Term project for Math 189 by Dimitri Shlyakhtenko
Generating Functions of Canonical Transformations

In this project I would like to look back at some of the treatments of mechani-
cal systems in classical texts and see how these treatments look like in modern-day
terminology and from a modern point of view. This project is based on three texts,
Gantmakher’s Lektsii po Analiticheskoj Mekhanike (in Russian), Goldstein’s Class:-
cal Mechanics and Whittaker’s Treatise on the Analytical Dynamics of Particles and
Rigid Bodies. Some (and admittedly, most) ideas on modern treatments come from
Marsden and Ratiu, An Introduction to Mechanics and Symmetry, volume 1.

I would like to begin by setting up the stage. Most of what will be done is done
locally, so in most cases, unless otherwise is specified, mechanical systems are repre-
sented by linear spaces. I tried to uniformly use the letter g for spatial variables and
p for momenta; these are used without explanation. These notes aside, we consider
the phase space R™ x R*", with the canonical symplectic structure given by the form
Q = dq¢* Adp; = —dO. In classical literature, especially Whittacker, this form is not
considered a whole lot; this is probably due to the fact that the differential geometry
machinery was not developed well enough at the time. Gantmakher has a one-page
treatment of the symplectic form, but he is reluctant to let it depend on the position;
rather, he considers it as a constant matrix. Now, given a Hamiltonian function H,
we may consider a Hamiltonian system of equations, given by, in modern notation
the vector field X, defined by the property that

QX,v)=dH -v

where v is any tangent vector. In classical picture, as I mentioned, the form Q is
considered constant and (since everyone uses p and g as the coordinates) has the

form
0 I
-I0

Hence if y(¢) = (p(t), ¢(t)) is an integral curve of the vector field Xy above, we have
the equations

_OH . OH
which are called the Hamilton canonical equations. In these considerations, H was a
function on the phase space, i.e., of p and ¢q. However, in some cases it is interesting

to consider a time-dependent Hamiltonian system. Our machinery is already setup
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for that: we enlarge the configuration space by multiplying with another copy of the
real numbers, and consider a new symplectic form, given by

dH A n3(dt) + 71 (D)

where 7, denotes the projection onto the original configuration space and 7, denotes
the projection onto the “time” part. The form dt is a fized form on the time part. One
of the fundamental properties of Hamiltonian systems is that their flow preserves the
canonical form. Our immediate goal is to demonstrate that the classical texts already
have this notion, and in fact “secretly” consider the same canonical forms as we did.
To do this, let us look at what Gantmakher called the Poincaré-Cartan invariant, or
the first-order invariant. He considers a one-dimensional contour (i.e., boundary of
a two-dimensional region) that is perpendicular to the time direction (i.e., a contour
in the “original” phase space before the extension) and computes the integral of the
form

pidg* — Hdt

over this contour. He then states and proves (in coordinates) that this is actually an
invariant of the translation of this contour along the flow of the system (i.e., along
the flow lines of the physical system as time progresses). But by applying the Stokes’
theorem to this integral, one quickly realizes that this integral is actually an integral
over a two- dimensional contour, of the negative of the extended canonical form (i.e.,
the form Q + dH A dt.) Hence the fact that the original integral is conserved over
all possible contours is equivalent (by choosing smaller and smaller two-dimensional
contours) to insisting that the canonical form be preserved by the flow. The bottom
line is that we can use the coordinate calculations in classical books that rely on this
“first-order invariant” without the fear of being off.

Let us now consider the question of mappings between symplectic spaces. The
appropriate mappings in this category are, of course, the canonical or symplectic
transformations, that is, maps that preserve the canonical form (and hence all of the
structure of a symplectic manifold.) In disguise, the classical definition is exactly the
same: a system of differential equations in the Hamilton canonical form is transferred
into a system in Hamilton canonical form. Since both times the systems are written by
using the canonical form in canonical coordinates, this just says that the symplectic
form is mapped into itself. However, from such a definition it is hard to produce any
results; so Gantmakher considers the “first order invariant” again and shows what
this property of the transformation means for this invariant. Consider a symplectic
map ¢ between spaces M and N. Suppose H is an arbitrary Hamiltonian on M
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and v is an integral curve of the corresponding Hamiltonian system on M. Then,
since the system on M gets mapped into a Hamiltonian system on N, 4 remains an
integral curve of the associated system on N. Now compute the first-order invariant
on M. By invariance of integration, it is the same as computing it on N, so that
the invariant on M gets pushed forward into a certain first-order “object” (meaning
a closed two-form in modern terminology) that is preserved by the flow of a certain
Hamiltonian system on N. Gantmakher next gives a coordinate proof that the only
invariants conserved by the flow of a system differ from the “first-order invariant” by
a constant multiple. The proof Gantmakher provides works only for two-dimensional
manifolds, and occupies two pages. Restated, this result says that whenever a certain
closed two-form w is preserved by the flow of every Hamiltonian (with respect to
the canonical form) system, then it has to be a multiple of the canonical form. In
two dimensions (from the modern point of view) this result is completely obvious;
for given a canonical form 2, and a two-form €, they differ by a multiple, a certain
function f. The invariance under the flow means that

Ly =0
where X is any Hamiltonian vector field for Q. But then
0=LxfQ=fLxQ+ X -fQ=X.fQ

since { is invariant under the flow of X. Thus X - f = 0 and so f is a constant.

We now consider an alternate description of canonical transformations, via gen-
erating functions. In the book of Goldstein, it is pointed out that canonical transfor-
mations can be defined by the means of generating functions. Goldstein (with little
motivation) gives four generic types of generating function, for which the transforma-
tion laws become:

e Type 1. The transformation laws are:

as as

o

]
|
i



e Type 3. The transformation laws are:

as oS
P = 30 1T o
e Type 4. The transformation laws are:
; as i 05

The aim of this paper is to find modern-language explanations for these formulas.
We follow the treatment of Marsden and Ratiu.

The general setup is as follows. Suppose that the manifolds 7*M and7*N are en-
dowed with the usual symplectic structure, and f is a map between the two. Consider
the submanifold I' C T*M x T*N, the graph of f. Let 7, 7, denote the projections
onto M and N. Finally, if Q,,Q, are the symplectic forms on M, N, let

Q=m — 730

be a symplectic form on the product. Notice that if ¢ is the inclusion map from T
into the product, then *Q = 0 iff f is symplectic. Indeed, if f is symplectic, then

— f*Q2 = 0; s0 0 = 7y — 7} f*Qy = 710 — 73Q,. The other direction follows
similarly. Note also that there always is a form ©, such that @ = dO; possible
candidates include forms that have local expressions —p;dg* + P,dQ’, —pidg* + Q*dP;,
etc. Thus :*O is closed on I, and hence is (locally) a —dS for some function S. We
call such a function S a generating function of the transformation f.

Suppose (g, p) and (Q, P) are chartson 7*M and T*N. Then it is possible that the
map f is such that (q, @), (¢, P), (p, @) and (p, P) are coordinates on I'. These choices
of coordinates correspond to the four types of generating functions that Goldstein
considers. Indeed, if (¢, Q) are coordinates on I, and we let © = P;dQ* — p;dg', then
the equation for S becomes

dS = -a—Sd '+ a—SdQ' = p,dq P,-dQ"
0Q¢
so that
95 5, _ 05
p' - aq" E M aQ"

i.e., S is a function of the first type.



Now suppose that (g, P) form a coordinate system on I'. Let © = —p;dg' — Q*dP,.
Then the equations for S become:

ds = B 4 25

2 aRdP;=p;dq + Q'dF;

so that 93 a5

= —— '
P2 9 =R
i.e., S is a function of the second type.
Now assume that (p, Q) form a coordinate system on I'. This is just the previous

case with p and @ switched. Note that this switching changes the sign of @, so that
O = ¢'dp; + P,dQ*. We get:

as =25 Sodni+ 2 05 1@ = ~g'dpi — PdQ’
Q¢
and hence . 3_3' . 05
t = 3Q‘ q - 6?,

i.e., S is a function of the third type.
Finally, if (p, P) is a chart on T, we have, for © = ¢*dp; — Q*dP; that

oS as ; i,
dS = a_p;dpi + 6_]-",-dpi = —¢'dp; + Q'dP;
and we get
i 98 Q= _6_'9;
~ 9p; ~ 9P,

i.e., S is a function of the fourth type.

Note that we again assumed that the generating functions (and Haminltonians) are
time-independent. For the time-dependent case, one can simply replace © everywhere
by © — Hdt and get an extra equation that shows how the Hamiltonian changes. In
the one case that we shall require later, namely, the functions of type 1, we get the
following equation:

s i S — i, ] i o
dsS = —a;dp, 0Q'dQ —q'dp; — P,dQ' — (H — H)dt



so that the Hamiltonian changes according to

— as

H=H+ Bt
Note that we used the same dt when pulling back the extended forms. Thus can
be justified by saying that there is no canonical choice of the forms dt and we can
therefore always choose them in such a way that they are the same when pulled to
the product of the domain and range. Some authors (esp. Gantmakher) believe that
altering time is incorrect and we should simply put a certain constant in front of one
of the dt’s so that the equations become

— as

H=CH+E

Then the constant c is called the valency of the transformation and those transfor-
mations that have ¢ = 1 are called univalent. For our purposes, we can always slow
down or speed up the time by this constant and forget of its existence.

Before proceeding any further, let us consider an example that might provide some
insight into the physical significance of generating functions. This example comes
primarily from Whittacker. Consider a typical optical problem: light is propagating
through a medium of variable density. We model light by considering wavefronts
rather than corpuscles of light. Suppose £(0) is the initial surface of the wavefront
and X(t) is the position at time ¢. Let V(z,y, 2,2, 3, 2') be a function of 6 variables
that assigns to these 6 variables the (minimal) value of the parameter ¢ at which the
point (z,y,z) € L(s) and the point (z',y’,2') € E(s + t) for some s, i.e., the time it
takes for the light to get from the point (z,y, z) to the point (2/, ¥, z'). Let p(z,y, 2)
be the density of space (that is, a factor representing the speed of light at that point
in space). Finally, let £, , ¢ denote the momenta conjugate to variables z,y,2 1, and
&', " and {’ to be conjugate to z’,y’ and z’. In other words, we have a family of spaces
M, and a family of functions @, : Mo — M,; the cotangent bundle of each space is
endowed with the symplectic structure. Out of physical reasons, Whittacker derives
the following equations linking V' to the rest of the setup:

v v
oz~ 7 Oy T T

111 plays a role in defining what this conjugacy is physically. One can let k,I,m be the direction
cosines of the normals to the surface; then &, n, ¢ will be u times these. I am not inserting any more
physical insight into this, since we shall later see a more general example like this, in which little
physics is involved



and

%=£’9 %‘—'Tl'a QZ,=C

T y 0z

We recognize these equations as those defined by a generating function of type 1.
Thus the “flow” ®, is symplectic. Note that all M, are isomorphic as manifolds.
Thus we can treat ®, as a one-parameter family of diffeomorphisms on M, = R3.
Note also that the way ® is defined — as the transformation of wavefronts — it
follows that this family is actually a group. For, according to Huygens principle, the
wavefront X(s) is completely determined by the wavefront I(t), for ¢ < s; indeed,
the former is obtained from the latter by looking at how waves emitted by individual
points of X(¢) propagate in time. Thus the image of £(0) under ®(,) is the same
as the image of £(0) under ®; o ®,. Thus @, is the flow of a certain vector field;
and from the fact that these transformations are symplectic, it actually follows that
this vector field is Hamiltonian. We have thus shown two things: first, that light
propagation is governed by a certain Hamiltonian system of equations; and second,
that the generating function of the flow along the integral curves of this vector field
for a certain time ¢ has a physical interpretation: it is the time it takes for the light
(particle, if you want) to travel from a certain point to a certain other point.

Note an interesting coincidence: the laws of optics can be stated saying that light
will always take the path of least time length. The time it takes to get from one
point to another is exactly our function V above. This suggests that there must be a
link between the subject of generating functions and variational principle. We shall
delay addressing this coincidence until we finish the discussion of the Hamilton-Jacobi
equation.

Now that we considered transformations of symplectic manifolds, we can ask the
following question: could we transform the whole Hamiltonian system into something
completely trivial? One desirable system would have a zero Hamiltonian. So suppose
that we have such a transformation and its generating function is of type 1. Then we
should have that the resulting Hamiltonian H = 0, so that

as
H+ o= 0
Also, H is a function of ¢ and p, and we already have an expression for p in terms of
S:
=05
Pi= 5o



Hence we get the equation, called the Hamilton-Jacobi equation:

as s\ as
1 n ___ — —
H(q,...,q,aql,...,aqn>+at 0

If the transformation defined by S happens to be invertible, then it is the desired
transformation, mapping our system into a system with the zero Hamiltonian. Since
such a system is readily integrable, with solutions being some constant solutions
P = o and Q = B, we have that the integral curves of the original system satisfy the

relations o5 as .

e
In fact, the opposite is true. If p and g are certain curves satisfying the equations
above, then they are the transforms of the solutions of the trivial Hamiltonian system
under the inverse of the transform defined by S and hence are solutions of the original
system. This is the content of the Hamilton-Jacobi theorem.

We now return to the interesting coincidence we pointed out before. Recall that in
the application to optics, the generating function turned out to be the time it takes
for the light to pass from one point to another. This time was what we minimize
in the Lagrangian approach to mechanics. Hence it is plausible to suppose that
the generating function S of the canonical transformation given by the flow along a
Hamiltonian vector field of a Hamiltonian corresponding to a Lagrangian L is the
integral of the “action”, i.e.,

S(,Q,T,t) = L Lt

where v is the flow path joining points ¢ and Q. This definition only makes sense
for a small period of time T — ¢, since ¥ may for example be a geodesic, and there
are problems with picking the minimal geodesic between far-away points. But these
problems aside, let us prove that such a function is indeed the desired generating
function. We adopt the treatment in Whittacker.

To compute dW, we need to compute the variation of the Lagrangian over varia-
tions of paths in the direction of motion (this corresponds to the fact that our initial
and final conditions are on the integral curves of the system). Thus we need to com-
pute the difference in actions between the points a, b and points ¢, d, with a, ¢ and
b, d close together, and such that the integral curve through a passes b at time ¢, and



the integral curve through c passes ¢ at time 6ty and d at time t + 6t;. We compute
the difference in actions, for §t small:

/ Ldt - / Ldt ~ L(b)ét, — L(a)6to + / Z(—a + ng 84 )dt‘l

The expression in the last integral is nothing else but

oL

2 (a gl dt(g")sq)

by Lagrange’s equations (which are satisfied, since we are following an integral curve
of the system), so we get that the last integral is equal to

Ja(=a)

b

and so the difference becomes

E -8q°

Note that here 6q is a function of time that shows how far the two paths are apart.
Hence at the endpoints, we get

+ L(b)6t, — L(a)bto

b—d=6q+ 8461

and similarly for the other two ends. Consequently, substituting this into the formula
for the difference in action, and noting the evaluation at the endpoints, we get that
the difference is

Z q(t)—z 6q(0)+(L Z )&o-(L—Zg—qL,.é‘)atl

Note that the expression in () is the Hamiltonian; also, L is the momentum p. Thus
the equations for the difference reads

pibq'(t) — pibg'(0) + Héto — Hét,

222 means up to second-order terms.




To find %&, where g denotes the initial conditions, we consider paths with b same as
d, i.e., §t; = 0. Then we get, from the fact that

dw =3 aqu + Q{J-dt

(keeping in mind that in this case,

8W ow

dw = E 7ah:
since only ¢ varies 3) that
__ow
pl - aq,
d
= g W
ot

so that W satisfies the Hamilton-Jacobi equation. Note also that if we insist that the
other endpoint stays fixed, we shall get that

oW
aQ

so that W is indeed the generator of the flow of the system for time . Hence there
is a complete analogy with the situation in optics. The function W was called by
Hamilton the Principal Function. Before the Hamilton-Jacobi equation was known,
Hamilton already knew of this way of describing the flow, that is, new the W generates
the flow of the system (according to Gantmakher). However, to get the function one
had to compute the integral [ Ldt over an integral curve of the system; since once had
to solve the system to get integral curves, there did not seem to be an effective way
of finding what this W was. However, Jacobi realized that the function W satisfies
the Hamilton-Jacobi equation, and that this equation completely characterizes it.

In conclusion, let us recall what was demonstrated. We saw how to view generating
functions from a modern standpoint; we have even seen that the various types of
generating function discussed in classical texts are actually manifestations of the very

P=

3To get this equation, we first find all of the partials of W. We do this as follows: if, for example,
aw is of interest, we set all §’s equal to zero, except for 6¢'; then we divide through by &¢' and take
t.he limit as it approaches zero.
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same idea; we also saw the content of the Hamilton-Jacobi equation, in that it defines
a generating function that generates the flow of the system. We also found another
way of expressing this function, in terms of the Lagrangian of the system, a way that
indicates on another link between the Lagrangian and Hamiltonian ides of mechanics.
It is interesting to note at this stage that as we have seen a lot of advanced ideas are
contained in classical texts, perhaps in disguise. One’s heart fills with admiration for
the classical authors, that with poor tools managed to penetrate very deeply into the
matter of things.
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