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1 Introduction

Examples of systems in unstable equilibrium, also known as balance systems, are
ubiquitous ~ an upright person is a balance system, as well as bicycles or even
something as silly as balancing a broom on one’s palm - and the need to control
balance systems to prevent them from leaving equilibrium due to small changes
in the environment, or perturbations, is an example where closed-loop feedback
is used. Closed-loop feedback is where a system is driven, the result of the
driving is monitored and then changes of the input are made accordingly. (This
is exactly what is done when driving a car — the steering wheel is controlled,
the driver sees the results of the turning and makes adjustments as needed in
order to get the desired result.)

In this paper I will describe the method of Bloch, Leonard and Marsden [1)[2)
of controlled Lagrangians where a mechanical system with symmetry is stabilized
by modifying the uncontrolled (free) Lagrangian by applying control forces to
certain variables of the Lagrangian which then stabilize other variables. This is
done in such a way that the closed-loop dynamics of the controlled system is still
in Lagrangian form. This is desirable because a Liapunov function can then be
used to determine the necessary control gains to achieve stability. This method
is particularly nice because the Euler-Lagrange equations from the controlled
Lagrangian will include new terms that can be associated with the control forces.

After describing the general method I will then apply it to the inverted pen-
dulum on a cart, where by controlling the cart, the pendulum can be stabilized
in the upright position.

2 Background

The configuration space Q of a mechanical system is a space where every state
of the system, i.e. every allowed combination of the independent generalized
coordinates, is represented by a point. For example, the generalized coordinates
of the inverted pendulum on a cart are 8, the angle the pendulum makes with
the vertical, and s, the horizontal displacement of the cart. (Note , the length



of the pendulum arm is constant.) Thus Q for the inverted pendulum on a cart
is @ = S'x R. In this paper I will assume that @ = § x G where G is a Lie
group, so that by controlling variables in G we wish to control variables in §.

First, note that kinetic energy can be written using a metric tensor, T =
39(d,4). This metric tensor can also be more generally written as g(v,v) =
g(Horv,Horv) + g(Verv,Verv), where Ver v is tangent to the orbits of G acting
on Q and Hor v is chosen to make the new expression for the metric consistent
(i.e. g(Horv,Verv) = 0). Ver v can be thought of as the piece of v in the direction
of the action of G and Hor v as the piece “metric orthogonal” to the direction
of the action, so the horizontal and vertical spaces are g-orthogonal.

The Lagrangian of the system is then modified by defining a new choice
of horizontal space denoted Hor, and changing metric on horizontal vectors
(9 = go) and vertical vectors (g — g,). This is accomplished by letting 7 be a
one form on Q that annihilates vertical vectors and defining Hor,v, =Horv, —
[r(v)]a(q) and Verrv, =Very, + [(v)|a(q)-

Given 7,0 and p we then define the controlled Lagrangian to be

1
Ligo,(v)= E[g,(Har,vq, Hor,vg) + g,(Verrv,y, Ver,vy) — V{q) (1)

where V is the potential energy of the system.

This controlled Lagrangian is then compared to the original Lagrangian of
the system with the control law added and the two Lagrangians are matched.
The feedback law for u is then solved for and finally the stability of an equilib-
rium is determined.

3 The Inverted Pendulum on a Cart

We will now apply the method of controlled Lagrangians to the inverted pendu-
lum on a cart. The position vector for the pendulum is Zpenq = (s+1siné, I cosf)
giving a velocity vector of ¥pena = (8 + lcos 86, -1sin 8). The velocity of the
cart is simply Tcare = ($,0) so the kinetic energy of the pendulum cart system
is just 3(mv?,.q + MvZ,,) where m is the mass of the pendulum and M is the

mass of the cart.
The Lagrangian for the system is L = T'—V, where V is the potential energy,

i.e. V = mglcos# yielding a Lagrangian of

L(8,5.0,8) = 3 (m + M)S* + Em(P4 + 23l cos ) — mglccsd  (2)

Let a =mi®,=ml,y=M+m and D = —mgl so we have

L(6,5,6,3) = -;-(aéz +285cos86) + D cosf (@)

(3]



The equations of motion for the system with a control force u acting on the
cart are given by the Euler-Lagrange equations

4oL oL _
dt 9¢ 99 ' (4)
d QE _ oL u
dt 85 Os '
Note that s is a cyclic variable so a = 0 and we have
af — Bsin 085 + Bcos 5 + Bsin@s6 + Dsinf =0 (5)
and
7§ — Bsin06® + Bcosbl = u (6)

Now we need to form the controlled Lagrangian. For our example we will take
9p = 9, 9o = 0g when acting on horizontal vectors. Using these assumptlons,
let’s prove the following theorem:

Theorem 1 If g, = g, go = 0g when acting on horizontal vectors then the
control Lagrangian reduces to

Lrap(v)'= L(v +7(v)g) + S9(r(v)e, (v)a) (7)

Proof. Let’s look at the first term of the control Lagrangian

390(Hor v, Horv,)
= 390 (Hor(v) = r{v)q, Hor(v) - 7(0)q)
= 3lo(Hor(v), Hor(w) + og(r(v)a, 7(2)o)]
For the second term we have
S9(Ver() +7(v), Ver(v) + 7(v)e)
= 39(Ver(v), Ver(v) + g(Ver(), 7(v)) + 59(r(v)a, 7(v)a)
= 20(Ver(v), Ver(®)) + o(2,7(0)q) + 59(r(v)as T(v)a)
Note that the last line follows from v =Hor(v)-+Ver(v) and g(Hor(v), Ver(v)) =

0 so g(v,7(v)q) = g(Hor(v), 7(v)Q)) + g(Ver(v), 7(v)q) = g(Ver(v), 7(v)o, be-
cause g(Hor(v), 7(v)g) =



Finally adding the expressions for the two terms and subtracting the poten-
tial gives

%[g (Hor(v) + Ver(v), Hor(v) + Ver(v)) + g(v, 7(v)Q) + %g(f ()@, 7(v)Q) + og(7(v)q, T(v)Q)] - V(g)
= %Q(U,v) + g(v,7(v)Q) + %g(T(v)Q,r(v)Q) +09(t(v)e, T(v)Q)] - V(g)
= %g(v + 7(v)g, v + T(v)Q) + og(r(v)Q, T(v)q)] - V{(g)

the desired expression.
We want 7 to be a one-form on G such that r[Ver(v)] = 0. In the case of the

inverted pendulum on a cart the most general form 7 can take is 7 = k(8)d6.
Note that 7(v)o = k6. Plugging this into our simplified expression for the
control Lagrangian yields

Lro= %(aé2 +28cos8(3 + k)6 + (5 + k§)* + %’7k292 + Dcosf (8)

The Euler-Lagrange equations are then

0L, oL
dt 983 Os

- %(,Bcos@é + (5 + k) -

= —Bsin#6? + Bcos b0 + (5 + K'6% + kb) ©)
4oL oL

dt 58 o0

d s . . .
a—t(aﬂ + Bcos 85 + 2kB cos 80 + k(5 + k) + ayk20)—

Comparing the two s equations gives u = -7k’ (92—7@5. Using this expression
for u and solving the s equation for § gives § = g(sin 66? — cos 86) — k9% — k4.
Substituting this into the # equation gives at last the controlled Lagrangian 6
cquation

2 v 2 \
(a -5 cos® 0 + o'yk2) &+ (%cosgsin() + a'ykk’) 6% + Dsind = 0. (10)

Also by substituting the expression for § into the § equation from the con-
trolled Lagrangian gives

2 . 2 .
(a - %cosza + ﬂk) 0+ ('%-cosﬂsin() + ﬁk') 6% + Dsind = 0. (11)



Comparing the two expressions gives 0vk®> = —fkcosf = k = ng cos#f,
where & = —-};. Substituting for 6 from the 8 expression and k from the above
expression we obtain the control law

v = kBsin 8(ad? + cos§D)

= 12
a—%’(l—n)cosZO (12)
Finally, stabilization of the equilibrium @ = § = 3 = 0 is stable if
iy
K> 3152—3- >0 (13)

4 Conclusion

Even though in this paper the controlled Lagrangian method was only demon-
strated for the simple case of an inverted pendulum on a cart, there is a large
class of mechanical systems to which it can be applied. I tried unsuccessfully
to apply it to a particle in a magnetic field where the particle is controlled by
varying the field strength. I also thought it would be interesting to try and
apply it to the double pendulum on a cart.
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