First,
@xQP+@xq) = -?@+q) +@G+q) @+
In the old example of rotation within the plane,
(@+q) =0

With the hoop at an angle to the plane of rotation,

(@+q) = wqcosB
Thus,

@XQ@%xq) = G+q) [0 q cos B - ?
The next cross product term can also be rewritten,
Q"+ @xJ = &+ Gxq) = Gqlsin 0) (cos Y)

where

cos Y=+ (qXq°)

I am now ready to re-insert d%s/dt2 back into the Taylor expansion (marked with a (#) in the
appendix). Again, applying the averaging law, I find,



mz(i-I ds(q- 6’3)- ® (cos Y) (%I ds q(q° ‘_l.’))
S(T) = so+soT+ | dt (T-0) ° °

‘J + o (cos B) (% f ds (q sin oc))

0

This complicated mess reduces down quite a bit. As before,
L
f ds(qeq’)=0
0
Also,
L
f ds q(@+q")=0
0
where integration from 0 to L is once around to hoop. This leaves a single term,
L
f ds (g sin o) =2A
(1]

where A is the area enclosed by the loop just as in the planer example. Putting this all
together yields,

T

s(T) = sop+soT + [ dt [(T-t) o (cos B) 2A]

]
Integration by part allows me to write this in a form similar to the planer example. In fact,

S(T) = so+sgT 4 ZAEosB moT_41cAcosB

In other words, the formula is modified from that of the planer example by taking the
"projected area” of the loop in the plane of rotation. This can be rewritten in terms of the
difference in angle, AO, rather than arc length. For wg = 0, or after averaging over the
velocity terms,

AQ =. SmAcos B
L2



The special case of the circle rotated at an angle B gives A8 = -2x (cos B). For the tilted
rotation, even the circular hoop yields a phase difference. Of course, this is just the bead
"slipping” by the hoop. But, since in general A % -2 then the phase difference would be
detectable without having to count the number of loops the bead made around the hoop.

Apparently, if the hoop is rotated at 90° then there is no phase change. This is what would
be expected since there would be not Euler force contribution.

This calculation could be generalized to rotations which were not in a single plane. But,
there is a great deal to be explored even with the above calculation. Hannay (1984) gives a
derivation which is more compact. Yet, he does not apply it to rotation outside the plane.
His calculation is coordinate independent and is given by,

d(de)=%$ j de'f dy % [A1(8' - %) A AI(8")]

where d is the exterior derivative (in parameter space) and I is the adiabatically invariant
action of the particle.

This analysis can be extended to a simple well known example, the spinning top. A
spinning top on the surface of the Earth is much like the superposition of two Focoult
pendulums. The solution is that the extra angle turned by the top is just the angle caused by
the parallel transport around the Earth's surface. On a sphere the curvature (two) form is
just Q=1/r2dS. So, the angle change is just equal to the solid angle subtended. But, this
problem is identical to the non-relativistic version of the particle in the particle accelerator!
In other words, the phase difference will be dependent on the longitude of the accelerator.
Relativistic correction need to be considered, but the effect should be similar.

I plan to continue with a relativistic calculation and then I will try to make some predictions
about the "phases” for various machines. With the advent of particle accelerators in space
(BEAR is a linear accelerator proposed for space basing) this effect may be important.

Thank you,
N
G\ Vravish
Va5 -\%
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