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Abstract

1 study the dynamics and optimal control of & simple moving-pendulum
system which is actuated only at the base. Using two simple substitu-
tions, I recast the optimization of the control variable as a higher-order
Hamilton-like variational principle for the dynamical variables. The re-
sulting Euler-Lagrange equations have an intuitively appealing structure,
being fourth order in the actuated variable, but only second order in the
unactuated variable. Furthermore, they demonstrate the translational
symmetry present in the uncontrolled system, despite the fact that this
symmetry is seemingly "broken” by the presence of control in the stan-
dard Hamilton’s principle. This symmetry gives rise to a "higher-order”
conserved quantity involving accelerations and jerks in addition to veloci-
ties and positions. Furthermore, the derivation of the conserved quantity
gives a formula for an optimal feedback control law. The results give an
overdetermined system of four differential equations for three functions,
and [ am unable to prove that they are compatible. As a surrogate for
this analysis, I present an explicit solution for a linearized problem, and
demonstrate that in this case, the equations are compatible.

Introduction: Pendulum on a Rail

The system of interest is a planar pendulum mounted on a brace which
is free to translate along a fixed rail without friction. The rod is assumed
massless, The brace and the bob have masses M and m respectively, and
the length of the rod is L. Further, the brace is subject to a control force
u, to be optimized in the Ly norm. The system is illustrated below:



m

This system has two degrees of freedom, but is actuated only in the
2 variable. In particular, the virtual work is merely W = udz. The
Lagrangian is as follows:

M+m
2

Note that the Lagrangian is invariant under translations in =z, sug-
gesting a related conserved quantity. Unfortunately, the non-conservative
contribution from the contro} u will prevent us from deriving a conserved
quantity, but this situation will be rectified later. For now, we examine
the Euler-Lagrange equations for Hamilton's principle, J;'l’ Ldt = éW,
which are as follows:

L(z,%,0,6) =

2+ %(L’é’ + 2L0:z cos(6)) + mgL cos(6)

(M + m)z + mL{f cos(8) — 6%sin(8)) = u

mL?0 + mL(i cos(6) — £0sin8) + mgLsind =0

These are two second-order differentinl equations in three variables,
z(t), y(t), u(t). We observe that we can explcitly solve for 8, and substitute
it in the first equation. This gives:

(M+m):'é+mL(-I!l-(:':' cos(0)? ~#0sin0c0s0) ~ & sin 0036 -6 sin(8)) = u

This substitution achieves two convenient goals. First, it embeds the
dynamics of the unactuated variable in the equation for the actuated vari-
able, hence including the coupling of control to the unactuated variable
in a single equation. Second, it eliminates second derivatives of the unac-
tuated variable, which proves convenient in the following section.

Optimal Control

‘We are interested in optimizing the control in the L sense. In particular,
the cost functional we minimize is simply J(u) = fOT udt. Note that



this is a rather artificial cost functional, in the absence of any constraints,
since the trivial zero control clearly optimizes it globally. Nonetheless, we
will show that it admits a family of local minima. The result to follow is
suggestive of possibilities in more serious problems.

The common wisdom for solving such a problem would treat the dif-
ferential equations arising from Hamilton’s principle as constraints on this
optimization. In contrast, we seek to embed this information directly into
the variational principle, by substituting our previously derived expression
for u. This substitution allows us to view the cost functional as defined
on the space of paths rather than on the space of admissible controls. The
optimization now has the form:

T
min / [(M-I-m):’é-i-mL(%(:ﬁcos’ 6—26 sin 8 cos 0)--%sin0cos 0-6°sin8)]*dt
=, o

For notational convenience, we write the above as f F(&,%, 6,6)dt.

We gloss over existence and uniqueness problems for optima. Although
the original optimization problem, appended to convex constraints, is a
convex optimization, the modified optimization need not be convex in
the new variables z,8. We comment that if u is determined by an affine
function of = and 8, then the convexity of the optimization is preserved,
but this is not a necessary condition. However, this proves to be exactly
the case in the linearized analysis to follow.

Now, a simple directional-derivative argument can derive the following
necessary condition for local optimality of a candidate pair z,8 in an
unconstrained setting (the presence of constraints would merely add the
usual Lagrange multiplier terms on the right-hand side):

Fae-Fo4+F.=0

Fyj-Fg=0

These equations have the interesting property of being of mixed order.
The actuated variable is governed by a fourth-order differential equation,
whereas the unactuated variable is governed by a second-order differential
equation. We observe further that the cost functional is independent of
z, and hence the first equation reduces to:

g

dt

This very nicely satisfies our original expectation of a conserved quan-

tity. Despite the fact that the system symmetry is broken by the presence

of an arbitrary control function, we find that the optimal control reasserts

the symmetry of the uncontrolled system. This satisfies intution in that it

seems impossible to have an optimal control law which is not translation-
invariant, given a translation-invariant plant.

One can explicitly calculate the conserved quantity to be the following:

(F:=F:)=0

u[2mé cos @sin 8] + 2u4[(M +m) — mecos® 8] = K



Here u has been substituted again, both for the sake of brevity, and
for the purpose of the following observation: derivation of a conserved
quantity seems to have led us to a differential equation for an optimal
control law. Rearranging the above gives:

o= K - u[2mécos0sin 6]
~ [(M +m) ~ mcos? 9]

Some comments are in order at this point. This is a strictly causal
feedback law, and is invariant under translations in z, as expected. While
the latter is predicted by the above calculations, the former is in no way
intuitive. Indeed, many problems in the calculus of variations give rise to
solutions which are either open-loop or non-causal (e.g. having a control
function depending explicitly on higher derivatives of the state). The
origin of our fortuitous discovery is unclear. My only guess at this point
is that causality is a consequence of the control law being derived from a
conservation principle (which, intuitively, must be a "causal” principle).

The control law is clearly nonlinear, although one might be tempted
to say that it follows the general philosophy of integral control, in that it
appends a new dynamical variable to the system dynamics.

Now, we turn our attention to the second necessary optimality condi-
tion. This takes the form:

2it(~2mLé — mi cosOsind + mg(cos? 0 — sin® 8) + mLé® cos 8
+2[misinfcosd — 2mLble = O

Note that under our previous substitution for #i, this equation is only
second-order in & as expected.

We now have four differential equations to be satisfied by three func-
tions, and I have been unable to prove that these equations are consistent.
The last equation is clearly not simply the Euler-Lagrange equation for
8, although the following simplified problem suggests that this second
equation may actually be redundant.

Simplified Linearized Problem

Here I simply consider the pendulum linearized about the rest position.
The Lagrangian is now:

2. .
Mims ) B¢+ mds - 280

The governing equations are:

L(z,z,0, 9) =

(M+m)i+mLli=u

mL% +mLE+mgl8 =0

Performing the same substitutions as above, we arrive at the following
cost functional:



T
f (M3 - mgb)?dt
V]

There is once again a conserved quantity resulting from optimality
with respect to z, which is found to be:

%2M(M:‘i ~mgf) = K

Note the presence of the time derivative. Here we can explicitly see
that the conserved quantity will involve the jerk of = and the velocity of
8. In particular, the conserved quantity in this case is precisely equal to
the derivative of the control implying that the optimal control is a linear
function of time.

Now, the second necessary condition turns out to be:

2mg(M% — mgf) =0

Substituting this result in the previous condition, we find that the
conserved quantity is precisely zero. Furthermore, this can now be sub-
stituted into the original dynamics to obtain:

(M +m)i+mLé=0

mL* +mLi+mglo=0

which is precisely the uncontrolled system. This is a trivial sanity
check, since we already commented that zero control would globally op-
timize the cost functional. Note that the two optimality conditions were
consistent with the governing dynamics. Further, the linearized problem
admitted a unique local minimum. The significance of these two facts with
regard to the nonlinear problem is unclear, but the former suggests that
one might be able to eke out consistency with some clever calculations.

Conclusions

A simple underactuated mechanical system was studied. We have for-
mulated a problem in the calculus of variations which putatively embeds
Hamilton's variational principle in the broader scheme of optimal con-
trol, without having to treat the dynamics as a constraint. This led to a
higher-order variational principle and corresponding mixed-order govern-
ing differential equations for the dynamical variables. The translational
symmetry of the problem was observed as a conserved quantity in the op-
timal control problem, and this conserved quantity led directly to a causal
feedback control law. The final result was a set of four equations for three
dynamical variables of unproved consistency. Linear analysis suggested
that one of the optimality constraints may in fact be redundant, but it is
unclear how one might prove this.
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