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Abstract: 

When some one with a background in Solid Mechanics is studying Geometric 

Mechanics, it seems that, the two topics are from different planets! This work is to help 

making a bridge, and understanding that they are in a same planet, and in fact they are 

very close. They are at most on different sides of a river. 

In this work, it is tried to restate some solid mechanics concepts via geometrical words. 

May be one asks, why we should care about this bridge. One of the reasons is that, 

usually, it seems difficult to work with planes other than 3IR , e.g. curved shapes in solid 

mechanics, while using geometrical mechanics, one can use the concept of manifolds and 

write coordinates free formulas, which are not limited to 3IR , and can be used for 

arbitrary coordinate systems. This will have advantages mainly in numerical solid 

mechanics, where we are dealing with complex shapes and large time/dimension scales. 

 

Definitions: 

1-Reference configuration 

Closure of an open set in IR3, with piece wise smooth boundary. 

2-Deformation (configuration) 

A mapping 3: IRB →Φ  that is sufficiently smooth, orientation preserving, and 

invertible. 

3- Cauchy stress vector  

Force per unit deformed  area at position x at time t across a surface element with unit 

normal n. 
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4- First Piola-Kirchhoff stress vector  

Force per unit undeformed area at position x at time t across a surface element with unit 

normal n, which is parallel to the Cauchy stress t (x, t, n). 

5-Elastic materials: 

Elastic material is a material, for which the first Piola-Kirchhoff stress can be written as 

)),(,(ˆ),( tXFXPtXP =  where F is the deformation gradient tensor, jXijiF ∂Φ∂= / . 

6- Hyperelastic materials: 

If for an elastic material there exists a stored energy function Ŵ depending on points 

BX ∈ and F, such that FP ∂∂= /ˆ
Ref

ˆ Wρ , then the material is hyperelastic. 

7-Elastostatics 

Elastostatics is the elasticity at static situation, in which we only look at the end points of 

a deformation. The basic mathematical problem in elastostatics is to find a configuration 

3: IRB →Φ   such that 0)( Ref =+ BPDIV ρ  in the body B, and Φ  is prescribed to be 

dΦ  on a portion d∂  of , B∂  and the traction τ=NP.  is prescribed on the reminder τ∂ . 

8-Elastodynamics 

In elastodynamics we consider time dependence of the motion, so the problem, which is a 

dynamic problem is finding a motion ),( tXΦ  that satisfies Cauchy’s equation of motion 

with prescribed boundary conditions and prescribed initial deformation )0,(XΦ  and 

velocity )0,(XV . We can use Lagrange’s variational or Hamiltonian equations in this 

case easily, in fact nonlinear elastodynamics is a Hamiltonian system. 
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Geometry in Elasticity 

They are some major reasons that make it worthy to use geometry in elasticity. Some of 

them are:  

1- Rod and shell theory. The work done in bending a flexible rod is proportional to 

the integral of the square of the curvature along the rod. The same is for shells 

which are 2-d objects, for more details see Antman [1972a] and Naghdi 

[1972]. 

2- One of the main concepts in elastodynamics and Continuum Mechanics is the rate 

of deformation tensor and its computation. This is equivalent to the important 

concept of the Lie derivatives in geometry. 

3- Using the concepts of covariance and variance of geometry, we can get coordinate 

free equations, which are very useful in elasticity, mainly in computational works. 

4- The other reason is the Variational or Hamiltonian structure of elasticity. In fact 

elasticity has this structure attached to it. Some of the benefits of variational 

structure of the elasticity are: 

• It is easier in numerical computation. 

• The equations in weak form hold in situations where the localized form doesn’t 

make sense e.g. shock wave. 

• It is mathematically helpful in the study of existence and uniqueness of solutions. 

 

Linear Hamiltonian systems and classical elasticity 

Let χ  be a Banach space. We will have the following definitions. 
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a) A weak symplectic form on χ  is a continuous bilinear map IR→×χχω :  that is 

skew and weakly nondegenerate. We speak of χ  with a symplectic structure ω  

as a phase space. 

b) A linear operator  χ→)(: ADA  with domain )(AD  a linear subspace of χ  is 

called Hamiltonian if it is ω  skew. 

c) The Hamiltonian or energy function of A is defined by ),(
2
1)( uAuuH ω= , 

)(ADu∈ . 

d) A bounded linear operator χχ →:T  is called canonical transformation if it 

preservesω ; that is ),(),( vuTvTu ωω =  for all v . 

e) The Poisson bracket of HA and HB  for each )()( BDADx ∩∈  is defined by: 

{ } ),()(, BxAxxHH BA ω=  

f)  A symplectic manifold is a pair ),( ωP  where P is a manifold modeled on a 

Banach space χ . 

 

Lagrangian field theory and nonlinear elasticity 

A Lagrangian density is a smooth map IR→Ξ:L  where  

),,,( FX φφ &LL = . 

 In the case of elasticity: 

BDWD VL RefRef
2

Ref )(
2
1),,( ρφρφρφφφ −−= &&  

Define the Lagrangian IRTL →Q:  associated to L and a volume element dV(X) on B by  

( ) AdXdVXFXXXL
B

)()())(),(),(,(, φφφφφ
τ τ∫∫ ∂

−= VL &&  
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From Euler-Lagrange’s equation, we get Lagrange density equation:  

LLL φφφ Dt
∂∂=∂

∂
∂  DIV -       in B , 

 and the boundary conditions 

τ=NP.  on τ∂ . Where 

φDP ∂−∂= L/ . 

 

Generating function in elasticity 

Let ),( ωP  be a symplectic manifold, L  a Lagrangian submanifold, and Pi →L:  the 

inclusion. If, locally -dθ=ω  then 0θ*-d* == ii ω  so dSθ* =i  for a function IR→L:S  

(locally defined). We call S a generating function or a potential function for L. 

L is a Lagrangian submanifold of T*Q if and only if the stress is derived from an internal 

energy function W. The function ∫= B
dXFWS )()(φ is the generating function for L. 

 

Examples 

To illustrate the variational and Hamiltonian structure of elasticity, some fundamental 

problems of elasticity, are presented here. 

Example 1:Transversal vibration of a beam 

Let us investigate the transversal vibration of a beam. The beam is of length L and its one 

end is fixed on a wall, as illustrated in the Figure. Force f(t) is applied to the other end at 

time t. Let µ be the line density of the beam, E be its Young’s module, and I be its 

geometrical moment of inertia. Let x be the distance from the wall and u(x, t) be the 
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traversal displacement at distance x and time t, as illustrated in the figure. Kinetic energy 

and bend potential energy of the beam are then described as follows, respectively: 

 

 

Work done by the external force is described as 

  W = f (t). u(L, t) 

We should have 

  ∫ =t1
t1 0dtLδ  

Which yields the equation of motion of the beam as 

 

Subject to the following boundary conditions 

 0
0

=
∂
∂

=xx
uEI , 0

0
=

=x
u , 
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Example 2: small vibrations of a panel flutter ( Marsden and Hughes, 1983) 

 

Neglecting nonlinear and two dimensional effects, using the same methos as example 1, 

for small vibrations of a panel flutter, we will have the following equation 

0''''''' =+Γ−+ vvvv ρ&&   or  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
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Where ρ  is an aerodynamic pressure, and Γ is an in plane tensile load. If the edges of the 

plate are simply supported, we impose the boundary conditions 0'',0 == vv  at x= 0,1. 

Let 

{ }1,00)]1,0[(22 ==∈=∂ xatuHuH  and 22 LH ×=Χ ∂ .  

Define the operator A on X by 

⎟⎟
⎠

⎞
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With { }2422 ,1,00'',0),()( ∂∂ ∈===∈×∈= HvxatvHvLHvvAD && . 

On X define the inner product 

wvwvwwvv &&&& ,'',''),(),,( +=   

where ,  denotes the L2 inner product. Let XXB →:   be defined by 

⎟⎟
⎠

⎞
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⎝

⎛
−Γ

=⎟⎟
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vvv
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B

ρ&
, which is a Hamiltonian on X, where the energy is 

222 ''
2
1'

22
1),( vvvvvH +

Γ
−= && . B is stable if 20 π≤Γ≤ . (Buckling occurs for 

2π>Γ .) 
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Bifurcation theory and its application to elasticity [Antman, 1995]: 

The study of buckling in elasticity is a good example of nonlinear solid mechanics. An 

important aspect in the study of multiplicity and stability of equilibrium states in bucking 

is that there are multiple equilibrium states, among which is unbuckled or trivial state. 

The simplest model for a planar buckling of a rod is as follows. Suppose that its reference 

configuration is defined by 

is)s( =r , ]1,0[∈s   

We assume that the end s=0 is welded to rigid wall perpendicular to the i-axis at the 

origin 0 and that the end s=1 is free of geometrical restraint and is subject to a 

compressive force of P acting in the i-direction. Then the boundary conditions are 

0)0( =r , 0)0( =θ , iP-)1( =n , 0)1( =M  

We assume that no body force or couple is applied to the rod. The integral form of the 

equilibrium equations is 

ξ
ξ
ξθ d

EI
Ms

∫= 0 )(
)()s( , ξξθξξξ dPdnrkM

ss s ∫∫ =×=
11

)(sin)()(.)s(  

which can be written as: 

( )[ ] 0)(sin)(')( =+ sPSSEI
ds
d θθ , 0)0( =θ , 0)1(' =θ  

For EI= const., the solution can be found in terms of elliptic functions. 

These equations can also be rewritten as: 

0],[ =uPf  

Where u stands for the pair ),( Mθ . So u is a pair of continuous functions and f is an 

operator taking such pairs into pairs of continuous functions. The domain of f is a subset 

of nIR×χ  where χ  is a real Banach space and that its target is a real Banach space. ( 
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Banach spaces are chosen as they provide a natural way to describe the size and 

convergence of functions. χ  can be the Banach space of continuous functions on a 

closed and bounded interval.) 

We assume that the last equations has enough symmetry that a family of trivial solutions 

can be readily identified for all values of P and that the variable u is so chosen that all 

these trivial solutions can be characterized by the equation u=0. So we should have 

0]0,[ =Pf , P∀ . 

Now the solutions can be represented by bifurcation diagram. Since u is a function, it lies 

in an infinite-dimensional space, and plotting the solution pairs in ),( uP -space is 

impossible. Instead, let ϕ  be some convenient real-value function of u, e.g., an 

amplitude, and plot all points ),( ϕP  in IR2 corresponding to solution pairs ),( uP . In this 

example we could take )(uϕ  to be )0(M  or )1(θ . A point )0,( 0P  on the trivial branch of 

0]0,[ =Pf  is called a bifurcation point on this branch iff in every neighborhood of this 

point there is a solution pair ),( uP  with 0≠u . Where 0P  is the eigenvalue of the 

linearization of the integral equation about the trivial branch.  If we identify ),( Mθ  of 

the integral equation with u in χ≡× ]1,0[]1,0[ 00 CC , then its linearization is 

 ξ
ξ
ξθ d

EI
Ms

∫= 0
1

1 )(
)()s( , ξξθ dPM

s∫=
1

1 )()s(  

Which is equivalent to 

( )[ ] 0)()(')( 11 =+ sPSSEI
ds
d θθ , 0)0(1 =θ , 0)1('1 =θ  
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It should be noted that, it is NOT true that the behavior of small solutions of 0]0,[ =Pf  

is given by its linearization. Bifurcation theory determines what accurate information of 

0]0,[ =Pf  is provided by the linearization. 

Rewrite ],[ uPf  as 

],[).(],[ uPguPLuuPf −−=  

Where )(PL  is a linear operator from χ  to itself. (.)L  is continuous, χ→Dg :  is 

continuous, and )(],[ uouPg =  as 0→u  uniformly for P in any bounded set. We 

identify 

[ ] ⎟
⎠
⎞⎜

⎝
⎛ −= ∫ ξξθξθ dPupg

s

1
)()(sin,0)s(],[  

 With the help of Arzela-Ascoli theorem, one can show that g, and L are compact. 

 

Some new works: 

Bou-Rabee et al., [2002], numerically examined the stability of a standing cantilever 

conveying fluid in a multiparameter space. Their numerical bifurcation results obtained 

from applying the Library of Continuation Algorithms (LOCA) reveal a plethora of one, 

two, and higher codimension bifurcations.  

Champneys, and Fraser (2003) did a comparison between theory and experiment for 

“Indian wire trick”, that is a column longer than its critical length, stabilized by an 

appropriate vertical vibration at its bottom support, via parametric excitation.  

Recently, Argentina and Mahadevan [2005] gave an explanation for the onset of fluid-

flow-induced flutter in a flag. Their theory accounts for the various physical mechanisms 

at work: the finite length and the small but finite bending stiffness of the flag, the 
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unsteadiness of the flow, the added mass effect, and vortex shedding from the trailing 

edge. They also predicted a critical speed for the onset of flapping as well as the 

frequency of flapping, and found out that in a particular limit corresponding to a low-

density fluid flowing over a soft high-density flag, the flapping instability is akin to a 

resonance between the mode of oscillation of a rigid pivoted airfoil in a flow and a 

hinged-free elastic plate vibrating in its lowest mode. 

Lew et al. [2004] reviewed and further developed the subject of variational integration 

algorithms as it applies to mechanical systems of engineering interest. They discussed the 

conservation properties of both synchronous and asynchronous variational integrators 

(AVIs). In their work, AVIs are found to result in substantial speed-ups, at equal 

accuracy, relative to explicit Newmark. In addition, they developed the subject of 

horizontal variations and configurational forces in discrete dynamics. This theory leads to 

exact path-independent characterizations of the configurational forces acting on discrete 

systems. Notable examples are the configurational forces acting on material nodes in a 

finite element discretisation; and the J-integral at the tip of a crack in a finite element 

mesh, which are of great importance in solid mechanics. 

For a variational and multisymplectic formulation of both continuum mechanics on 

general Riemannian manifold see Marsden et al. [2001]. 

 

Acknowledgement 

I would like to thank Professor J. E. Marsden, who I learnt the subjects of differential 

geometry and geometrical mechanics in his lectures; also thank N. M. Bou-Rabee for his 

interest and comments in my work. 



 13

 

 

References: 

1- J. E. Marsden, and T. Hughes [1983], Mathematical foundations of elasticity. 

2- J. E. Marsden, and T. Ratiu [2002], Introduction to Mechanics and Symmetry. 

3- R. Abraham, J. E. Marsden, and T. Ratiu [2004], Manifolds, Tensors, Analysis, and 

Applications. 

4- S. S.  Antman, [1995], Nonlinear problems of elasticity.  

5- M. Argentina and L. Mahadevan [2005], Fluid-flow-induced flutter of a flag.  

PNAS, 1829– 1834, vol. 102, no. 6,  

6- N. M. Bou-Rabee, L. A. Romero, A. G. Salinger. [2002], A Multiparameter, 

Numerical Stability Analysis of a Standing Cantilever Conveying Fluid. SIAM 

Journal on Applied Dynamical Systems, 190-214, Vol. 1, Number 2. 

7- A. R. Champneys, and W. B. Fraser, [2003], The 'Indian wire trick' via parametric 

excitation: a comparison between theory and experiment. The Royal Society of 

London. Proceedings. Series A. Mathematical, Physical and Engineering 

Sciences, 459, 539-546. 

8- J. E. Marsden, S. Pekarsky, S. Shkoller, and  M. West, [2001], Variational 

Methods, Multisymplectic Geometry and Continuum Mechanics, J. Geometry and 

Physics, 38, 253–284. 

9- A. Lew, J. E. Marsden, M. Ortiz, and M. West, [2004], Variational time 

integrators, Int. J. Numer. Meth. Engng 2004; 60:153–212 

 
 


