Chaos in Buckling Beams and Duffing’s equation
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1. What is Chaos ?

Chaos in dynamical systems denotes a behavior that is extremely sensitive to changes in initial
conditions. In a mechanical system it means a motion for which trajectories starting from slightly dif-
ferent initial conditions diverge exponentially.

2. Buckling Beams and Duffing’s equation

The differential equation of a buckled beam undergoing forced lateral vibrations can be written
in non dimensional form [1] as:
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Where u(x t) is the lateral deflection, 8 is the viscous damping coefficient, K is the membrane stiff-
ness, [ is a constant axial compressive load and P is a distributed, time dependent load.

For a simple one mode model of this system where P(x,t) has sinusoidal spatial distribution coincid-
ing with this mode and a sinusoidal time dependence, we get the o.d.e.:
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For a snap through oscillator one of the well known principles of mechanics leads to the exactly
valid equation of motion [2]:

mii +8a + 2EA, (1- L G)

T
1f cos(wt)

m

uy EA

&

—4— 1L —k

Figure 2

Where EA is the axial stiffness and m is a lumped mass.

After suitable normalization we obtain the following simplified equation, where higher than cubic
nonlinearities are neglected.
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Both examples can be understood as special forms of Duffing’s equation:
i —Bu+aud=e(ycos(wt)—8a) &)

In the following parts of this report it will be shown how the chaotic properties of this equation can
be discovered, both, in numerical experiments and in using analytical tools.

3. Numerical experiments with Duffing’s equation

3.1. Period doubling

One way to discover chaos in Duffing’s equation is through the period doubling phenomenon.
A system parameter, in our case the forcing term y ( EQ. [5] ), is varied. Eventually we will reach a
critical value of this parameter, the solution becomes unstable, bifurcates and starts oscillating
between two values. Further changes of the parameter lead to successive bifurcations and finally to
unperiodic, chaotic behavior. The period doubling criterion is applicable to dynamical systems whose
behavior can be described exactly or approximately by a first order difference equation of the form
X,+1=A x,. For one dimensional maps the critical values where the solutions bifurcate have the
following universal property:
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However, as Holmes [4] points out, in our case of a two dimensional map into the phase plane to
which Duffing’s equation can easily be transformed, period doubling is not the only source of bifurca-
tion sequences and the relation does not hold. A numerical study with a 4th order Runge-Kutta
scheme shows initially for a small load a one period motion around one of its two stable equilibrium
points (Figure 3a). By that is meant as the response goes through one period the forcing function
goes through one period as well. For increasing values of the force two (Figure 3b), four and eight
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period motion can be observed before finally chaos occurs (Figure 4).
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Figure 3a,b ( done on Macintosh computer ).

Figure 4 ( done on Macintosh computer ).



3.2. Poincare’ Map

That Figure 4 really shows a nonperiodic chaotic motion becomes even more obvious in a Poin-
care’ Map. That is in our case a map of a motion in the phase plane-time space after every period of
the loading function back into the phase plane at time equal zero. In other vg{s, instead of drawing
a continuous picture of the motion in the phase plane as shown above, we ‘plot only one point after
every load cycle (Figure 5). While periodic motion results in a finite number of points and quasi-
periodic behavior will give a closed orbit, chaotic motions appear as a cloud of infinite points occupy-
ing a certain part of the phase plane. These clouds often show highly organized structures with the
geometrical property of self-similarity at different length scales. The appearance of these Cantor set-
like pattems is a strong indicator for chaotic motions. While the finite set of points in the periodic
case or the orbit in the quasiperiodic case respectively are considered to be attractors because the
solutions are attracted by them as the transients die out, the pattern that is yield by chactic motions
is called a strange attractor.
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Figure 5 (from reference [6]).

3.3. Other numerical techniques to discover chaos

Other computational ways to detect chaos in Duffing’s equation are simply the observation of
time history of the system or a Fourier analysis of the response to the single valued harmonic input.
More sophisticated methods are measurements of Lyapunov exponents or fractal dimensions. Posi-
tive Lyapunov exponents indicate extremely sensitivity to initial conditions and hence imply chacs.
Fractal dimension of the orbit in the phase space implies the existence of a strange attractor, which is
usually equivalent with existence of chacs.
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4. Analytical methods to find chaos in Duffing’s equation

Lyapunov exponents and the period doubling criterion can as well be used as theoretical cri-
terions, but will not be discussed as such in this report. Instead we will use homoclinic orbits and
Melnikov’s method to proof the chaotic qualities of Duffing’s equation.

4.1. Homodinic erbits and Horseshoes
For zero external force and damping (§=d=0) equation 5 reduces to an integrable Hamiltonian
system, its orbits being the level curves of:
1
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They are sketched in Figure 6. We especially note the homoclinic arbit I, points which tend to the
saddle point p as 7 -x.

Fgure 6 ( from reference [5] ).
Returning to the original system with damping and forcing the structure of this picture will change
and plays an important role in determining the nature of solutions. For the damping coefficient being
fixed and the forcing -y increasing the following situation will occur. At first each loop of the homoc-
linic orbit will break down into a stable and a unstable manifold, that is the set of points which are
asymptotic to p in a Poincare map P: }'l_IEP" (x)-p in a forward or in a backward iteration, respec-

tively. The stable manifold M; passes either inside or outside the unstable one M¥.
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Figure 7 ( from reference [1]).

Finally for v being sufficiently big M} and M¥ meet. Since M? and M¥ are invariant under the map P
the existence of one intersection implies the existence of infinitely many. The points of intersection
of stable and unstable manifolds are called homoclinic points. The Melnikov method enables us to
determine when these manifolds first intersect. When they do complicated invariant sets, Smale hor-
seshoes, arise (Figure 8).
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Figure 8 ( from reference [5] ).

As the picture above shows, in one circulation a originally rectangular area is stretched, folded and
finally placed over the original area. If one follows a group of nearby points after many loops, the
original neighboring cluster of points undergoes bifurcation after bifurcation and gets dispersed to all
sectors of the rectangular area, leading to a structure with fractal properties.
4.2. Melnikovs method

Expressing eq. 1 as a first order system we obtain:
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which can be rewritten as pseudo-Hamiltonian vector field in the form:
dHy 3H,
i=| 3t [+e| Sk, ©
du du
Melnikov derived a function that measures the distance between the stable and the unstable mani-

fold. Thus simple roots of this function indicate intersections and are a sufficient condition for chac.
The Melnikov function is given by:

+
M(tg)= f {HD,H, }(w ~to),1 )at (10)
Where the Poisson brackets in our case are defined as:
_ 3Hy 3H, 3H,y aH,

Melnikovs function is applied on u and # being the explicit formulas for the homodinic arbit, which
can easily be obtained by integration of the Hamiltonian (eq. 7). The result turns out to be:
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It follows that simple zeros occur under the the following condition,

Vig!
1>2 2 cmh[w“ 13
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At the same time this is the necessary and sufficient condition for the intersection of stable and
unstable manifolds and with this for the appearance of chacs.

5. Closure

One may object that the simplification of the exactly valid equations leads to mathematical
solutions having nothing to do with the real physical problem. However, as Halmes [1] outlines,
higher order mathematical models do not affect the general behavior and it can be expected that
more complex models display solutions at least as complicated. Moreover, Moon’s experimental
work [3] proofs the practical validity of the theoretical results.
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