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1 Introduction

For this final project I read The Geometric structure of Nonholonomic Mechan-
ics by Koon and Marsden and Symmetries in Motion: Geometric Foundations
of Motion Conirol by Ostrowski and Marsden. The goal was initially to learn
something about the current research in geometric phases and how that might
be extended to nonholonomic systems and eventually, in the case of my re-
search, might be extended to hybrid nonholonomic systems. I read the papers
with this in mind, but was unable to come up with something directly pertain-
ing to phases to turn in, so I instead decided to work through two examples,
one holonomic and one nonholonomic, and compute the phase associated with
cyclic inputs in the shape variables. I chose the simple planar rigid body out of
the first paper and the snakeboard out of the second. I realize, of course, that
these results are already available in these papers. However, I lcarned a great
deal from the second example about momentum equations, connections, fiber
translations, and vertical lifts, just by going through the calculation. Then, in
order to stay in the spirit of the original project, I did some sample calculations
like those found in the Ostrowski and Marsden paper.
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Figure 1: Simple Planar Rigid Body

The first example I take from Marsden and Koon, The Geometric Structure
of Nonholonomic Mechanics. We start with two planar bodies connected at
their centers of mass by a pin joint. The associated Lagrangian (including only
the angular components) is:
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Now, if we assume ¢t = 0 and directly integrate, we see that
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Moreover, if j is nonzero, then
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Now we move onto a more complicated example, the snakeboard. This mech-
anism is nonholonomic due to the no slip constraints on the wheels. It does,
however, display some aspects of geometric phase, as I will show in simulations
later on. First, we have to develop the equations of motion. Our goal is to write
the equations of motion as in Marsden and Koon, in the following form:
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Figure 2: The Planar Skater

and then to use that form to put them in
&= f(2) + hi(2)u'

For the Planar Skater, the Lagrangian is:
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while the one forms corresponding to the constraints are:
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and
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Note that the constraints can be written as w'(§) = 0.
Now, by finding a,b,c such that
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is a spanning set of vectors that satisfy the constraints, and such that all the
vectors in the set are also tangent to G=SE(2), we have defined the constrained

fiber distribution (as found in Murray and Kelly).



Now, if we let <« - >»> denote the inner product defined by the kinetic cnergy
metric for our system, we can define the momentum p as follows:
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Now I will make the same assumption as in Bloch and in Ostrowski and
Burdick: that ¢ = —¢ and that J + J. + J, = ml%. This simplification will
make the rest of the computations simpler (I assme, since I have not done them
without this simplificition!).

Now putting the above system in the form of Equations 1-3, we get that for
i = (3, d):
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Now we can rewrite the shape space variables as inputs, i.e.
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and get the state equations in the form of Equation 4.
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Note that p = 2 Jy cost ¢ — d'ap tan ¢ is the generalized momentwn equation.

Using these state equations I did the following simulations of the how phase
enters into the dynamics of this nonholonomic system. These are similar to
those found in the paper 1 was to read, Symmetries in Motion: Geometric
Foundations of Motion Control by Marsden and Ostrowski.
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Figure 4: Parallel Parking Mode

Figure 5: Yet some cyclic inputs produce no phase at all!



