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1 Introduction

This document presents a Lie Group formulation for some of the work done by Eric Justh
and P.S. Krishnaprasad on steering laws for vehicle formations. This paper addresses the
problem of developing steering laws to achieve relative equilibrium amongst a group of
vehicles moving at unit speed. The problem has a natural Lie Group structure which is
discussed below. With a suitably chosen Lyapunov function algorithm, one can control the
vehicles’ formation to form unique equilibria.

Consider n vehicles moving in the plane-as shown for 3 vehicles in Figure 1. The vehicles
are assumed to be point particles moving at unit speed and each vehicle is given a Frenet-
Serret frame (see ()'Neill {1997] sec. 2.3) whose origin is located at the position of the
vehicle. Each frame consists of two unit vectors: x; being tangent, and y; being normal,
to the trajectory of the the j** vehicle. Let the vector rj describe the position of the jt*
vehicle relative to some fixed coordinate frame.

Figure 1.1: Frenet frames for three vehicles moving in the plane (trajectories show by dashed
lines).

2 Lie Group Formulation

The configuration of each vehicle can be described as an element of G = SE(2), the Special
Euclidean group Mursden and Ratiu {1994). In particular, the configuration of the jt*
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vehicle is given by g; € G where in coordinates we have
Xj ¥Y; Y
gi = (2.1)
0o 0 1

Therefore the dynamics of the n vehicles evolve on the configuration submanifold M.y C
Gx Gx...xG. In fact, it can be shown that this manifold is collision free, i.e.

Mg ={(g1,...,9n) €EG X ... X G |1y =r; —1; #0,Vi # j}. (2.2)
Let g denote the Lie Algebra of G. One can easily show that
{[OT 0] |Q€s0(2) &re R’} (2.3)
Let
0 01 0 -1 0
Ao =0 0 0 s Al = 1|1 0 0 (24)
000 0 0 0

be basis elements of the Lie Algebra g. Then we let the (first-order) dynamics of each vehicle
be given by
gJ=ngjv j=1,...,n (2.5)

where £; € g has the form
§j=A,,+A1uj, i=1,...,n. (2.6)

The quantity u; € R is the control input to the 4" vehicle. Notice these dynamics prescribe
a “gyroscopic” control, that is, the vehicle is always pushed in a direction perpendicular to

its direction of motion.
The relative configuration of the n vehicles can be described by defining a shape space.
There are several ways to go about this, but as an example consider the shape variables

Gi=97"g;, JFi=2...n (2.7)

Since G is a Lie Group, the shape variables evolve on the reduced space of n-1 products of

G:
Mshape = {(§2a s ,gn) €EGXx...xG I (~—19k)13 + ( gk)§3 >0,j 7é k} (2'8)

where we use the convention that g;; denotes the (1,_])-component of the matrix g (for future
reference, let g/ denotes the (i,j)-component of the matrix g=1)

3 Two Vehicle Scenario

For ease of explanation, consider the case for n = 2; we will later return to the case of
arbitrary n. Define the shape variable

9=97'0 (3.1)
or in coordinates we have

X1 X2 X1-y2 (r2—ri)-xy
g=|y1-x2 y1-y2 (r2—m)-y1|. (3.2)
0 0 1
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Similarly,
X1 X2 X2-y1 —(rz-— 1‘1) * X2
gl =g'a=y2rx1 y1-y2 —(r2—-r1)-y2|. (3.3)
0 0 1

Differentiating the shape variable w.r.t time gives

. d, _ 1.
§ = o D2 + 9792

= —97'0197'92 + 9762

= =619+ 96

g(& ~ Adg-1 &;)

g€ (3.4)

where £ = {2 — Ady-1 £ € g. Hence if we allow the control inputs, u; and uj, to be functions
of the shape variable g only, then the dynamics given by (3.4) evolve on the (reduced) shape
space Mcs/G.

The goal is to develop control inputs to drive the formation to some desired equilibrium.
Notice that equilibria of the reduced dynamics given in (3.4) correspond to relative equilibria
for the full dynamics give in (2.5). Let g, denote an equilibrium of the dynamics given in
(3.4), therefore,

£2(9e) — Adg-1 £1(ge) =0 (3.5)
In coordinates, this is equivalent to

gi2uz —gni¥z gu grzu1 —gnuy 1 - gaau
guuz gtz —giz| = [guuw1  grata 913U1 (3.6)
0 0 0 0 0 0

The equality given in (3.6) requires

U = U,
g = 1-gau,
Q12 = —qi3uy. (3.7)

Since the Frenet-Serret are orthonormal,
gh+gh, =1 (3-8)

Plugging in the conditions given by (3.7) into the equality (:3.8) we obtain

1 = (1-ga3w)+(q13w)?
= 1-2gyu; + giul + gkl (3.9)
or
0 = u, [(g3; + g33)u1 — 2g23] (3.10)
which is satisfied when
2923
Uy = 5>, or u; =0. (3.11)

T 9k + 9k
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Case 1. First consider the case u; = 0. From (3.7) we require

U = U= 0
gn = ll
g2 = 0. (3.12)

It’s easy to verify that these equalities are satisfied only if x; = x5, that is, both vehicles
are moving in the same direction. We refer to this equilibrium state as rectilinear motion.

Case 2. Now consider the case where u; = 5?%9_‘%33; # 0. The distance between the two

vehicles is given by
r=lrz —r1ll = \/ofs + 935 = V(9"3)? + (¢B)*. (3.13)

It can be shown u; = 0, which implies that each vehicle follows a circular orbit of radius
1/lu;|- Upon further computation (directly integrating the equations for r; and r; and
using (3.7)) one can show that the centers of the two orbits coincide. Therefore, this second
equilibrium configuration consists of two vehicles moving on the same circular orbit.

3.1 Two vehicle control law

Now that we have discussed the two types of possible equilibria for the dynamics given by
(3.4), let us turn to the problem of ensuring that the vehicles reach of one of these equilibrium
configurations. We focus our attention to the rectilinear motion case, as this case seems to
have more practical importance. First we must choose a suitable control law that will force
the vehicles to converge to the desired equilibrium. Then we require a Lyapunov function
that one can use to prove that the vehicles converge to the desired equilibrium.

As previously mentioned, we would like the control input for each vehicle to be a function
of the shape variable only (which describes the relative configuration of the two vehicles).
Consider the following form of control inputs for the two vehicle system:

w(e) = -ntr) (Z22) + £r) (£2) + u(rom,
wle) = 1) (5L°) + 50 (&) + g (3.14)

where r is the intervehicle distance given by (3.13). These controls are obviously only
dependent on the shape variable g. Although the functional form of the controls given in
(3.14) might seem arbitrary at first glance, each term plays a particular role, as we will
explain shortly. First, let us make a few assumptions:

1. n(r), u(r), and f(r) are Lipschitz on (0, c0)
2. 3h(r) such that f(r) = dh/dr
3. limy—o A(r) = 00,limy_.o A(r) = 00 and 37 s.t. A(F) =0

4. n(r) > 0, u(r) > 0 and 2u(r) > 7(r)
Consider the (candidate) Lyapunov function
Vpair = In [1 = (9139" + g239%) /7] + h(r). (3.15)

We are now ready to present the following:
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Proposition 1: Consider the system given by (3.4) with controls given in (3.14). Let
A ={g|[1-(9139" + g23g®2)/r?] # 0 for 0 < r < oo} . Then any trajectory starting in A
converges to the equilibrium given from (3.12).

Proof: First notice that the function given in (3.15) is a valid Lyapunov function, that is,
it is continuously differentiable on A and it is radially unbounded. Next let #; denote the
angle between the vectors x; and r (j = 1,2). Then we have

139"% = —(r - x,)(r - x2) = —r° cos §) cos b; (3.16)

Similarly,
92392 = —(r-y1){r - y2) = r’sinf, sin 9, (3.17)

Using the trig identity cos(8; +82) = cos &, cos 82 —sin 8, sin 6», the Lyapunov function given
in (3.15) can be written as Vpair = In[1 + cos(8; + 62)] + k(r). If we define the quantities

pr=7/2—-6and po=7/2+0; (3.18)

we can write
Voair = In [1+ cos(¢2 — ¢1)] + h(r). (3.19)

It is this Lyapunov function (3.19) that is considered by Justh and Krishuaprasad {2002
il 2003), where it is shown that Vpa;r < 0 and Vigir = 0 & ¢1 = ¢2 (where they consider
analogous control inputs (given in terms of r and ¢, 2) to the control inputs we give in terms
of shape variables in (3.14). Since V,,a,-,. < 0 on A, each trajectory starting in A remains in
a compact sublevel set Q of Vi for all time. Hence the dynamics evolve on a collision free
submanifold, as was asserted earlier without proof. By LaSalle’s Invariance Principle Khuiit
{1992], the trajectory converges to the largest invariant set M of the set E of all points in
Q where V,,m-r = 0. As shown in Justh nnd Krishnaprasad {2002 wnd 2003], the dynamics
in E are given by

r = 0
q:bl = —[n(r)sing; + f(r)] cos ¢1,
$2 = —[n(r)sing, + f(r)] cos ¢;. (3.20)
Hence the largest invariant set contained in E is given by
M= ({33, vrpu{e-3.-3) v} {70,001 5(7) = 0}) (321)

which describes rectilinear motion of either: vehicle 1 directly following vehicle 2; vehicle
2 following vehicle 1; or both vehicles moving in the same direction, perpendicular to the
baseline between them, at a distance # apart. U

Now let us give physical intuition about the form of the controls given in (3.14). The
main properties of several biological and swarming models (e.g. Reyunolds [19387] or Tanner.
et. al. {2003]) are (1) some method for heading alignment, (2) presence of a repulsion force
that keeps the vehicles from colliding, (3) an attraction force that provides cohesion for the
group and (4) decreased influence for neighbors at greater distances. The controls given in
(3.14) fit somewhat into this convention. The term involving 7 tends to align each vehicle
with the baseline between itself and it’s neighbor. The term involving f(r) forces the vehicle
to steer toward, if 7 < 7, or steer away, if r < #, from its neighbor. Finally, term involving
u{r) tends to align the heading of each vehicle with its neighbor.



4 Generalization to n vehicles 6

4 Generalization to n vehicles

In the previous section we developed a control law for a formation of n = 2 vehicles. This
control law and the results that were presented can be naively extended for arbitrary n-
only making the computations and proof more arduous. In particular, one can choose the
functional form for the control input for each vehicle to have the same from as in (3.14)
except now there are identical contributions from each vehicle. Likewise, one can form and
analogous Lyapunov function candidate as given in (3.15) only now summing over each
vehicle. Then one can prove a convergence result analogous to Proposition 1, that is, one
can show the vehicles achieve a relative equilibrium where each vehicle is moving in the
same direction.
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