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1 Introduction

The goal of this paper is to give a brief introduction to symplectic integrators as well
as describe some interesting results. It relies primarily upon the results of 5 main
papers [4],[5],[6],[8] and [9], in an attempt to give a background for ongoing research
in this area.

2 Symplectic Difference Schemes

2.1 What Are They?

Definition: A symplectic difference scheme is a rule which assigns to every Hamil-
tonian function H(z) a symplectic map D}; depending smoothly on a parameter 7.

D}y needs to approximate the solution of a Hamiltonian system £(z) = J-'dH(z),
SO we require

Dy(z) ~ Dj(2)

; = J7YdH(z2) + O(z). (1)
For instance, the midpoint rule
k+l 4 Lk
A= gk TJ-ldH(%) )

is a first order symplectic difference scheme, which approximates the flow of a Hamil-
tonian system.



Testing whether or not a difference scheme is symplectic is usually a straightforward
calculation on the canonical symplectic structure. If (g, p) are canonical symplectic
coordinates, and D}(q,p) = (§,7), just show dg A dp = d§ A dp. The order of a
symplectic scheme will not be discussed in this paper, but there are ways to obtain
higher order symplectic schemes from first order ones.

2.2 Creating Symplectic Difference Schemes by Generating
Functions

Determining whether a scheme is symplectic or not can be a straightforward calcula-
tion, but constructing a symplectic sceme which approximates the flow can be much
harder. One technique for constructing such schemes is by use of generating func-
tions. The basic idea is to find a generating function which approximates the solution
of a time dependent Hamilton-Jacobi equation and use this function to generate a
symplectic map which approximates the flow of the Hamiltonian system.

The main fact used in finding a generating function is that the graph of a symplectic
transformation is a Lagrangian submanifold of the product space. Choosing symplec-
tic coordinates (g, p) on our space, let S(q,p) = (g, p) be a symplectic transformation.
Look at the graph of this map gra(S) = {((3,5),(4,p)) : S(¢,p) = (§,5)}. Then by
definition d§ A dp — dg A dp = 0 on gra(S). In other words, gra(S) is a Lagrangian
submanifold in (R*",w,) where w; = djAdf—dgAdp. In addition, R*" has a standard
symplectic structure w, with symplectic coordinates (w,®), w; = dw A dwb. More-
over, a submanifold which is locally Lagrangian in (R*",w;) can be written locally as
{(w,®): @ = Z2} for some function U.

Definition: A generating map is a linear transformation ® : R — R*"_for which
®"w; = wy. In particular, ® maps Lagrangian submanifolds of (R*",w, ) to Lagrangian
submanifolds of (R*",w,).

Therefore, ® maps gra(S) to a Lagrangian submanifold of (R**,w,) which can lo-
cally be given in terms of some function U. This U is called the generating function
corresponding to the generating map ®. Different generating maps & will give rise
to different generating functions U, which will determine different symlectic transfor-
mations S.



Example 1. Let & be given by

—Joan  Jon
o= ] @

®(5,4,p,9) = (@, w).

Then U gives rise to the symplectic transformation S is defined by

z—z—-—Ja—U z+z

This is called Poincare’s generating function.e

Example 2. Another type is given by

I, 0 0 0
0 0 I, 0

®=| 9 1. 0 0 (5)
o 0 0 I,

Where U gives rise to the map S defined by

U, . 8U,
p——a—q(q,q),p— 3a (4,9) (6)

This is known as a generating funcion of the first type. o

For a general generating map @, suppose Uz(w, 1) is the generating function for the
phase flow ¢, of the Hamiltonian function H. Then Uy satisfies the Hamilton-Jacobi
equation

U, -1 au, _
T = Hopryo® ' (w, aw) (7)

Where pr; is the map (Z,2) — z. So to get our symplectic scheme, find an approx-

imate solution ¢ to (7) and solve w = ‘g“



2.3 Example

The following is an example of the above process for the construction of a symplectic
integrator to approximate a solution to the Henon-Heiles equations

-1

1 0 0 10 n
dlp|{_| 0 0 01 P2 (8)
dt | @1 -1 0 00 ¢ + 2q1g2

g2 0 -1 00 9@2+4 — ¢

based upon an example in [4]. The above equations determine a Hamiltonian system
with Hamiltonian

1 1 2
H(p1,p2,01,02) = 5(p1 + p2) + 5(af + 63 + 20102 — 392)-

To construct an integrator, first choose our generating map to be

I, 0 0 0
0 0 0 —I,

=1 0 . 0 o0 )
0 0 I, 0

which is known as a generating map of the second kind. If M is our symplectic
manifold, with canonical coordinates (¢, p), and S is our symplectic map such that
S5(q,p) = (G, p), then this map ® determines

_ oUu 86U
w= (q,p),lb = (—pa —q) = (a_q.a a_p)$

with U(g,p,t) the corresponding generating function. This leads to the Hamilton-
Jacobi equation

oU ou
5 = " Hp, —a—p)-

Approximate the solution by the first order taylor’s series expansion with respect to
time to get

UG, p) = Uo(q,p) + U1 (G, p).
Let Us(q, p) = —@p, and from above U;(g,p) = —H(p, q). So

u(q,p) = —qp— TH(P?Q)
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and

) Mg

leads to the difference scheme

it = p} — 7(q} + 2¢743)

3™ =p3 — (7 + (¢)* — (3)?)

! = qf + Tpit (10)
‘n+1

gt = q3 + rp3tt.

The figures at the end compare this symplectic difference scheme (10) to a Runge-
Kutta second order method. The first figure shows the error of the two methods in
computing a solution curve with respect to the solution of a Runge-Kutta method of
order 4. The second figure shows the values of the Hamiltonian under successive time
steps.

From the first figure, it apperars that RK2 might be a better method to run than our
symplectic scheme because the error tends to be a little less. But, the second figure
shows the symplectic method tends to preserve the Hamiltonian better on average.
Since it is expected that our actual solution has constant Hamiltonian, the symplectic
method is more accurate when integrating over long time intervals. This even puts
to question whether to use the second order symplectic method instead of RK4 itself.

3 Constrained Symplectic Difference Schemes

The previous section showed examples of how to create symplectic schemes on R".
The present section takes our created symplectic scheme and restricts it to a subman-
ifold. As seen by example [9], the new scheme may or may not be symplectic on the
new space.

Let a Hamiltonian system be given on a symplectic manifold M constrain the dy-
namics to a submanifold N C M. Suppose a function ¢ : M — V is given, where
V is a linear space, such that N = {z € M : ¢(z) = 0}. We want to construct an
integrator S : N — N which approximates the constrained dynamics on N.



Example: Shake and Rattle

As an example of constaining a symplectic difference scheme we look an the Shake
and Rattle schemes given in [9]. Consider a system of vibrating molecules which lead
to the Hamiltonian system of the form

Mg=p
p=-Y,V(g). (11)
Constrain the system to a submanifold N by fixing some bond lengths and angles,
N ={(g.p): 9(g9) = 0.g'()M'p = 0}. (12)
This leads to the new system
Mg=p
p==V,V())+4(¢)7 (13)
g(p) =0.

The Hamiltonian equations (11) can be approximated by a symplectic difference
scheme similar to those defined above. One such method is known as the Verlet
scheme

Gn+1 = qn + hM‘an+%
h
Pnsl =Pn— 5 Ve V(gn) (14)
h /7
Pny1 = pn+§ -5 Va ! (Qn+l)
where 4 is the time stepsize.

This symplectic difference scheme can be adapted to one on the constrained system
(13) in different ways. One “constrained” method known as the Shake algorithm is
given by:
Gn+1 = ¢n + hp,,+;2_
h h .,
Pry} =Pn— 5 Vg Vig) + 59 (¢2)"An

9(gn41) =0 (15)
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h h .
P41 = Pnyl — 5 Ve V(gn+) + 59 (‘In+1)T/\n+1

where we assume M = I. This method is not a symplectic method on N because
although g(gn) = 0 at every point, we do not generally have g'(g,)M ~'p, = 0, even if
we start on N. But looking at (15) as a method on Ny = {(g,p) : g(p) = 0}, (15) does
preserve the symplectic form on this new manifold. So (15) is a symplectic difference
scheme on Nj.

The Rattle method is a correction to the Shake method. The Rattle method projects
the momenta pn4; of the Shake method onto the manifold N. This makes the Rattle
method map from N to N symplecticly. It is given by

n+1 = qn + hppiy

h h .,
Pty = Pn = 5 Vo V(ga) + 59(2:) "2
9(gn41) =10 (16)

h h .
Prtr = (I = H(gns1))(Pnyy — 3 Va V(gns1) + 59 (gn41) T Ans1)

where H(q) = ¢'(9)"(g'(9)g'(¢)7) "¢ (g) is the projector matrix.

Although this method is symplectic and preserves the submanifold N, it may not
be the best algorithm to use in general. The Shake scheme is still symplectic on
No and is easier to implement than the Rattle scheme. According to [9], if the
constraint relationships are solved accurately enough, the Shake and Rattle schemes
give equivalent results. Therefore it would be ideal to use a sequence of Shake scheme
steps followed by one Rattle scheme step.

4 Invariance

In addition to preserving the symplectic structure, difference schemes may also con-
serve other quantities of the Hamiltonian system. This section examines some quan-
tities a symplectic difference scheme may conserve and how to construct them.



4.1 Invariance of Difference Schemes Under Phase Flow

Definition: A symplectic difference scheme D} is invariant under symplectic coor-
dinate transformation T if T~! 0 D}; o0 T(w) = Dropy(w).
Example 1. The midpoint difference scheme is given by the formula

2k _ ok _ J“]dH(Zk+12+ ok

Suppose T is a symplectic coordinate transformation such that 7(w) = z for another
coordinate w. Then the midpoint scheme on w takes the form

)- (17)

k1 _ ok k41 o,k
w_T_w = J"dH(T(w—T+i)) (18)

because the function H now has the form H o T. Rewriting (17) in terms of w
coordinates, implies

k+1y _ k k+1 k
T(w™*) - T(w )=J“dH(T(w ) + T(w")
T 2
For general symplectic coordinate tranformation T', the right hand sides of (18) and

(19) are not equal, so lead to different difference schemes. If we assume that T is
linear, then (19) becomes

). (19)

k1 _ ok k1 ok

T(w wh) _ J-de(T(u)) (20)
T 2
k1 _ ok k1 ok

JT(“’_T_“’) = dH(T(%)). (21)

Since the midpoint scheme is invariant under the linear symplectic transformation
group, and since the quadratic functions generate a one-parameter group of linear
symplectic transformations {6], by the theorem proved next, the midpoint scheme
preserves quadratic first integrals.e

Theorem 1. A symplectic difference scheme D}; preserves a first integral f of H up
to a constant

foDI,:f—i-c

if and only if the scheme D}, is invariant under the phase flow of f.
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proof: [6].0

The next question to ask is whether or not a symplectic difference schemes can be
created which preserve all the first integrals of a Hamililtonian H. Supposedly this
would give us best approximation to our system of all. The answer is no.

Theorem 2: Assume H has no other first integrals besides itself. If D} is a sym-
plectic difference scheme which preserves H exactly, then it is the exact solution for
the Hamiltonian system up to a reparametrization of time.

proof: D} was defined earlier as being a one-parameter symplectic map depending
smootly on the parameter 7, with D} = Id. Let F(z,7) be the Hamiltonian function
for this one-parameter family of symplectic transformations. Because H o D} = H,
we have {F,H} = 0, ie. F is a first integral for fixed 7. So F(z,7) = Fy(H(z),7)
for some F; because we already said H is the only first integral. Now look at the
Hamiltonian vector field of F(z,7),

J7YdF(z,7) = JTV(F(H(2),7)) = J'dF(H(2),7) o dH(z). (22)
On a level set H(z) = k, this becomes
= J 'dF(h,7)odH(z), (23)

which is just multiplicaiton by a scalar depending on 7. Therefore, the vector fields
generated by F and H differ oly by a scalar multiple of 7. Hence the phase flow of F
restricted to H = k differs from that of H by a reparametrization of time. O

Now if our Hamiltonian system has other first integrals besides H, we can reduce
our space by the one-parameter groups generated by the first integrals and end up
with a difference scheme on the reduced space. If this scheme is symplectic then it
contradicts Theorem 2 because the only first integral left is H.

4.2 Invariance of Generating Functions

Definition: For a fixed generating map ®, a generating function is invariant under
T if there is a transformation A : R — R*" independent of ¢, such that for local
symplectic transformation ¢,

UT—‘°¢7°T = U¢r o A'

9



where Uy is the generating function for the symplectic map ¥ and T is a symplectic
coordinate transformation.

Example 1. Poincare’s generating function is invariant under any linear symplectic
transformation [6].e

Now using Theorem 1 from above, we get the following result.

Corollary 1: Suppose H has a first integral f, and that the generating function is in-
variant under the phase flow of f. Then the symplectic difference scheme constructed
by this generating function preserves f up to a constant.

proof: This follows directly from Theorem 1 if it can be shown that if T is a symplec-
tic map under which the generating function is invariant, then the difference scheme
for H, constructed by this generating function, is invariant under 7. Suppose the
generating function is invariant under T'. Then

UT’10¢’HOT = U'ﬂi (o) A
for some A by definition. Where ¢}; is the Hamiltonian flow for H. Since ¢} is the
flow of the Hamiltonian H, let ¢%;,+ be the flow of H o T, then
T-l (o] ¢t}, ol = ¢tI'I°T'
Hence
Ué}ioT = Ué‘H oA
Expanding both sides to its taylor series expansion, we see
d d
E |t=0 U¢.;!°T = d_t, le=o Uc&;i oA.

So g g

] 1

o7 =0 Uy, = o7 =0 Ur=togy0r
by invariance of the generating function. So approximating up to k terms to get the
difference scheme
Djur =T oDjoT

o
This theorem gives us a more general idea of how to construct symplectic difference
schemes which preserve the desired quantities. In theory, pick an approximation to

our Hamilton-Jacobi equation which is invariant under the phase flow of f, then the
difference scheme will automatically conserve f.
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5 Symplectic Difference Schemes on T"M

Now examine our results above on a special type of symplectic space, T"M. Let T"M
have the canonical symplectic structure w = dg A dp and take ® : T*M x T * M —
(M xM),®(p,q,p,9) = (—P,p,§,q) as the generating map. This is a globalization
of the first type of generating map. Identify Ty M x T; M with Te(M x M) and
let §: T"M — T"M be a symplectic transformation. So now ® maps gra(S) to a
Lagrangian submanifold L in T=(AM x M).

Definition: Suppose L satisfies the following condition at (go, po):
The projection pr : (—p,p,4,9) — (3,9) € M x M is a local diffeomorphism at
(Po, 90) where S(po, g0) = (Do, Go). Then S is called free at (po, o).

Locally, L can be written as {(%%, %, g,q)}, for a local funcion U on M x M, hence
S can be defined locally by p = %, p= ‘;—U. Now suppose the group G acts on M
and hence symplectically on T*Af. Then we have the momemtum map defined by

< J(p,q),€ >= (p,€r-a(q)), which is equivariant. Then by [], leads to

Proposition 1. Suppose § is a symplectic tranformation preserving J and free at
(Pos o), then the generating function Us can be defined on an open set in M x M
containing (go, go) and invariant under the induced action on G on M x M.

proof: [6].0

corollary 2. Symplectic difference schemes constructed via the first type of gener-
ating function preserve the momentum J.

proof: This follows from proposition 1 and corollary 1.0

6 Lie-Poisson Difference Schemes

The goal of this section is to outline the process of reducing a symplectic difference
scheme on a special symplectic manifold T*G to a scheme on T°G/G = G*.

Assume a generating function U of the first type exists, and that U and Hamiltonian
H are invariant under the group action. The idea is to reduce the generating function
U to a generating function on G*. To do this, the Hamilton-Jacobi equations on T*G
are reduced to equations on G*.

11



Proposition 2. If U is group invariant, there is a unique function U, such that
U(g,9) = UL(g7g0), and the left reduced Hamilton-Jacobi equation is the following
equation for the function Uy : G — R.

au,
—-é—t£ + H(-TR;0dUL(g)) =0

where Hy, is the left reduced Hamiltonian on G=.
proof: [8].0

The flow of Hy, on G* is then given by the poisson transformation generated by Sp,
defined as follows:

Define ¢ € G by solving llp, = —=TL; o dyUr. Then set Il = Ad;_ap,- So the
transformation is Ilo — II, ie. Il = Ad;_,(—TL;d,U.). Another way to look at this
is that on TG we have

Jr(g,p) = R;(p), Jr(q,p) = L q(p).

Then a poisson tranformation ¢o(z) = Z on G~ generated by a generating function U
is given by oU oU

¢ulz) = 2, J(0: 5 5) = 2, r(g, 5 ) = 2. (24)
Let S : T°G — TG be a symplectic map preserving Jr, given by a generating
function U. Then by Corollary 1, U is invariant under the action of G on G x G,
and from earlier U = Ur(q,g~"). Therefore S can be reduced to S;, : G — G-, by
letting Sp{p) = Jro S(e,p). And so can be given by (?).

Ge-Marsden give a general way to construct first order Lie-Poisson integrators. Let
H : G* — R be a Hamiltonian function and let Uy be a function which generates a
poisson transformation ¢g : G — G*. Let Up; = Up + AtH(L;dU,). For small ¢,
this generates a poisson transformation ¢a; : G© — G~.

Proposition 3. The algorithm I1* — IT*+! = ¢3! 0 ¢a,(I1%) is a first order poisson
difference scheme for the Hamiltonian system with Hamiltonian H.

7 Hamilton-Poisson Generalization

In [5) Ge Zhong describes a way to generalize the construction of Lie-Poisson in-

tegrators to spaces which are just Poisson. Such systems may arise when infinite
dimensional systems are descretized to finite dimensional ones.

12



The Lije-Poisson case depended upon generating functions in order to create our sym-
plectic difference scheme, which is then reduced to G*. So we first need to define a
notion for generating function on a general Poisson manifold P.

Definition: A pair (S, J) is a generating pair for a Poisson manifold P if:

1. S is a symplectic manifold, J is a Poisson map from Sto Px P~,J: 8§ —
P x P~ (P~ is the same manifold as P with the poisson bracket multiplied by -1).

2. J maps local Lagrangian submanifolds in S to the graphs of local Poisson
automorphisms of P.

And is a strict generating pair if it satisfies the extra condition

3. There is a Lagrangian submanifold Lg such that J maps Lo diffeomorphically
to the graph of the identity automorphism of P.

Definition: If we have a generating pair (S,J), J : § — P x P~, then adopting
local canonical coordinates (q,p) on S, a Lagrangian submanifold L can be given by
a generating function U

and the Poisson transformation A : P — P whose graph is J(L) can be written in
terms of U as oU

3

U is the generating function of the Poisson transformation A.

oU
A(Z) =2z,z= ']l(qe a_)’i = J2(q’
q

Example 1. (TG, J = Jp x Jr) is a generating pair
J=JyxJp:T°"G— G" x G~

where Ji, Jr are the momentum maps for the left and right actions of G. Then a
generating funtion U on G gives rise to a Poisson transformation

A(z)=2,2=RdU,z = L;dU
.

Theorem 8. Suppose (S,J) is a generating pair. If U(g,t) are the generating
functions for the Lagrangian submanifolds L* = {(q,dU(q,t))}, such that the images

13



J(L') € P x P~ are the graphs of the phase flow of the Hamilton-Poisson system
F = {F,H}, then U(q,1) satifies the Hamilton-Jacobi equation

U, = Ho Jy(q,dU).
So in the same manner as for the symplectic case, we can construct Poisson trans-

formations if there exists a generating function, or in this case a generating pair. To
understand when generating pairs exist, we need to look at a few more results in [5].

Definition: A realization of a Poisson manifold P is a Poisson map from a symplectic
manifold S to P,
J:§— P

If a realization J is a submersion, then we say it is a full realization.
Definition: A full dual pair is two full realizations
J:S—PJ:S— P
provided that kerTJ,, kerT J; are symplectic orthogonal complements of each other.

Theorem 4. Suppose that (S, P, J;, J;) is a full dual pair, then JyxJ, : S — Px P~
maps every Lagrangian submanifold L intersecting the level surfaces J; = constant,
J2 = constant transversely to the graph of a (local) Poisson transformation of P.

Theorem 5. Suppose that Jy, J; are full realizations of P, P~ respectiveley,
J:S— P J;:§— P
then (S, J), where J = J; x J; is a generating pair if and only if J;, J; is a dual pair.

So the construction of Poisson integrators by generating functions will depend on the
existence of dual pairs. The proofs are omitted because they require a framework too
lengthy to be included here, but can be found in {5].

14
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