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In this paper, the intention is to give an introduction to discrete variational mechanics and to mechanical
integrators. In particular, we present a systematic construction of mechanical integrators for simulating
finite dimensional mechanical systems based on a discretization of Hamilton's principle. Finally, we will
apply these principles to the construction of an integrator for the three-body problem.

Variational Integrators for Mechanical Systems. A Veselov-type discretization of Hamilton's prin-
ciple for mechanics leads naturally to a powerful set of integration algorithms. These algorithms have
remarkable respect for the basic invariants of mechanics, preserving in particular the symplectic struc-
ture, momentum and energy. These algorithms produce many known and efficient algorithms such as the
Newmark algorithm and higher order symplectic partitioned Runge-Kutta schemes. In addition, using
a discretization of the Lagrange-d’Alembert principle, one can also produce algorithms for dissipative or
forced systems that get the energy decay correct, even over long integration runs. Extensions of these
algorithms to the PDE and multisymplectic context are also underway.

2 Variational Principles

We will recall the Lagrangian formulation of mechanics, from which one derives the Euler-Lagrange
equations (see [1]). We will then show how to mimic this process on a discrete level.

We work in R™ or in a configuration space Q and will use vector notation for L, sigplicity, ¢ =
(@*,¢%...,q"). One introduces the Lagrangian L(q,¢,t). We form the action function by integrat-
ing L along a curve g(t) and then compute variations of the action while holding the endpoints of the

curve q(t) fixed. This gives
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where we have used integration by parts and the condition d¢(7T") = 6¢(0) = 0. Hamilton’s principle
states that
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Requiring that the variations of the action be zero for all g implies that the integrand must be zero for
each time ¢, giving the Euler-Lagrange equations

6L d (0L

% @ (aT;) =0. (2.4)
It is well known that the system described by the Euler-Lagrange equations has many special properties.
For instance, the flow on state space TQ is symplectic, i.e. it conserves a particular two-form, and if

there are symmetry actions on phase space then there are corresponding conserved quantities of the flow,
known as momentum maps.

In what follows, we will see how discrete variational mechanics performs an analogue of the above
derivation. Rather than taking a position ¢ and velocity ¢, consider now two positions g9 and ¢; and a
timestep h € R. These two positions should be thought of as being two points on a curve at a time h
apart, so that go = q(0) and q1 = q(h).

2.1 Discrete Variational Principle

A discrete variational principle is presented in this section which leads to evolution equations that are
analogous to th Euler-Lagrange equations. We will refer to them as the discrete Euler-Lagrange (DEL)
equations. We will follow the results presented in (2} and [3].

Consider a configuration space, @, but now define a discrete state space to be Q x Q. This contains
the same amount of information (i.e. is locally isomorphic to) TQ. A discrete Lagrangian is a function
Li: Q x @ — R. It depends on the timestep h, but we will neglect this 2 dependence except where it is
important.

Construct the increasing time series {t,x, = kh | k = 0,... ,N} C R from the timestep h. We will
identify a trajectory with {gx}i_, C Q. We now give a procedure that defines the evolution map for the
system. The action sum is the map Sy : QN+1 _ R defined by

N=-1
Sa=7_ L@ qes1); (2.5)

k=0

where k € Z is the discrete time. The action sum is a discrete analog of the action integral. The discrete
variational principle states that the evolution equations extremize the action sum given fixed end points
go and gy, i.e., §S; = 0 with dgo = gy = 0. Computing 654, we get

N-1

85S¢ = Y [D1La(gk: k1) - 89k + D2La(Gkr Qes1) - 00k41] (2.6)
k=0
N-1

= Z (D1La(gx, qx+1) + DaLa(gr-1,4x)] - Sax (2.7)
k=0

+ D1La(q0,91) - 8g0o + Da2La(qn-1,9N) - 6gn (2.8)

using a discrete integration by parts (rearrangement of the summation). Since dqo = dgn = 0, we have
the DEL equations:

DpgrLa({qr-1.9%)s (ax, @k +1)) = D2La(qk—1, Gx) + D1La(qx, gr+1) =0, (2.9)
forallk=1,... ,N-1.
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3 Discrete Evolution Operator, Discrete Map, and Symplectic
Structure

The discrete object corresponding to T(T'Q) is the set (Q x Q) x (Q x Q). We can define the projection
operator 7 and the translator operator ¢ on (@ x Q) x (Q x Q) to be

T ((90.¢1): (90,91)) = (g0, 1) (3.1)
o : ((g0,q) (g0, 91) — (90, 91)- (32)

The discrete second-order submanifold of (@ x Q) x (Q x Q) is defined to be
Qa = {wa € (Q x Q) x (Q x Q) | m 0 (wa) = 73 0 7(wy)} (3.3)

where 7, is the first slot of 7((g0, 1), (46, 91)), i.e. go and m; is the second slot, i.e. q;. Note that Qq has
the same information content as (i.e. is locally isomorphic to) ). Concretely, the discrete second-order
submanifold is the set of pairs of the form ((qg,q1), (¢1,¢2)).

3.1 Discrete Evolution Operator and Discrete Map

We can introduce a discrete evolution operator X that plays the same role as a continuous vector field
and is defined to be any map X : (Q x Q) — (Q x Q) x (Q x Q) satisfying # o X = id. The discrete
object corresponding to the flow is the discrete map F : (Q x Q) — (Q X Q) defined by F =0 o X. In
coordinates, if the discrete evolution operator maps X : (go,q1) — (qo, 1,44, 1) the the discrete map
will be F : (QO'QI) and (q(,)tqll)

Lagrangian systems are second-order, so we are interested in discrete evolution operators that are
second-order, which is the requirement that X{(Q x Q) C Q4. This implies that X has the form X :
(20,41) — (90,491,491, g2), and so the corresponding discrete map is F : (gp,q1) — (q1,92). We now restrict
to the particular case of a discrete Lagrangian system.

The discrete Lagrangian evolution operator X, is a second-order discrete evolution operator satis-
fying

DpgLLy o X, =0 (3.4)

and the discrete Lagrangian map Fi, : (@ X Q) — (Q x Q) is defined by FL, = g0 X,. Thus we rewrite
eq. (2.9) as

DoLy + DyLgo Fr, =0. (3.5)
This defines Fy, implicitly by Fr,(gx~1,9%) = (gx,gr+1) for points {gx}1-, which are a trajectory of eq.
(3.5). Fy, is the discrete map that flows the discrete Lagrangian system forward in discrete time.
3.2 Symplectic Structure

We first define a fiber derivative by
FLg:QxQ — T*Q (3.6)
(90,91) — (g1, D1La(g0,q1)) (3.7)
and we define the 2-form on @ x @ by pulling back the canonical 2-form on T*Q:

u, = FLi(Qcan) (3.8)
= FL3(-dOcan) (3.9)
= -—d(FL3(Ocan))- (3.10)



The fiber derivative is analogous to the Legendre transform in continuous-time Lagrangian mechanics. In
coordinates ¢* on @, and canonical coordinates (¢*,pi) on T*Q, the canonical forms are Qcan = dg’ Adp;
and ©can = pidg*. Continuing the calculation in eq. (3.10), we have

SZL,L = d ( 3 ,' (‘Ik, Qk-(-l)) dqi. (3.11)
a ] . k 1 k a ] k k
a 3 ] Qs Tret 1 ko dQ}H. .

since the sum 8—‘9;,-(%, gk+1)dg], A dg}. vanishes in eq. (3.12).

To prove that the 2-form €z, is indeed symplectic, we need to show that Fj, preserves ,, ie.
F; Qp, = Q, where Fy is the pullback of F,. For clarity, let Fp,(z,y) = (u,v) and write Q, =
d(p(z, y)dy) = DyaL4(z, y)dz A dy. In this notation, y = 4 = g, = gg~1, and v = gx4;. We now show
that FE“QL,, =Qr,:

FiQu, = F,,,( (aLd(u v)du)) (3.14)
- ( ;( uu)du)) (3.15)
= (o R el ) (3.16)
= —d( Z—(z,y)cﬁ) (3-17)
- g:f’;dmj/\dy‘ (3.18)
= O, , (3.19)

We have used eq. (3.5) and d(u(x,y)) = dy in deriving eq. (3.17) from eq. (3.16).

4 Construction of Mechanical Integrators

In this section, we show how to construct mechanical integrators for continuous time Lagrangian systems
from the discrete variational principle. We will show how to construct integrators for Lagrangian systems
with holonomic constraints by enforcing the constraints through Lagrange multipliers.

We assume that we have a mechanical system with a constraint manifold @ C V, where V is a real,
finite dimensional vector space, and that we have an unconstrained Lagrangian, L : TV — R which, by
restriction to L of TQ, defines a constrained Lagrangian, L¢ : TQ — R. We also assume that we have
a vector valued constraint function, g : V — R?, such that g~}(0) = Q C V with 0 a regular value of
g- Let the dimension of V' be n, and therefore, the dimension of Q is m = n — j. Also, let A be a
real, finite dimensional vector space of Lagrange multipliers of dimension j. We first define the discrete,
unconstrained Lagrangian to, Ly : V x V = R, to be

_ T+y y—zx
Ly(z,y) =L ( TR ) . (4.1)
where h € R is the time step and h > 0. The unconstrained action sum is defined by
N-1
Sq = Z Ld(vk,vk.,.l). (4.2)
k=0



We then extremeize Sy : V¥+! — R subject to the constraint that vg € Q C V for k€ {1,... ,N -1},

. N~
miny, ev,a,en (Sd + o '\fg(vk))

subject to g(vx) =0 forall k€ {1,... ,N -1}, (4.3)
where here T denotes transpose. From this, we derive that
D2La(vk-1,vk) + D1La(k, ve+1) + AL Dg(vr) = 0 (no sum over k)
g(vx) =0 forallke{1,... ,N-1}. (4.4)
Given vy and vk-1 in Q C V, i.e. g{vk) = g(vk-1) = 0, we need to solve the following equations
Dy Ly(vk-1,Vk) + D1La(vk, Vgs1) + AT Dglvr) =0
9(vk41) =0 (4.5)

for vy and Ag.

Suppose T = vk-1,y = vk, and z = vk,;. We want to compute z given x and y, thereby iteratively
computing the trajectory {vk}i.o, C Q. In terms of the original, unconstrained Lagrangian, eq. (4.3)
reads as follows:

3 [DiL (335, 55%) + DiL (32, 34)] +
i (DL (437, 552) - DoL (55%, 334)]

+ATDg(y) =0 (4.6)
g(z) =0.
Note that when Q =V, we have
3 (DL (2, 525) + DiL (3, 5] +
z y-zx z z= 4.7
(D2 (42, 552) - Dol (52, 572)] =0, “n

which is an implicit equation for qx41 given g~ and gy.

5 Example: Planar Circular Restricted Three-Body Problem

We apply the construction procedure to produce a mechanical integrator for the planar circular restricted
three-body problem (PCR3BP). This procedure has been used in [3] to produce mechanical integrators
for the rigid body and the double spherical pendulum, with good results. In particular, it has been
observed that the energy oscillates around a constant value.

The configuration manifold for the PCR3BP is Q = V = R*\{(—x,0) U (1 — u,0)} where u is the

mass parameter of the system. Thus, we need not deal with a constraint function, and therefore we can
use eq. (4.7) to update points. The continuous time Lagrangian L : TV — R for the PCR3BP is

L(z» .%577 y) = % ((j: - y)2 + (I + y)2) - U(Z, y)! (5'1)
where
U(z,y) = —1;“—% (5.2)
o= V(z+p)?+y? (5.3)
re = V{iz+u-12+y2 (5.4)



and (z,y,%,9) € TV 2 V x R2. From L, one constructs Ly for a given h, via Cﬁt
+ -—
Latao,) = £ (258, 22%), (55)

Taking the derivatives of L, we get

oL T+y- g
5% = [-a-,-+y-5% (5.6)
oL -y
FrE [:1:-!—3}] (5.7)
where
ou l-—p U
e = (z +u) 3 +(z+p l)rg (5.8)
ou 1-p I
- = ¥ +y=. 5.9
5 R (59)

To implement the variational integrator scheme for this problem, one would need to solve eq. (4.7)
implicitly for qk+1 = (Tht1, Yk+1) given gx1 = (T-1,Yx-1) and gx = (zx,yx). One must typically use
an iterative technique such as Newton’s method. This involves computing a first guess qi+1.0 for qr+1,
such as gr4+1,0 = 2gx — -1, and then computing the sequence of approximations gx+1.n,7 = 1,2,...
until they converge to the solution value g,.1. For Newton’s method (see [2]), the iteration rule is given
by

, . . 8L
Ti+1n+1 = Ghern — A7 [P}; + =—%(q0, 1) (5.10)
O3
where py, = —D;La(qk, qx+1) and AY is the inverse of the matrix
%Ly
i = R 1ag\90:41)- 5.11
17 aqaaqa (90 (h) ( )

While the Newton’s method outlined above typically experiences very fast conergence, it is also
expensive to have to recompute A% at each iteration of the method. For this reason, it is typical to use
an approximation to this matrix which can be held constant for all iterations of Newton’s method.

In the future, we intend to implement this scheme numerically and compare its results to standard
Runga-Kutta methods.
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