rough

The KdV Equation: A CDS 241a Project

by Mason A. Porter
3/17/98

1 Introduction

1.1 History

In recent years, soliton technology has become a piece of popular science.
Its propoonents have been churning out vast quantities of information in their
latest efforts to impress the scientific community and the world at large. How-
ever, the idea of a solitary wave (a “soliton”) has been present since the 19th
century. John Scott Russell, a Scottish engineer, sought to create a more effi-
cient hull design for canal boats. In August 1834, he stood beside Union Canal
near Edinburgh to observe the movement of a boat being pulled by a pair of
horses. When the rope pulling the boat snapped, the boat stopped moving
and its prow dropped down. Russell saw a smooth solitary wave emerge from
the water, gather around the prow, and continue along its way down the chan-
nel. The wave held its shape as it travelled, although it decreased somewhat in
height. Nevertheless, it was considered “common knowledge” that waves could
not behave in this manner, so Russell’s discovery was all but ignored.

Russell was eventually proven correct. Proof that solitary waves were theo-
retically possible came from Boussinesq’s equation in 1872 and the Korteweg-de
Vries equation in 1895. Some results were obtained, but the field lay all but
barren for another 70 years. In 1965, Martin Kruskal and Norman Zabusky
studied the KAV equation numerically and determined that nonlinear solitons
could occure naturally. They also obtained another striking result. Although
the equation is nonlinear and it was expected that two solitary waves travel-
ling at different speeds would interact with each other in a complicated fashion,
Kruskal and Zabusky found that the interaction between the waves was only
temporary and that the waves quickly recovered their original shapes and veloc-
ities. In fact, the name “soliton” arose from the fact that these elastic collisions
resembled those of colliding elementary particles. After this point, the theory
advanced exponentially.

1.2 Motivation

A common choice of configuration space for classical field theory is an infinite-
dimensional vector space of functions or tensor fields on space or spacetime. The



elements of such a vector space are known as flelds. As in the finite-dimensional
case, one can derive Hamilton’s equations for infinite-dimensional systems. This
leads to many familar partial differential equations, including the Korteweg-de
Vries (KdV) Equation. (For example, see chapter 3 of Introduction to Mechan-
ics and Symmetry by Jerrold Marsden and Tudor Ratiu [2].) The KdV equation
can be analyzed in other—more classical-—methods as well. Such an analysis
can be found in Linear and Nonlinear Waves by Gerald Whitham [3].

2 The Variational Approach

Let Z denote the vector subspace F(R) consisting of those functions u whose
absolute value decreases sufficiently fast as  tends to positive and negative in-
finity so that the formulas that appear in this paper are valid. This assumption,
moreover, simplifies the process of integration by parts considerably (because
it forces the boundary terms to vanish), and it thus justifies computations that
would otherwise be formal.

We will begin with a symplectic structure that is somewhat more complicated
than necessary. Pair Z with itself using the L2 inner product. Additionally, let
the KdV symplectic structure £ be defined by equation [1]. In this equation, @
denotes the integral of u from —co to z. This is also known as the primitive of
u. The form Q is clearly skew-symmetric. Note that if ul = % for some v € Z,
then a few lines of calculation verify equation [2]. This shows that £ can be
written in the form of equation (3.

We now need to prove weak nondegeneracy of . To do this, we check that
if v # 0, there exlsts a w € Z such that Q(w,v) does not vanish. Indeed, for
v#0, welet w= E The vector w does not vanish because v(z) — 0 as
|||l — co. Hence, by equation (3] leads to equation [4].

Suppose that a Hamiltonian H : Z — R is given. We claim that the corre-
sponding Hamiltonian vector field Xy is given by equation [5]. Plug equation
[3] into equation [6]. Using equation (5], we see that the corresponding Hamil-
ton equations take the form of equation (7], where the subscripts in equation
[7) and in the ones immediately following it denote derivatives. As a special
case, consider the Hamiltonian H); given in equation (8]. This leads to the
one-dimensional transport equation (u; + uu; = 0, equation [9]). One can
analyze this equation using the method of characteristics. As another example,
consider the Hamiltonian H> defined by equation [10]. This leads to the KdV
equation (u; + Buuz + Uzzz = 0, equation (11]), which describes shallow water
waves. The above are one two examples of a famous complete set of conserved
integral quantities. There are many methods to derive them, including the use
of generating functions.

One can analyze these conserved quantities by defining a Poisson bracket
called the KdV Bracket. Using the definition of the bracket ({F,G}(z) =
U Xp(2), Xc(2)), equation [12]), the symplectic structure, and the Hamilto-
nian vector field discussed above, one finds that the KdV Bracket {F,G} sat-
isfies equation (13]. One can use this to show that {Fj, F;} = 0, where i,j €



{0, 1,2, 3}, the Poisson bracket is the KdV bracket, and where the F; are defined
in equations [14]—[17). Recall that F3(u) is the KdV Hamiltonian.

2.1 Travelling Waves

Consider travelling wave solutions of the KdV equation. In other words,
let u = ¢(z — ct), where ¢ > 0 is a constant and ¢ is a positive function.
By direct substitution, it is easily shown that u satisfies the KdV equation
if and only if ¢ satisfies c¢” — 669’ — ¢’ = 0 (equation [18]). Integration
shows that c¢’ — 3¢% —~ ¢" = C(equation[19]), where C is a constant that will be
determined later. This equation is Hamiltonian in the canonical variables (¢, ¢')
with Hamiltonian function given by h(¢,¢_3(¢)? — 5¢* + ¢* + C¢ (equation
[20]). By conservation of energy, h(¢, ¢') = D. Therefore, ¢’ is expressed as in
equation [21]. Writing s = x — ct gives us equation [22].

We seek solutions that vanish at 400 and have derivatives that vanish there
as well. It then follows that C = D = 0, which gives us equation [23]. In this
equation, K is a constant of integration. For C = D = 0, the Hamiltonian
becomes h(¢,¢') = 3(¢')? — $6* + ¢® (equation 24). Our system then has
equilibria given by g—g = 0,% = 0 of (0,0) and (§,0). The matrix of the
linearized Hamiltonian system is then given by formula [25]. This shows that
(0,0) is a saddle point and (§,0) is spectrally stable.

Using the second variation criterion on the potential energy —§¢* + ¢° at
(§,0) shows that this equilibrium is stable. Hence, if (¢(3),¢'(s)) is a homo-
clinic orbit beginning and ending at (0,0), the value of the Hamiltonian on it is
H(0,0) = 0. From equation [24], it follows that (£,0) is a point on this orbit
and thus on equation [22] (with C = D = 0). If we take the initial conditions
at s = 0 to be ¢(0) = £,¢'(0) = 0, then it follows that K = 0, which gives
us equation [26]. Since ¢ > 0 by hypothesis, equation [26] reduces to equation
(27]). The solution is then expressed by equation [28]. This gives us the soliton
solution that is shown in equation [29).

3 Classification of Waves

There does not seem to be a precise definition of what exactly constitutes a
wave. One can give various restrictive definitions, but to cover the whole range
of wave phenomena it seems preferable to be guided by the intuitive view that
a wave is any recognizeable signal that is tranferred from one part of a medium
to another with some recognizeable velocity of propagation.

The signal may take many forms, but one can still two main classes of
waves. The first is formulated mathematically in terms of hyperbolic differential
equations, and such waves will be termed hyperbolic. The second class is less
easily characterized. However, it includes the simplest cases of dispersive waves
in linear problems, so such waves are known as dispersive. Note that there are
some waves which are classified as both of the above types of waves.



3.1 Hyperbolic Waves

The prototype for hyperbolic waves is taken to be the wave equation ¢:t =
c2A¢ (equation [30]), where A represents the Laplacian operator. Hyperbolic
equations can be defined in a manner that depends only on the form of the
equation and is independent of whether explicit solutions can be obtained or
not. However, the same cannot be said of dispersive waves.

The wave equation is linear, so it is clearly does not provide a complete pic-
ture of hyperbolic waves. The most outstanding new phenomenon of the theory
of nonlinear hyperbolic equations is the appearance of shock waves, which can
be seen physically as discontinuities in physical quantities like pressure, density,
and velocity. For example, the blast waves of explosions and the sonic booms
of high speed aircraft are examples of shocks. Indeed, the entire machinery of
nonlinear hyperbolic differential equations had to be devoloped to explain and
predict such phenomena. The theory builds up linear equations to quasi-linear
and ultimately to fully nonlinear coupled hyperbolic equations. See [3] for an
extensive study of hyperbolic waves.

3.2 Dispersive Waves

Dispersive waves are considerably more difficult to classify than hyperbolic
ones. The protoype for a dispersive wave is based on the form of the solution
rather than that of the equation. A linear dispersive system, for example, is any
system that admit solutions of the form ¢(z,t) = acos(kz —wt) (equation [31]),
where the frequency w is a real-valued function of the wave number x. The
phase speed is then @(%) and waves are said to be dispersive if this quantity is
not a constant. The terminology refers to the fact that the solution will consist
of the superposition of several modes with different values for x. If the phase
speed is not the same for all phases, the modes with different x will propagate
at different speeds. This will cause the wave to “disperse.” The definition can
be modified somewhat to say that a wave is dispersive if w’(«) is not a constant.

The discussion of the classification of dispersive waves stems from certain
types of oscillatory solutions representing a wave train. Such solutions canbe
obtained from a wide variety of partial differential equations and several integral
equations as well. It is the disperson relation w = W (k) that characterizes the
problem. The source of this relation is quite important. The KdV equation
(¢t + co®z + VPzzz = 0, equation [32]), for example, is a dispersive wave with
dispersion related given by w = cox — vx3 (equation [33]).

We obtain solutions for dispersive waves that are more general than the
form in equation [31] by superposition to form Fourier integrals. (We cannot
just restrict ourselves to summation because some dispersive equations lead to
singular eigenvalue problems.) Formally, one can then find using the Fourier
integral theorem a solution that fits the given initial and boundary conditions.
This solution takes the form shown in equation [34], where W(z) is the dis-
persion relation, and we can (formally) find a solution for arbitrary F(z). We



can study the dispersion of these waves by various asymptotic expansions of
equation [34].

A key concept that arises from such analysis is that of group velocity
C(r) = %’%. The oscillatory wave train arising from equation [34] has a variable
wavelength. The different values of the wave number propagate through this
oscillatory train, and the speed of propagation is the group velocity. One also
finds that the energy propagates with the group velocity.

Let us now consider the KAV equation as an example of nonlinear dispersion.
In 1895, Korteweg and de Vries showed that long waves in (relatively) shallow
water could be described accurately by the nonlinear equation n, + (co+c1m)n= +
vnzzz = O (equation [35]), where cg, ¢y, and 1 are constants. If we linearize the
equation by considering the small amplitude case, the case ¢, 7 term drops out.
The resulting linear equation has the solutions 7 = acos(kz —wt),w = cok — vx>
(equation [36]). If one expands the amplitude as Stokes did in 1847 (see [3]
for this analysis), one can give an improved approximation to the solution of
the original nonlinear equation. Korteweg and de Vries showed that periodic
solutions n = f(#),8 = sz — wt of equation [35] could be found in closed form
in terms of Jacobian elliptic functions. Because f(#) was found in terms of the
elliptic function cn(#), they termed the solutions cnoidal waves. The results of
their work is consistent with Stokes’ conclusion that the surface elevation 7 in
a planar wavetrain on deep water can be expanded in powers of the amplitude
a. In the case of the KAV equation, the existence of periodic wavtrains is
demonstrated explicitly. Additionally, f(8) contains an arbitrary amplitude a,
and the solution includes a specified dispersion relation between w,x, and a.
Note that the most important nonlinear effect is the inclusion of the amplitude
in the dispersion relation.

The analysis did not end there. The limit of cn{#) as the modulus tends to 1
is the hyperbolic secant. This gives us the solution described by equation [37].
In the limit, the period of the solution has become infinite, and the solution 5
represents a single hump of positive elevation. It is the “solitary wave” that was
discovered experimentally by Scott Russell in 1844. It was previously analyzed
on an approximate basis by Boussinesq in 1871 and by Rayleigh in 1876. The
inclusion of the solitary wave with the periodic wavetrains in the same analysis
was a significant step. The equation for the velocity of propagation U in terms
of the amplitude is the remnant of the dispersion relation in this nonperiodic
case.

The KdV equation originated in water waves, but it was later realized that it
is one of the simplest prototypes that combines nonlinearity and dispersion. In
this respect, it is analogous to Burgers’ equation, which combines nonlinearity
with diffusion. The KdV equation has now been derived as a useful equation in
other fields.

In recent years, other simple equations have been derived and also used as
prototypes to develop and test ideas. Two examples of these are a generaliza-
tion of the linear Klein-Gordon equation (equation [38]) and a generalization of
Schrodinger’s equation (equation {39]). The Sine-Gordon equation—an example
of equation [38] in which V/(¢) = sin(¢)—and equation [39] both share with the



KdV equation the property of having solitary wave solutions as limiting cases.
Solitary waves are obviously of interest, as they are strictly nonlinear phenom-
ena with no counterparts in linear dispersive theory. Their behavior in a highly
nontrivial manner. For example, solitary waves retain their individuality under
interaction and eventually emerge with their original shapes and speeds. More-
over, these solutions are but one class obtained in a general analytical approach
on these equations. There are further results concerning the solutions of these
equations under arbitrary initial conditions. See [3] for much of this analysis.

4 Water Waves

4.1 Introduction

Many of the general ideas about dispersive waves originated in the problems
of water waves. Consider an inviscid incompressible fluid (such as water) in a
constant gravitational field. Denote the spacial coordinates by (x1,%2,y) and
the corresponding velocity vector u by (u1,u2,v). The gravitational acceleration
g is in the negative y direction. Also assume that the density p is constant and
that there is an external force F = —pgj, where j denotes the unit vector in the
y direction. The equations are written as formulas [40] and [41]. In the case of
water waves, one can assume that the fluid is irrotational (in other words, that
curl(z) = 0) and that « = V¢ for some velocity potential ¢. This gives us the
Helmholtz equation (equation [42]), where w = curl(u) is the vorticity. One can
use a variational formulation to find equation [43] for the velocity potential ¢.
In this equation, y = —ho(x1,2) is the ocean floor, and y = n(z1,z2,1) is the
surface.

4.2 Linearized Water Waves

The above analysis can be continued quite extensively (see chapter 13 of [3]),
but let us consider the case of linearized water waves. For small perturbations
on water initially at rest, ¢ and 7 are small and we can justifiably linearize
the equations to obtain a leading order analysis. In the case of water waves,
the waves propagate horizontally in the sense that the elementary sinusoidal
solutions take the form in equation [44). Note that these two formulas are
oscillatory in z and ¢ but not in y. Extensive analysis in this case is also possible,
but I will let the interested reader see the details in [3]. One important point is
the dispersion related (equation [45]) that one obtains as a result of this analysis.

The dispersion relation has two modes w = +W(x), represented by the
positive and negative square roots. Note that there is not a branch point at
&£ = 0, though on a first glance it may seem as though there is one. W does
have branch points, however, and the other zeros and infinities of the tanh(rho).
These are khg = +nwi and khg = +(n — %m’, where n is a natural number.
The functions W (k) and —W () are both single valued analytic functions of

in the complex plane cut from —ooi to ——2’—;;"; and from 5’7':; to oot.



The general solution is obtained by Fourier transforming equation [46] with
two modes corresponding to w = W (x). Two initial conditions are needed
to determine the arbitrary functions F(x) that appear in the transforms. Ad-
ditionally, any prescribed function ¢ must satisfy Laplace’s equation, because
otherwise compressibility effects will come into play and change the initial dis-
tribution rapidly to some new effective initial distribution. For a delta function
initial condition, the solution is given by equation [47]. One can then analyze
the asymptotic behavior of the one dimensional solution using the method of
stationary phase.

4.3 Shallow Water Theory

For “gravity waves” with xho — 0, the dispersion relation is approximately
w? ~ ghok? (equation (48]), and the phase speed co given by equation [49] be-
comes independent of x. The Fourier superposition effects drop out, and we
obtain the d’Alembert solution of the wave equation n = f(z — cot) + g(z + cot)
(equation [50]). Dispersion effects do not appear in this approximation. We
will soon analyze shallow water waves as the first terms in the expansion of
(’—‘{1)2. By going to the next order, we will pick up small dispersive effects. The
linear equations lead to the wave equation, but one can obtain a hyperbolic
system of partial differential equations using the methods in Part I of [3]. In the
one-dimensional case, we may also decouple the equations using the method of
Riemann Invariants. We obtain what is called a turbulent bore. This break-
ing phenomenon is one of the most interesting problems in water wave theory.

When gradients are no longer small, the approximation ',’—2?- is no longer valid,
so the solution one obtains under this approximation cease to apply long before
breaking occurs. In fact, shallow water wave theory goes too far; it predicts
that all waves that carry an increase of elevation eventually break, but empiri-
cal evidence has established that some waves never break. It is the dispersion
effects that we have so far neglected that inhibit breaking.

Let us now incorporate these dispersion effects into our analysis. One can
do this by more formally expanding in the small parameter (ﬁ,ﬂ)2 and including
one more term in this expansion than we did previously. Consider the one-
dimensional case where hg is a constant. If one restricts oneself to waves moving
only to the right, one obtains the KdV equation. For waves moving only to the
right, the first two terms in the dispersion relation are w = cok — vx% and
¥ = écoh%, which correspond to the equation n; + conz + YMzzz = 0. In the
nonlinear shallow water wave equations (equation [51]), waves moving to the
right in undisturbed water of depth hy satsify the Riemann invariant given
by equation [52]. After a few lines of grunge, we find that if we approximate
the nonlinear terms to first order in -, one obtains the Korteweg-de Vries
equation (equation {53]). The linearized equation has a disperion relation given
by equation (54], which is consistent with what we obtained previously when »
is small and has bounded phase and group velocities when & is large.

The KdV equation does not apply only to water waves. It has, for example,
arisen in plasma physics. Moreover, it can be derived in other manners. For



example, it can be derived via a perturbation expansion. One can consider any
system in which the Boussinesq equation describes a wave and obtain the KdV
equation by specifying that waves must be travelling to the right. See [3] for
examples of such analysis. Whitham’s text also includes a solution of the KdV
equation. It takes the form given in equation {55}, where the modulus s of the
standard Jacobian elliptic function is given by equation [56], and the wavelength
A is given by equation [{57]. In the above equations, K (s) is the complete elliptic
integral of the first kind and X = z — Ut. Additionally, a = & and § = 2.
The modulus s measures the relative importance of nonlinearity to dispersion.
In the linear limit as s — 0, cn(§) — cos(£), whereas in the solitary limit
as s — 1, cn(€) — sech(€). Note that the cnoidal waves are solutions of the
KdV equation subject only to the restriction that 0 < a < §. However, the
equations are valid only when the parameters a and § are small. Like solitary
waves, they obtain a maximum height when crests peak.

5 Conclusion

The analysis in this paper is far from exhaustive, as there is much more to
be said about the Korteweg-de Vries equation. One can, for example, compare
and contrast KdV, Boussinesq, and Stokes' waves. They are found with similar
analysis, but some of their properties are strikingly different. Additionally,
one can analysis the breaking and peaking of waves. The nonlinear shallow
water equations that neglect dispersion lead to the breaking associated with
hyperbolic systems. In such breaking, the solution develops a vertical slope and
a mulitvalued profile. Because of dispersion, this does not occur in solutions
to the KdV equation. One instead obtains solitary and periodic waves that are
not found in nondispersive shallow water theory.

One can also add a second derivative term to the KdV equation and analyze
the structure of bores. One can justify the addition of this term because it can
represent dissipation. This term is necessary because the KdV equation has
no solutions that propogate without changing shape. Yet another important
discussion involves interacting solitary waves. The numerical analysis of the
KdV equation is also extremely important. With the exception of the numerics,
these topics are covered extensively in [3]. The interested reader is invited to
pursue this subject further.
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