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Abstract In this report, I survey some results on the Hamiltonian formulation of
equations of motion for a particle in the field of a magnetic monopole. The Hamilton
equations are trivial for a divergence-free magnetic field, but it turns out that for
the magnetic monopole, the intrinsic formulation can be obtained by regarding the
magnetic potential as a connection on a nontrivial fiber bundle over R3\ {0}. This
provides a simple but interesting example of phase-space reduction over cotangent
bundles as introduced by Marsden and Weinstein.

1. Introduction.

In [2], Dirac considered the concept of magnetic monopoles in an attempt to mathemat-
ically remove the existing asymmetry in Maxwell equations between the terms involving
the magnetic and electric field. Since the magnetic field of a monopole can not be written
globally as the curl of a magnetic vector potential, he chose a vector potential with a string
of singularities. However, it was shown much later that a complete and intrinsic descrip-
tion of the vector potential can be found in a natural fashion, thus removing the string
singularity considered in the Dirac paper. This achievement was due to the development
of the physics of gauge theories.

The field of a magnetic monopole is a special example of what in physics is called the Yang-
Mills field. To study the motion of a particle in a Yang-Mills field, the notion of gauge field
and gauge potential have been introduced. As pointed out in [10], these physical terms are
respectively equivalent to the notion of principal fiber bundle and connections on the fiber
bundle used in mathematical terminology. For example the electromagnetism, or rather
the electromagnetic potentials in Maxwell’s equations, can be regarded as the connection
on a bundle with a U(1) & S! group structure, which only in the absence of a magnetic
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monopole is equivalent to a trivial U(1) bundle. See [10] for more discussion, see also [3]
for some historical and critical discussion of this subject.

In this report, I consider the simplest case of a Yang-Mills field corresponding to a nontrivial
principal fiber bundle, which is the case of a single magnetic monopole. As mentioned,
the structure group in this case is the Abelian group U(1) = S?, the group of complex
numbers with unit norm. This Abelian structure results in a considerably simpler analysis,
however it should be mentioned that there exists a natural extension of these results to a
general Yang-Mills field with non-Abelian group structure.

But first, we shall review the Hamiltonian equations of motion of a particle in a divergence-
free magnetic field in R3:
Let B denote the magnetic field, then B = *B® is a 2-form on R3. The Lorentz law
maintains that for a particle with mass m and charge e, its velocity # satisfies

m% = %:& x B.
Since B is divergence free, B =V x A, or equivalently B = dA for the 1-form A = A}
on R®. The configuration space here is T*R® & R® x R3. With abuse of notation, let
the same notation stand for B and its lift to T*R3. It is easy to see that the particle
motion can be regarded as the flow of the Hamiltonian vector field X p, corresponding to
the conserved quantity

Han) =P (= gmlil), 1)

m
with respect to the non-canonical symplectic form

QB=Q-§B ()

In other words, dH = Xy |Qp. t Here, 2 = dz* A dr; is the canonical symplectic form on
T*R?® and r = mi by Legendre transform.

Since B = dA, one can see that Qp is the pull-back of £ under the fiber translation
t,: r—=p=r+%A. Thus, one can also write Xy = X3, where dH = X;]JQ and

~ 1 e
:=Ho(t,) = —|]p— <A
Bi=Ho@) =5 lp- 4| 3)
Using the Legendre transform, we also get the Lagrangian for this system:
. o 1 .. e, .
L(z,2) = (p2) - H(z,p) = 5m||Z* + —(4,2). (4)

As explained before the same formulation can be obtained if one considers the equations of
motion in the principal fiber bundle (R x U(1), R?, x, U(1)), where the fiber U(1) x {z}

f X]w:=i,w where X is any vector field and w any differential form.
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is the set of values which the particle wave function can take at point . Obviously, the
wave function does not affect the equations of motion, which is equivalent to saying that
U(1) represents a symmetry group. Then, assuming appropriate connection on the fiber
bundle and reducing the phase-space with respect to this symmetry group, one arrives at
either of the above Hamiltonian formulations. I defer an explanation of the relationship
between these formulations from the point of view of the theory of connections to the next
sections.

2. The magnetic Monopole.

Consider a magnetic monopole of strength g at origin in R3. The generated magnetic field
for this monopole is given by

5 =g":"3 where r:=(z!,2%,2°) or B =+B"=sinfddA ds. (5)

One may easily show that the above vec-
tor field can not be written “globally” as
curl of another vector field. To prove this
consider the surface of the $2 C R sphere
divided in 2 parts M,, M, as in the fol-
lowing figure. Now suppose that one can
write B = V x A, or equivalently B = dA
globally on R3. Then by Stokes’ theorem,
we have

/3: dA=/ A=/ A=/ B.
Ml Ml 8Ml 8M2 qu

But as M is enlarged, the left hand side converges to 47wg, while the right hand side
converges to 0 which is a contradiction.

However, note that V-B = dB = 0 on R*\ {0}. This means that in every simply connected
open set U; in R3 \ {0} one may write B = dA4; for some 1-form A;. In particular, as
shown in [12], one may consider the following open covering of R® \ {0}:  Let (r,, é)
be the spherical coordinates in R® where ¢ is the azimuth angle, then

U={r>0,0<80< 1 -0},
R*\ {0} =1, UUz where { ' J (6a)

Up={r>0,a<8<n},

and 0 < a < §. Clearly, U;’s are simply connected and there are 1-forms A; on U; such
that B = dA;. Needless to say, the choice is not unique. For example we may have

A1 = g(1 - cos8) dg, (A1 = 501 - cosg)a_%) .
Az = —g(1 + cos ) do, (A2 = 525(1 + cos0)3) (6b)



where A; and A; are well-defined 1-forms on U; and U, respectively. On U; Uz, dA; =
dA; = B, thus we must have d(A; — A2) = 0. In fact, one can see that A; — A; =
29 d¢ = d(2g¢) is exact on U; [\ Uz. As we shall see, this condition guarantees that there
exists a connection A related to A;, A; on the corresponding principal fiber bundle.
(Notice that one can not have A; = A;, for example, A = — cos8d¢ is only well-defined
over R?®\ ({0} x {0} x R), where dA = B.)

Naturally (since Lorentz force law is still valid), the Hamiltonian (1) with respect to the
symplectic form Qg (2) is still a Hamiltonian for the equations of motion in presence of the
magnetic monopole (5). Also as I will show, one may still use the translated Hamiltonian
(3) with the canonical symplectic form 2 to generate the vector field corresponding to the
magnetic monopole. However, one should notice that in this case, A is not a 1-form on
R3\ {0}, but is obtained from a connection (1-form) on R*\ {0} by passing to the quotient
(R*\ {0})/S. It can be shown as a 1-form on U; or U; as given by (6). We shall see
that although the configuration space for both Hamiltonian structures is T*R? \ {0}, but
the symplectic manifolds (T*R3 \ {0},92p) and (T*R3 \ {0},9) are in fact two different
reduced structures which are reduced from T'*R* \ {0} under the group action U(1)!

For a more detailed discussion of the above computations see [11].

3. Reduction on Cotangent Bundles

In this section, I briefly review the main results of [6] and [5] chapters 2 and 3. Let us first
introduce some notations:

Let @, denote the left action of a Lie Group G on the manifold Q and @7, :=T"%,-
denote the left lift of this action to the cotangent bundle 7*Q. The coad101nt actlon on
the dual Lie algebra G* is denoted by Adg-: and the symmetry subgroup of G over G* at
p € G* is shown by G, (i.e. for all g € G, Adj-.p = p). The infinitesimal generator of
the action ®exp ¢ on Q for every £ € G is the vector field

d
EQ(Q) = '2? (=0 @exp tE(Q) Vq € Q

Then the reduction theorem of Marsden and Weinstein [6] on the cotangent bundles as
symplectic manifolds simply states that if G is a symmetry group for a Hamiltonian vector
field on the cotangent bundle (the flow of the Hamiltonian is invariant under actions of
G), then one may reduce the phase space to a quotient space with respect to G. The
statement of the theorem is as follows. Note that by the action of G on T*Q, we mean

(911’) = (@g% g—lp) for all (P, Q) eT*Q

Theorem 1. (Marsden and Weinstein, 1974)
Let G act freely, properly and symplectically (canonically) on the symplectic manifold
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(T*Q,9), i.e. ’(f;Q =. Let J: T *Q — G* be an equivariant momentum map corre-
sponding to the symplectic form 2, that is

d * * —
X(J,E)(Pa 9) = (fq(q), E o Qexp —if(p)) and Adg..l oJ=Jo Qg,

and p € G* be any regular value of G*. Then there exists a unique symplectic form 2, on
the reduced phase space P, := J~1(u)/G, such that

iv:J7(p) » T*Q is the inclusion and
7y : J™Y ) — P, is the projection map.

)

7, =1,  where {
Moreover, if H is a Hamiltonian on T*Q which is invariant with respect to thf action of
G, then the flow of Xy on T*Q induces a flow on P, whose Hamiltonian is H given by

Homy=Hoi,.

If Q is the canonical symplectic form, the standard momentum map corresponding to the
canonical action @, is given by

(J(¢:p). §) = (p, €o(9))  ¥Y(p,g) €T*Q and V{e g~ (8)
(It is easy to verify that J is equivariant,:

(Jo ®,, E) = (Q;-IP’ §go Qg) = {p, T@g‘leQ o @9>
= (p. 23€Q) = (p, (Ady-1€) ) = (J, Ady-1€) = (Adj-1 0T, €). )

Next, I proceed to explain the relationship between the Hamiltonian structure on J ~1(0)/G
and the oneon P, = J~¥(u)/G, both obtained by reduction from the Hamiltonian structure
on (T*Q,Q), through the introduction of a connection A on the principal fiber bundle.
Let X = Q/G and 7 : Q — X be the projection on the quotient, then (Q,X,7,G) is a
principal fiber bundle. The projection 7, however, does not extend naturally to a map of
T*Q onto T*X, such a map is given by a connection on the principal fiber bundle.

But if 2 is the canonical symplectic form on T*Q and J the corresponding momentum
map, one can identify J~1(0)/G with X. To see this note that by definition, for all
(g,p) € J7(0) and € € G, (p,€o(g)) = 0. Now, the infinitesimal generators of the G
action are tangent to G fibers for z € X and span the tangent space to these fibers.

Since every fiber bundle can locally be identified with a trivial bundle, this means that
P € J71(0) can be identified with an element of the dual of T X or T*X.

A connection on a principal bundle leads to a correspondence between the fibers, it defines
a horizontal lift of any curve on X to the corresponding fibers. In other words, it splits
the tangent space TQ to a vertical space tangent to the fibers (isomorphic to G) and
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a horizontal space, where the horizontal space is isomorphic to T X, the base tangent

bundle. note that without the connection, there is no natural correspondence between T Q
and TX.

Following (1), a connection on the principal fiber bundle 7 : @ — X is defined formally
as a linear G-invariant mapping o4 : T:X — T,Q for all ¢ € Q, such that z = w(gq) € X
and T7 oo = id. Equivalently, a connection is a 1-form A on Q with values in G,
i.e. A: TQ — G, which satisfies

{(stQ)(9)=f forall{€G,g€Q and (5)
a
34 =Ad,-. 0 A, for &, aleft action of G on Q.

The definition of A naturally extends to an equivalent parametric 1-form A p on Q, with
parameter 4 € G*, according to the following:

(4u(e), v) = (1, (A(9), v))  V(g®)ETQ. (90)
Note that by (9a), we have PrA, = A(ads_ n)-

Now, consider the mapping hor, : T*Q — T*Q such that

horA (‘Ia p) = (Qsp - AJ(q.p)(Q)) . (10)
It is easy to check that hor, maps 7*Q into J~!(0). We have

(P - AJ(q,p)(Q), €Q(q)) = (J(Q,P), f— (Za fQ)(Q» =0 V£ €@

by (8) and (9a-b). Thus, J(hor,(g,p)) =0 for all (q,p) € T*Q. Now,if 0 and p € G*
are regular values of J, there exists Hamiltonian structures on the reduced manifolds
P, = J7Y(p)/G, and Py = J7Y(0)/G = T*X. Let Hy and Qo be the corresponding
Hamiltonian and symplectic form on Py. This induces naturally a G-invariant Hamiltonian
on J~1(0), which by abuse of notation, I denote similarly. From (10), one gets the following
mapping by restricting hor, to J~!(u):

ta, : I (p) = 373(0),  suchthat  #4,(q,p)=(g,p — Au()). (11)
Therefore, the Hamiltonian on J~?(0) induces the Hamiltonian
Hy,:=Hpot,, (12a)

on J~!(u), where w, : T*Q — Q. The corresponding Hamiltonian structure on P, is
obtained by passing to the quotient. Thus, we have the following symplectic form on P "
where B, is the 2-form dA, on Q passed to the quotient: (This holds because of the
properties of the connection (9a).)

Q= + 7B, (12b)
6



It should be mentioned that J~!(z) and J~(0) are not symplectic manifolds. See (3] for
a more rigorous discussion.

A special case is when G is Abelian, in that case, G, = G for all 4 € G* and P, = P =
T*X. One example of this case is the Hamiltonian equations in a magnetic field. More
generally if 4 € G* is G-invariant, i.e. G, = G, then according to [4], we have the following
result for the above system, where J is given by (8):

Theorem 2. Let 1 € G* be G-invariant. Then, (J~(u),T*X,v, ,,G) is a principal
fiber bundle, where ¥, , := mgots, and A is any connection on the principal fiber bundle
(@,X,7,G).

Moreover, the connection A induces a diffeomorphism A, between the reduced phase

space J=Y(p)/G and the cotangent bundle T*X, the former being endowed with the sym-
plectic form g + 7% B, where § is a (canonical) symplectic form on T*X.

According to this result, we have the following diagram for a G-invariant z € G*:

I = (@ Nw)/G,9,)

A [5u.

(T°Q,Q) ™4 J-10) I (I-1(0)/G = T*X,R%) (13)
\Te l"QIO J"'x
Q N X

The above discussion indicates that if a reduced Hamiltonian structure on one reduced
manifold, say Py & T*X is known, then one can find corresponding Hamiltonian and
symplectic forms on every reduced manifold P, for all z € G*. Note that in this case, we
do not require the knowledge of the Hamiltonian H and symplectic form Q on all of T*Q.

4. Hamilton Equations in the Magnetic Monopole Field

Now, I will use the discussion of the last section for the special case of particle motion in
presence of a magnetic monopole.

For this system, the “shape space” is X := Q/G = R*®\ {0}. Let (z,r) denote the elements
of T*X. As explained in §2, the particle motion is the flow of the Hamiltonian vector field
XH, with respect to the symplectic form Qo = Qcan — $73 B, where Ho = ;L||r|2,

7y : T*X v X and B is given by (5).

(6a) gives an open covering of X, U; U U,, such that one can let B = dA; on each open
set. Consider the Abelian group G = U(1) = S? and the trivial local fiber bundles U; x G.
Clearly, there exist principal “circle” fiber bundles (Q, X,#,S?) whose local trivialization
is U; x S1. Here, we let the left action of G = S? on Q be the simple multiplication along
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the fibers, i.e. in complex representation and local trivialization, ®,,(z,9) = (z,909)
where g = e*# for some 8 € R. Clearly, the corresponding Lie algebras can be identified
with the real numbers, G = G* = R. Also, for this Lie group, Adj; =id for all g € S*.

Let ¥;: #~1(U;) » U; x S'. Considering the existing natural homeomorphism between
each fiber G; (z € X)) and S?, we have the following homeomorphism for every z € U; [ U,
induced by ¥,, ¥,:

q12(z): S'— G, CcU; x 8 +— G, CU; x ST +— SL.
Cleatly, g12(z) € S? for all z € U; (| U; and can be presented as
giz(z) := (@) for some h € F(U, n Us,). (14)

Now, corresponding to any local G-valued 1-forms on U;’s, there exists a connection on Q.
Since in our case, G = R, henceforth, we regard connections as regular 1-forms.

Conversely, if A is a connection on @, there exist local 1-forms, A;, on U; such that
A; = f,-"z, where f; is a cross section of the bundle over U; ( f; : U; — =~ }(Uj)
and 7o f; = id). In particular, one may chose the zero cross sections of the bundle,

-1
8i: Ui U; x {1} NN 7~1(U;). Then, it can be shown (see [1]) that if A; = sTA, where

A is any connection that satisfies the properties (9a) with respect to an Abelian group
such as S', we must have on U; U,

(A2(z), v) = (Ai(2), v) + g7 (z) Dagna(z) v Vz €Uy |U2, Wve€T:X.
dh(z)

That is to say A; — A; must be an exact form on Uy (\U;. Moreover, the function h(z)
determines the correspondence between local trivializations of the fiber bundle in their

overlap region. Similar results is obtained if different sections are used to lift A;’s to a
1-form A on Q.

For A; and A; given by (6b), h(z)( = g13'(z) Dzg12(z)) = 2g9¢ for every z € Uy U, =
{r >0, a <8 <7 —a}. This defines uniquely the fiber bundle 7 :Q — X = R?\ {0}.
Specially, since A; and A, and the local trivializations are independent of the radius r and
R3\ {0} = 52 x R*, the fiber bundle is evidently of the form (r',id): @ = Q' x Rt —
S% x R*. It can be shown that for proper choice of sections, Q' can be identified with S3,
where n': §% — S2 @ P!, the complex projective space, is the Hopf Fibration.

Next, we note that if A; = f*A for section f;, then dA; = f#dA on U;. Further, for Abelian
groups such as S, we must have dA; = dA;. In our case, of course dA; = dA, = B
which induces dA = B for some 2-form B on T*Q. I add here that for the S! group, B
represents the curvature of the connection A.
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(If we chose the zero-sections s; to lift A; and A to the connection A, then we may write
A in local trivialization Ui x S, in terms of A as

A(z,9) = w"Ar(z,9) + ®)-1dg  V(z,9)€Ur xS, k=12 (15)

Check that A satisfies (9a) where for this case, £o(z,g) = £g for every £ € R = G*.)

Hence, we have found the principal circle bundle (Q' x R*,5? x R*,x,S?) and the con-
nection A induced from 1-forms A, and A, given by (6b). Then it is only straightforward

to apply theorem 2. Clearly, the group S? acts freely, properly and canonically on the fiber
bundle:

Proposition. On T*X =T*(S? xR*), the Hamiltonian flow of motion of a particle
in the magnetic monopole field (5), is generated by X y, with respect to the symplectic
form Qg ( = §2p), i.e. equations (1) and (2).

Let p € R = G* beequal to £, then A, = %Z, induced from A,, A; as in (15), defines
a connection on the S'-fiber bundle T*(Q' x R*). £ here corresponds to the charge
constraint.

Let the J momentum map on the fiber bundle be given by (8). Then on Py =
J-1(£)/81 = T*(S? x R*), we have the induced Hamiltonian structure Heje, Qe such
that

{ He/c =Hyo JA,e/c 3 (16)

Qe/c =8 + %W;B = Qcan - %W;'B + %W;B = Qcan,

where ;/)"A,e/,_. is the projection ofta,,.,given by (11), on T*(S? x R*) and by the properties
of the connection (9a), B is equal to B = dA passed to the quotient.
(See also diagram (13).)

I add here that the same procedure can be applied to the case of regular magnetic field
where the phase space is the trivial principal fiber bundle (R3 x $?,R3,7,51) and the
connection induces a 1-form on all of R3. The results were given in the introduction.

e The above derivation was carried out in a somewhat different approach by Sternberg
in (7, 8). In [9), Weinstein explained the relationship between Sternberg’s approach
and the one discussed before. Sternberg approach is as follows:

He pulls back T*X with respect to the mapping 7 : Q + X (or equivalently, pulls
back @ with respect to m, : T*X » X ) to get the manifold Q. (Q,T*X.7, S1) is
a principal circle bundle where the action of S?! on é is ®, = (&, @;_1), with ®,
simple multiplication by g. Note that é # T*Q and is not even generally endowed
with a symplectic structure. However, Sternberg proceeds to define a symplectic
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structure on é/G = T*X by using the connection A: TQ — R, which can be
found from local 1-forms 7} A; and 7} A; in a similar fashion as A. Also, similar to
(9b), one can define Z,. =pA: TQw~ R.

Now, hor, given by (10) defines a mapping from T*Q to J~!(0) which in turn is
projected onto T* X (see diagram (13)). This defines a mapping from T*Q to T* X,
which by definition of é as a pullback of T*M to P, as well as P to T*M, induces a
connection-dependent mapping p, form T*@ to A. Then, p 4, the restriction of p,
to J=1(x), introduces a diffeomorphism between J ~1(y) and Q.

Therefore, one can approach the E) space similar to the J~1(u) space for any u € G*
and obtain similar results. In fact, diagram (13) can be modified for this case to

I w) 5 (37 (w)/G, Q)

/ IPA,,. I?ZA,,,
Q

(T°Q.0) 24 = (B/G =T X,0) (17)
\"e ;Q 1"'}\'
R = X

This concludes my survey of the magnetic monopole example. This example can be gen-
eralized to a general Yang-Mills field with non-Abelian group structure.

At the end, I just mention that there exists a parallel reduction procedure for the La-
grangian description of the system as explained in [5]§3.
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