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Abstract

This paper provides a survey of recent progress in implicit Hamiltonian systems the-
ory. Relations between Dirac structures and implicit Hamiltonian systems are discussed,
and conditions for closedness/integrability are presented. The discussion continues with
symmetry and reduction of implicit Hamiltonian systems. An example of an inverted
pendulum on a cart illustrates the use of the theory.

1 Introduction

The port-controlled Hamiltonian approach has been proposed in [MS92] as a way for mod-
elling of physical systems. It originates from the network modelling of lumped parameter
physical systems with independent storage elements. The notion port-controlled indicates
that the system’s energy is controlled through the ports of the system.

It has been previously shown that a power-conserving interconnection of port-controlled
Hamiltonian systems will again yield a port-controlled Hamiltonian system when the energy
variables are independent. However, in the case where the energy variables are dependent, an
implicit Hamiltonian system will be obtained. This kind of systems is typically represented by
a set of differential and algebraic equations. It includes mechanical systems with constraints
and general interconnected electrical L-C circuits. This differential-algebraic representa-
tion is analogous to, or can be considered as a special case of, descriptor representations of
dynamical systems.

The present paper attempts to provide a very concise survey of progress in modelling and
analysis of implicit Hamiltonian systems. Our discussion begins with a geometric view to
implicit Hamiltonian systems models. In this context, it is shown that implicit Hamiltonian
systems can be modelled by Dirac structures on the space of energy variables. This relation
and three representations of implicit Hamiltonian systems are the topic of Section 2. In
Section 3, conditions for integrability (or equivalently, conditions for the Dirac structures to




be closed) are presented. Symmetry in implicit Hamiltonian systems, as well as some partial
reduction results, is the subject of Section 4. Throughout the paper, the theory is illustrated
by an example of a pendulum on a cart. This example, albeit simple, is rich enough to cover
all the topics discussed in this paper.

Finally, interested readers are referred to [B00] for a detailed presentation of the same
topics, as well as some other topics such as full reduction of implicit Hamiltonian systems, im-
plicit port-controlled Hamiltonian systems, and relation between optimal control and implicit
Hamiltonian systems.

2 Representations of Implicit Hamiltonian Systems

As mentioned in the introduction, a geometrical view to implicit Hamiltonian systems is
provided by Dirac structures {C90], [D93] on the space of energy variables. This was explored
in [SM95], [SDM96], [DS99]. Our notations here follow those references.

Let X be a manifold (which will be the space of energy variables) with tangent bundle
TX and contangent bundle T*X. Furthermore, let TX & T*¥ be the smooth vector bundle
over X with T; ¥ x T X as the fiber at x € X, and let {.{.) denote the natural pairing between
a one-form and a vector field. Then generalized Dirac structures are defined as follows.

Definition 1 A generalized Dirac structure on X is @ smooth vector subbundle D C TX &
T*X such that Dt =D, where

DL = {(X.x) eTX ST X | (6] X) + (au'() =0, Y(X.a)eD}. (1)

D is called a Dirac structure if it ts closed (cf. Section 3). In the following discussion, we omit
the word 'generalized’ for brevity. If the closedness is crucial, it will be explicitly indicated.

An implicit Hamiltonian system that arises from a Dirac structure D on a manifold X is
given below.

Definition 2 Let H : X — R be a smooth function (the Hamiltonian), then the implicit
Hamiltonian system corresponding to (X, D, H) is described by

(¢,dH) € D. (2)

Different representations of implicit Hamiltonian systems have been derived in [DS99).
The authors also showed that the fibers of D has the same dimension as the manifold X.
From now on, let us assume that the dimension is n. The first representation is provided by
the following theorem. Here we identify the tangent and cotangent space by R".
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Theorem 3 [Representation 1] Given e Dirac structure D on a manifold X, at everyz € X
we can find n X n matrices E(z) and F(z), which depends smoothly on z, such that locally

D(z) = {(v,v") € TLAXT; X | F(z)v = E(x)v*}, (3)

where E{(zx) and F(x) satisfy the following conditions:
rank [Flz) | — E(z)] = n, @
E(z)FT(z) + F(z)ET(z) = 0. ()

Conversely, given such matrices E(z) and F(z), Eq. (3) defines a Dirac structure.

Remark 4 The implicit Hamiltonian system related fo this representation is locally described

b oH
Pz)t = B(z)5—(2). (6)

Before continuing with the other representations, we need to define the followings. For a
Dirac structure D, we have smooth distributions

Go = {X € TX | (X,0) € D}, (7)
Gy ={XeTX|3aeT X such that (X,a) € D}. {(8)
as well as smooth codistributions
Po={aeT"X |(0,a) € D}, (9)
Py ={aeT"X |3X € TX such that (X,a) € D}. (10)
It was proved in [DS99] that
Go=ker L2 {XeTX| (a|X) =0, Yac P} (11)
Py=a0n Gy & {a eT"X |{alX) =0. VX € C1}. (12)

Under some constant-dimensionality conditions, we have two other ways of representing im-
plicit Hamiltonian systems.

Theorem 5 [Representation 1I) Given a Dirac structure D on a manifold X with contant
dimensional Py, we can find a skew-symmelric vector bundle map J(z) : Pi(z) — (P(z))*
which locally can be extended to a skew-symmetric vector bundle map J(2) : To X —T X such
that D is given by

D={{(X.a) eTY@T X |X(z) - J(z)a(z) € Go(z), @ € ann Gyp}. (13}

Conversely, given a constant dimensional smooth distribution Go and such a skew symmetric
vector bundle map J(z): T, X =T, X, then Eq. (13) defines a Dirac structure.
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Theorem 6 [Representation III] Given a Dirac structure D on a manifold X with contant
dimensional G\, we can find a skew-symmetric vector bundle map w(rx) : Gi(z) — (Gi(z))*
which locally can be extended to a skew-symmetric vector bundle map w(zx) : Te X =T X such
that D is given by

D={(X,0) eTX ST X |a(z) - w(z)X(z) € Po(z), X € ker Fy}. (14)
Conversely, given a constant dimensional smooth distribution Py and such a skew symmetric
vector bundle mep w(z) : T.X =T, X, then Eq. (1) defines a Dirac structure.

Remark 7 Representation II describes an implicit Hamiltonian system of the following form:
oH
= J(z)7—(x) +9(z)A, (15)

0= gT(r)%(x), (16)

where g(z) is a full rank matriz such that Im g(z) = Go(x). On the other hand, Representa-
tione 111, which is the dual of Representation II. has the following form:
%—g(;u) = w(z)z + pT (z) A (17)
0 = p(z)x, (18)
where p(z) is a full rank matriz such that Im p(z) = Fp(x).

We will describe the inverted pendulum example by these representations, and illustrate
hiow to convert from some representations to the others.

Example 8 Consider the inverted pendulum on a cart depicted on Figure . Let xy, iy be the
z — y coordinates of the pendulum and x2 be the x coordinates of the cart (the y coordinates
of the cart is not important and is therefore neglected). Furthermore, let piz, p1y and po:
be the momenta corresponding to those coordinates. Modelling this system as a constrained
mechanicel system (cf. [MR99], Chapter 8) with the constraint on velocities

(zy —z)Z1 + i — (21 — 22} =0 (19)

will yield the following equations of motion:

o -
i 0 0 0 100 gz 0
n 0 0 0 010 7y 0
&2 | _| 0o o o0 001 on 0 \ (20)
pz| [ -1 0 0 000 % (xy —z2) |7 <
Pry 0 -1 0 00024 "
Pz 0 0 -1000]| 3% —(&) = Z2)
L Jp2:r |
OH
(000 (mi-22) n ~(z1-22) ]% =0, (21)




{ = pendulum length
m = pendulum bob mass
M = cart mass

g = acceleration due to gravity

x2

Figure 1: Inverted pendulum on a cart. Figure is taken from [MR99].

where the Hamiltonian is

1 . 1
H= %(Pﬁ +p},) + mpgx + mgy1. (22)
Egs. (20)-(21) are nothing but Representation [I of the system. Next, premultiply Eq. (20)
by -J = 0 —ldy end rearrange the equation to obtain
Ids 0
r 9H T .
% 000 -1 ¢ O I (zy — 22)
dyy 000 0 -1 0 hn n
o#
G [ [000 0 0 1) | | (-2 |, (23)
2L 17100 0 0 0 ||pa|” 0 '
35'7” 0100 0 0 |]|s, 0
5{;,’5— 001 0 0 0 Pz 0

which, together with the constraint equation (19), constitutes Representation I1I of the system.
To obtain Representation I, we need to eliminate the constraint force (or Lagrange mul-

tipliers) A from the equations of motion. For this purpose, we look for a full row rank 5 x 6

matriz that annihilates g(z) in Representation II. Such a matriz is for example given by

1000 0 0
0100 0 0
sxy=[0 010 0 0 (24)
0001 0 1
0000 (m1—22) n

<]}



This matriz will always be full row rank because (z) — T7) and y; cannot be both equal to zero
at the same time. Permultiplying Eq. (20) by s(x) and combining it with Eq. (21), we obtain
Representation I of the system.

1000 0 0 ) 0 0 0 L 0 0
0100 0 0 # 0 0 0 0 1 0
0010 0 0 i | _| O 0 0 0 0 1
000 1 0 1 iz | | -1 0 -1 0 0 0
0000 zy~22 0 Py 0 -z1+4+120 -1 0 0 0
0000 0 0 Doz 0 0 0 ) —-I2 y1 —-T1+22

3 Closedness Conditions

Closedness (or integrability) of a Dirac structure is analogous to the Jacobi identity of a
Poisson structure or closedness of a symplectic form. This property is important in several
aspects. For example, we will see below that a 'Darboux-like’ theorem holds if and only the
Dirac structure is closed. In this context, [D93] gives the following definition for closedness.

Definition 9 A Dirac structure D on a manifold X is closed (or integrable) if for arbitrary
(X1, 1), (X2,02), (X3,03) €D,

(£ x,02]| X3} + (£ x,a3|X1) + (£Lx,00n]|Xa) = 0. (26)

An equivalent definition is given by [C90] (this definition is presented as a theorem in
[D93)), and this definition is useful to check whether a Dirac structure represented by Rep-
resentation I is closed.

Definition 10 A Dirac structure D on a manifold X is closed (or integrable) if for arbitrary
(-’Yhal)y (Xz:a'.!) € D,

([X1. Xo],ix,dag ~ ix,dey +d {a3]X))) € D. (27)
In particular, since from Eqs. (3)-(5) it follows that
— L _ ET(x)
D(z) =ker [F(z) | — E(z)] = im [ ZFT(2) ] . (28)

which implies that the distribution Gy (the admissible vector fields, cf. Eq. (8)) and codis-
tribution P, (the admissible one forms, cf. Eq. (10)) are locally spanned by the columns of
ET(z) and -FT(z), we have the following test for closedness [DS99] of a Dirac structure
represented by Representation .

IR R RRSRTE
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Theorem 11 Consider a Dirac structure D given locelly in Representation I. Define (X;, o;) €
D in locul coordinates by

Xi(z) = Ef (z), (29)
ai(z) = —F] (z), (30)

where ET(z) and —FF (z) are the i-th columns of ET(z) end FT(z). Then D is closed iff
([X:, Xl ixday — ix;doy +d{o| X)) € D foralli,j=1.....n. 31)

The paper [DS99] also gives two other tests for closedness of Representation I and Rep-
resentation II.

Theorem 12 Consider a Dirac structure D given in Representation [I. Let {.,.} be the
{yeneralized) Poisson bracket asssociated with J{x) and define

Ap = {H € C*®(X)|dH € ann Gp}. (32)
Then D is closed iff the following three conditions are satisfied.
1. Gp is involutive
2, {H\ H2} € Ap for any Hy, Hy € Ap.
3. {H1, {Ha, Ha}} + {Ha, {H3, H1}} + {H3, {Hy, Ha}} = 0 for any H,, Ho, Hs € Ap.

Theorem 13 Consider a Dirac structure D given in Representalion I end let & be the
two-form associated with w(x). Then D is closed iff the following conditions are satisfied.

1. ker Py is involutive
2. do(Xy, X2, X3) =0 for all X1,X9, X3 € ker P,.

As mentioned before, when a Dirac structure is closed, a theorem similar to Darboux
theorem holds. That is, locally we can find (canonical) coordinates (g, p, 7, 5), with ¢,p € R¥,
r € R! and s € R™, such that the J{z) in Representation Il and Gy are of the following forms

0 I 0 =
-~ 0 0
J@y=| " 0 0.l (33)
¥ % * x
a a
Go = span {a—sl,..., f} . (34)
m

Furthermore, m = n— dim P} and { = n— dim G.

7



(@

Remark 14 The implicit Hemillonian system corresponding to these canonical coordinates
is described by

; OH

==, i=12 ..,k 35

O (35)
9H

) = —— i=1,2,...,k

P| aq: ] 2 T =t ’ ;l" (36)

=0, i=12, .1 (37)

0= a—f i=1,2, .. ,m. (38)

Let us reconsider the inverted pendulum example. Since the constraint in the system is
holonomic, we expect that the Dirac structure is closed.

Example 15 Consider the inverted pendulum described previously in Example 8. We will
show that the Dirac structure associated with this system is closed. Let us use Representation
I for this purpose. Define the vector fields X; and one forms a; as in Theovem 11. Direct
calculations will show that

g g a
Xs, Xo| = h=— + (—21 + T2)— — 1 —, 39
[Xs. Xe] =1 oo T (-z1 ) Tors g (39)
(X6, X5} = ~[X5, Xe). (40)
[Xi, X5] =0, otherwise. {41)
Similarly, we have
ixsdog — ix,dos + d {aglXs} = n{der — dzy) + (21 — w2)dy, (42)
ixsdas — ix dag + d (a5 Xs} = —y1(dzs — dxy) ~ (21 — 22)dyp, (43)
ixdaj — ix,do; +d (o] X3} =0, otherwise. (44)

Therefore, we only need to check the conditions in Theorem 1 fori =35, j =6, andi =6,
Jj = 5. Substituting [X;, X;| into the left hand side of Eq. (31) and ix,da;—ix;doy+d (05 X;)
into the right hand side, we see that both sides match. Therefore

([.Xi,Xj], ix,da; —_ix’.da,- +d{o;lXi)) €D fori=5,j=6;andi=6,j=35. (45)

For other i and j the conditions will trivially be satisfied, since (0,0) € D.

Since the Dirac structure in this ezample is closed, we can find « sel of cenonical coordi-
nates for the system, such that in these coordinates the system representation will be similar
to the one in Remark 14. For ezample, we may choose q* = 8, ¢* = xa, v = (cf. Figure I;
we assume thatl v is the radial coordinule of the pendulum) and their generalized momenta as
1, P2, S.

o:



4 Implicit Hamiltonian Systems with Symmetry

Studies of symmetries in Hamiltonian (and also Euler-Lagrange) systems are important, since
the existence of such a symmetry implies that we can perform reduction on the dynamics
of the system, and whenever needed, we can reconstruct the full-order dynamics from the
reduced dynamics. Symmetries in implicit Hamiltonian systems and some (partial) results
on reduction of implicit Hamiltonian systems with symmetry have been discussed in [S98).
They are summarized in this section.

Let us begin with infinitesimal symmetry of a Dirac structure. [t is defined in (D93} as
follows.

Definition 16 Let D be a Dirac structure on X. A vector field f on X is an infinitesimal
symmetry of D if
(LyX.Lya) €D. forall (X,a)eD. (46)

Whereas for a diffeomorphism ¢ to be a symmetry of a Dirac structure. we have the following
definition.

Definition 17 A diffeomorphism ¢ : X — X 15 a symmetry of D if
(p7'X,¢"a) €D, forall (X,a)€D. (47)

A sufficient condition for a class of infinitesimal symmetries is provided by the next proposi-
tion.

Proposition 18 Let D be a closed Dirac structure, and let f be a vector fleld on X for which
there exists a smooth function F : X — R such that (f,dF) € D. Then f is an infinitesimal
symmetry of D.

In the case of explicit Hamiltonian systems, Noether theorem guarantees the existence of
conserved quantities in systems with symmetry. Its generalization for implicit Hamiltonian
systems exists. However. some regularity conditions are needed. We also need to define some
notations.

Assumption 19 Let D be a Dirac structure with constant dimensional P, and Go(z) =
span{g1(x), g2(x), ..., gm(x)}, where g1(x), g2(2), ..., gm(z) are linearly independent. Further-
more, let the m x m matriz [Ly, Ly H(x)] ., be invertible for all v satisfying Lg; H(z) =
Oforj=1,... m.

tg=l...

Remark 20 This assumption is satisfied e.g. when the J matriz in Representation [I is the
canonical J matriz (equivalently, wien w in Representation [l corresponds to the canonical
two-form), end the Hamiltonian is H(q, p) = $pT G(q)p+V (q), where G(q) is positive definite.
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When Assumption 19 holds, the constraint manifold of the system, which is determined by
the set of algebraic constraints in the system and defined as

X. & (x € X|dH(z) € Py(z)}, (48)

will be either empty or a submanifold of A" with codimension m, and will be equal to
7,9 )
X.={zeX|g (m)%(r) =0} ={r € X|L, H(z) =0, j =1,...m}, (49)

where g(z) = [g1(z) ... gm(2)]. In this case. the implicit Hamiltonian system can be reduced
to an explicit Hamiltonian system of the form

e (o), (50)

fe = Xp(xe) = Jelac) O
[

where H, : X. — R is the restriction of H to X,.
Now we are ready to state the generalization of the Noether theorem. It is given in the
following proposition.

Proposition 21 Let (X, D, H) be an implicit Hamiltonian system that satisfies Assumption
19. Let f be a vector field on X for which there evists a smooth function F such that
(f(z).dF(x)) € D(z) for allx € X.. Furthermore, let f be a symmetry of H, i.e. LyH(z) =0
forx € X.. Then Lx,, =0 on X.. In other words, I is a conserved quantity for Xy, on X..

The case where the symmetry is a Lie group is also treated in [S98]. In this case, we have
a Lie group G acting on &' by diffeomorphisms &, : X — X and ¢, is & symmetry of D for
every g € G. Then we have the following result.

Proposition 22 Let G be a symmetry Lie group of the Dirac structure D on X, with quotient
manifold X = X/G and smooth projection p: X — X. Then there exists a Dirac structure
mathcalD on X, defined by (X,a) € D if there exist X and o with p.X = X, a = p*a such
that (X, o) € D. Furthermore, D is closed if D is.

The corresponding result on reduction of an implicit Hamiltonian system (X,D, H) is as
follows.

Proposition 23 Let (X, D, H) be an implicit Hamiltonian system with a symmetry Lie group
G. and let X, D be as in the previous proposition. In addition, suppose that the action of G
leaves H inveriant, so that there erists a reduced Hamiltonian H : X — R with H = Ho p.
Then (X.D, H) reduces to (¥, D, f).
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Example 24 Consider again the inverted pendulum in Example 8. There exists a symmetry
Lie group in this system, corresponding to translations in x| and ;. i.e..

Dy (21, Y1, T2, Pz Pry P2z) — (L1 + Ky, 22 + Kopre prys paa)- (51)
The quotient manifold X here can be identified by (11, P12, D1y, P2z). Since the action of G

also leaves H invariant, Proposition 23 holds. The reduced implicit Hamiltonian system is
described by (in Representation II)

. ad _
i 000107 3y 0
I)I.E = 0 0 0 0 J}_?—l: + (:l:l —-’52) ,\ (5?)
Py -1 00 0| 2% n ' -
p 0 000 oH —(x1 -z
P2x 2L [ — (21 = &2)
O
duy
it
[0 (@-z) m —(ri-22) )| By | =0 (53)
dpy,
OF
dpaz |
where . .
H= %(Iﬁ; +l’%y) +ml’§x + mgyy. (54)

5 Concluding Remarks

In the previous sections, some notions related to implicit Hamiltonian systems have been pre-
sented. Different representations of implicit Hamiltonian systems have been given, conditions
for closedness have been discussed, and finally symmetry and partial reduction of implicit
Hamiltonian systems have been studied.

However, in this paper we have not covered the full reduction of implicit Hamiltonian
systems with symmetry. This has actually been discussed in [BS99]. and is a generalization
of the classical reduction theorem of explicit Hamiltonian systems {MR99]. There are two
approaches of performing the reduction: each of them consists of two steps. In the first
approach, we begin by reducing the dynamics to a level set of the first integrals of the
system, whose existence is guaranteed by Noether theorem. The reduced order system will
again have some symmetry Lie groups, although they are just subgroups of the original Lie
groups. The second step then accounts for reducing the dynamics of the (partially) reduced
system to a fully reduced system on the quotient manifold. On the other hand, in the second
approach we first reduce the dynamics of the system to the system on the quotient manifold.
The reduced system will still have some first integrals, and therefore further reduction can
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be performed. It is shown in [BS99] that these two approaches are equivalent, in the sense
that the reduced systems obtained by these approaches are isomorphic (see [BS99] for the
definition).
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