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Introduction:

When I began to read through the paper on Heteroclinic Connections between Periodic
Orbits and Resonance Transitions in Celestial Mechanics by Koon, Lo, Marsden, and
Ross, 1 realized that I didn’t have a good understanding of heteroclinic orbits. Not having
had CDS 140, I haven’t covered this material or the material of phase planes and fixed
points. I decided that a good starting place would be to work some simple examples to
help increase my understanding. However, this ended up blossoming into an entire
project.

Background:

To determine all possible trajectories of a physical system, one often uses a phase portrait.
A phase portrait plots the rate an object is moving on the y-axis versus its position on the
x-axis. By plotting the trajectories in this way, certain characteristics can be observed.
First, one will determine the fixed points. Fixed points are points where the flow is fixed
or stagnant. If the system equation is of the form v = f{x), where v = Ox/ét, then the fixed
points are the points where v = 0. In other words, with respect to the original differential
equation, fixed points are equilibrium points. There are two types of fixed points: stable
and unstable. A stable fixed point is one in which the flow is moving towards the point,
i.e. attractors or sinks. An unstable fixed point is one in which the flow is moving away
from the point, i.e. repellors or sources. Trajectories flowing towards a saddle are

considered stable trajectories, while trajectories moving away from saddle points are



unstable. It is important to note that stability in this case only refers to local stability about
that fixed point, not global stability.

Once the fixed points have been determined, the trajectories joining the fixed points can be
analyzed. Heteroclinic trajectories are paths that join two saddle points. Heteroclinic
trajectories are more common in reversible systems than other systems. Trajectories that
start and end on the same fixed point are called homoclinic orbits. Closed orbits (not

necessarily through fixed points) correspond to periodic solutions to the differential

equation.
Simple Pendulum:

To determine the equations of motion for the simple pendulum, first calculate the
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Now we make this system into a linear system by setting
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Now, let’s look at the fixed points for this system. The fixed points are the points such
that X=-sin®=0_ We can see that this is true when ® = kn. Therefore the fixed
points are located at (km,0). To determine what the phase portrait looks like at each fixed

point, we determine the Jacobian and evaluate it at that point. For the system above, the
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Looking at specific fixed points, the phase portrait can be determined. At (0,0) the
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The eigenvalues of the Jacobian are A, = +i and A; = -i The Determinant of the matrix

Jacobian looks like:
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Jacobian takes on the form

equals one. Because the determinant is greater than zero, the fixed point at this point is
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either a center or a spiral. Look at another variable T, where Tt = A, + A,, to determine
whether the point is a spiral or a center. If 7 is less than zero, this implies that both the
eigenvalues have negative real parts, so the point is a stable spiral, i.e. spiraling into the
fixed point. If 7 is greater than zero, this implies that the eigenvalues have positive real
parts, so the point is an unstable spiral, i.e. spiraling away from the fixed point. If 1 =0,

then the point is a center. In the case of (0,0), the two eigenvalues add up to zero, so this

point must be a stable center.

A similar analysis can be performed on the point (0,x). This point has a Jacobian of the

following form:
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In this case, the determinant is less than zero. This immediately implies that the fixed
point is a saddle. To determine which branches of the flow are moving in what directions,
simply look at the eigenvalues and eigenvectors for the system:

M=-L,vi=(1,-1) A=1,va=(1,1)
By using the program xphased, it is easy to develop a phase portrait for this system. This

phase portrait is shown below in Figure 1.

Figure 1: Phase Portrait for the Simple Pendulum

Looking at Figure 1, the two curves labeled A & B are seen to be heteroclinic orbits
because they connect two saddle points. The point (0,0) is the fixed point representing the
pendulum hanging straight down and at rest. This case also represents the case with the
lowest energy state. The small closed curves around (0,0), like C, correspond to the
trajectories of the simple pendulum oscillating back and forth through small angles. The
saddle points represent the equilibrium points of the inverted pendulum at rest. The
heteroclinic orbits are the orbits where the pendulum has the critical energy to cause it to

come to rest in the vertical position. The remaining trajectories, an example one is labeled



D, are the trajectories where the pendulum is moving so rapidly that it doesn’t slow to a
rest in the inverted position; it simply rotates around and around. These trajectories have
a higher energy state than the heteroclinic orbits.

As suggested in Strogatz [1994], if we were to project the phase portrait of the simple

2
pendulum onto a 3-dimensional cylinder, the heteroclinic orbits shown above that are

symmetric about the y-axis would wrap around the surface of the cylinder so that the two
fixed points would meet and become the same point. This makes the heteroclinic orbits

above become homoclinic orbits.

The Damped Simple Pendulum

The damped pendulum equation of motion is similar to the simple pendulum with one
extraterm: ©+@+sin®=0

To linearize this system let,

xX=0
X=-x-sin®
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The fixed points for this system are the same as for the system above: (0,km). The
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The Jacobian for the system is then:

Jacobian evaluated at (0,0) looks like:



The determinant of this matrix is 1 which is greater than zero and the eigenvalues are

complex conjugate pairs, so the fixed point is either a spiral or a center. Evaluate T = A, +
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T then takes on the value of -1 which is less than zero. This implies there is a stable spiral
into the origin. A stable spiral makes sense because damping will cause the pendulum to
loose energy and eventually come to rest at an equilibrium point. By doing a similar
analysis for the points (0, -x) and (0, x) it can be seen that these points remain saddle

points as seen before in the undamped case. The computer generated phase plane is

shown below in Figure 2.
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Figure 2: Phase Portrait for the Simple Damped Pendulum

Duffing Oscillator

It is interesting to compare the pendulum phase plane to that of the duffing oscillator. The

duffing oscillator has the equation: £ * X+ 25 =0 yhere pcanbe + or-.  If we take the



™

case where p is negative, then the phase plane looks very similar to that of the simple

pendulum. Figure 3 shows the phase portrait for the duffing oscillator.

i

Figure 3: Phasc Portrait for the Duffing Oscillator

As can be seen from the figure above, the section about the origin looks like the simple

pendulum. This is not a surprise since the sine function can be approximated by x -'/¢x’.

However, this approximation breaks down as x grows larger, so the duffing oscillator does

not have the same periodic trajectories that the simple pendulum does. The trajectories

beyond (0,m) and (0,-r) grow without bound, where the simple pendulum remains to have

bounded, periodic trajectories.

Damped Duffing Oscillator

Due to the similarities seen between the duffing oscillator and the simple pendulum, one

would expect to see similarities between the damped duffing oscillator and the damped

simple pendulum. The damped duffing oscillator has the following equation of motion:
E+Xx+x+m*=0

One would expect the damped duffing oscillator to have a phase portrait similar to the one

in Figure 3, except instead of having closed trajectories about the origin, it would have

stable spiral trajectories moving towards the origin caused by the damping. Again, this



™ portion would mimic the damped simple pendulum; however, trajectories beyond (0,7)
and (0,-n) would be unbounded. We would also expect to see the two saddle points at

(0,m) and (0,-) as in the previous examples. The phase portrait is shown in Figure 4.

Figure 4: Phase Portrait for the Damped Duffing Oscillator

Ball In The Hoop

Finally, we will conclude our study with that of the Ball in the Hoop as done in Marsden
[1999]. The ball in the hoop is a more complicated system with the following equations of
motion:

xX=y

y= %(acos@ -Dsinx - fy

~ Figure 5: Ball in the Hoop with & = 0.5 and = 0



Comparing this to the simple pendulum, these phase portraits are identical. This can be
seen analytically by looking at the equilibrium points as is done in Marsden [1999]. The
equilibrium solutions, or fixed points are those satisfying ®=0. For this system, that
corresponds to the following equation:
R&’ sin®cos© = gsin®

Again the fixed points are (0,kx), where (0,0) represents the ball at rest at the base of the
rotating hoop, and (0,%) is a saddle point representing the ball coming to rest at the top of
the hoop. However, what happens if @= 0 or n? Then the equation above looks like:

Ra’ cos®@ =g
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However, this is the frequency of oscillations for the linearized simple pendulum where R

Where the critical rotation is given by:

=L. Therefore, we would expect the phase planes in this situation to be equivalent, which
they are.

Now increase a to 1.5, but keep B at 0. Then the system has passed the critical rotation
rate, so that it is no longer identical to the simple pendulum. Now the equations exhibit

four fixed points as can be seen on the computer generated phase portrait shown in Figure

6.



Figure 6: Ball in Hoop:with a=15andf=0
When a system exhibits a change in dynamics like this, it is called a bifurcation. The point
at which this bifurcation occurs, o, is called the bifurcation point for the system. The
above example exhibits the commonly seen Hamiltonian pitchfork bifurcation. Pitchfork
bifurcations are common in systems that have symmetry.
Next we add damping to the system by setting B = 0.1 and o remaining at 1.5. The phase

portrait is shown in Figure 7.

Figure 7: Ballin Hoopa. = 1.5 8 = 0.1

As expected, this figure is similar to Figure 6 still containing the pitchfork bifurcation.
The only change is that by adding damping, the system now decays to the fixed points.
Conclusions

Using the phase portrait, it is very easy to graphically visualize the possible trajectories
and equilibrium points of a system. This method of classifing systems also makes its

possible to quickly see similarities in systems, even though their equations of motion may
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not look alike at first glance. Phase planes also provide a good way of visualizing
bifurcations, or changes in dynamics, that may occur in a system as you vary the

parameters.
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