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POISSON BRACKETS ON SUPERFLUIDS

In this paper, a set of noncanonical Poisson brackets
on superfluid “YHe are formed. These noncanonical brackets
involve the physical variables P, for the momentum density [,
for the mass density S, for the entropy density. Then, by
the same method, a set of noncanonical brackets are found
for rotating superfluid “He.

The Hamilton equations are found for two-fluid

hydrodynamics in canonically conjugate variables, [1]. To

find Hamilton's equations for
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the new variables x,0,),f are introduced such that
V, = \/ =

P =SUB ++ VX

Msis defined as the superfluid component of the velocity, Vm
is the normal component, and & is the thermodynamic energy.
The new variables form the canonically conjugate pairs (/°,x)

(Svﬁ), and (€,Y), [2]. Using these variables, the canonical

Poisson bracket is formed,
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where 2/ are the phase space coordinates, and

o, IB
S'(“IO ) [3].

This is useful, but recent progress has been made by the use
of noncanonical Poisson brackets formed on the physical

variables}?}The resulting bracket takes the form
ol = (5 o fC
LF.& ‘gsw S X
where SEZFX; is a functional derivative, and {ijay be
dependent on dynamical variables and their derivatives. The
noncanonical Poisson bracket is the goal of what follows.
To arrive at the Poisson brackets for physical
variables, the method described by Dyzaloshinskii and
Volovick is used, [4]. This involves the use of quantum
mechanics where the Poisson bracket is replaced by the
commutators [a[@]. The commutators are found for the

physical variables and then are passed back to the classical

limit according to
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This method makes finding the Poisson brackets easy because

of the commutator relation

A A A A A ‘] [:E ZE? 52i[] = O
[2,08£ 7]+l 12, 81] + [B. el = o .
Thus, when the final bracket is obtained, it automatically

satisfies Jacobi's identity, [4].
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An example of this method is seen in the work by Landau
[S] with temperature at absolute zero. He found the density

and momentum operators to be

P(r) = quc\&(m-r\
T
)

Biey = B T (Vd(ar0) ¥ E(nm W),

These equalities lead to the commutator relations
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Then passing over to the classical 1limit by (1), the
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are formed. Calculations using these brackets will lead to
the Euler equations, [4]. Similar operations lead to
brackets for the spin operator.

The quantum mechanical commutators described above are
associated with a Lie algebra of the corresponding groups of

transformations. In this case, the momentum operator is
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the generator of the group of movements, and the spin
operator is the generator of the group of rotations in spin
space.

For the general case, let G be the group where it is
desired to relate the hydrodynamic variables a,b,c..., to
“A,B,C..., which are elements of an algebra of the group G.
The method for finding the bracket is the same as that

in L.1.6, [6]. The bracket is given by

13,13 =l CAd 03

According to the notation in [4],

) [6].

A—> 9 /;\6-’ (2a)
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(2b)

(2¢)
X . .. e
where & (x)are local infinitely small "angles," [ are

generators of the local transformation, and % is a constant.

These yields the bracket

§ A
)LLKU‘\) A(V)] T S x

For the superfluid case, the dynamics must be changed
to two-fluid dynamics, where one fluid corresponds to the
usual case, and the other corresponds to the condensate
phase of the liquid. This means that the number of

independent variables includes the phase Lpa). Actually, the
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energy of the system does not depend upon the phase itself
ﬁm“ but upon its gradient. The velocity of the superfluid is

defined by
\/S = YCVCP

C(,L'(\l stUa

Now the bracket including the phase d(X)is found by the
method described above. Because the condensate phase does
not move like a normal liquid but rather as a body in one
quantum state, it is necessary to add a group of gauge
transformations to the group of movements. The group
corresponding to the Poisson brackets of the phase is the
group of gauge transformations which corresponds to phase
ﬁm\ shifts &J%dh-x . The action of the group is upon the

wavefunction
/l#(:,z,..) —> Y(1,2,.) é/\‘{)("%UfﬁX#"-SS ,

By methods described above,

SY¥-Clv Y = X)) Vi)

(3a)
e C
So = =L0dv e & der)
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F{P\ is the mass density, and by comparing (2) and (3), it
is evident that F(fﬁ is the generator of the gauge group.

So,
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At the movement X’~3.XK4(AFLK) the phase varies as
= ; le f )
& C() - M V]c C(’\ .

It follows that the Poisson brackets for current P and phase

@ are

\ S‘ J'L
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It is checked in [4] that these brackets lead to equations
of motion equivalent to those obtained by Landau. The

brackets are written out completely in the form
% F,G3 3[(5&/5(/‘)52,0“ +($CHQ) Cp>£
¢ (§6 /8 PNR N 3P H(8C 5N Nes [EF sy,
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where P= PVC(‘*QVﬂ +£VY is the momentum density, F is
the mass density, S is the entropy density,(p the phase
parameter and F?and (> are functionals of these variables,
with added notation } = /X @ =30 x, (21
2 £ ) A )
Now the same procedure is followed for the case of

rotating superfluid “He. The rotating case is the same as

normal 7He except that

Cud‘l Ve # O



Thus,
‘vs = ‘7 X ¥

for some vector a. « is the vortical part of the superfluid
velocity. Therefore, another variable a is added to the list
of independent variables, and the bracket for a must be

found. The end result is given by

(3= SLEC/8pd8e p +(SE/SA) 0, +(8C /50, auyet Gedy)
FASG /SN (We 1+ e VN SF e,
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where /|/,¢ = -fOC?.M - AJ QS_)I(- + (ABC\ILBJJ

with J being the conjugate pair for A, [2].
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