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Abstract

We investigate nonuniqueness in the Lagrangian function associated with given Newtonian
equations of motion. We describe what it means for a Newtonian system to be self-adjoint
and review the proof that this property is necessary and sufficient for the system to possess
a Lagrangian formulation. A method of construction of a Lagrangian function from the
equations of motion is described, and the freedom that arises in the construction is discussed.

This freedom, or nonuniqueness, in the Lagrangian raises important questions about the

canonical quantization procedure.
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1 Introduction

The formalism of Lagrangian mechanics is a standard tool of classical dynamics. Perhaps it
is most often regarded as a means of deriving equations of motion in generalized coordinates.
The formalism, however, also provides a convenient setting in which to study equations of
motion after they have been derived. For example, with knowledge of the Lagrangian func-
tion, we can utilize Noether’s theorem to seek conservation laws. We can also construct the
Hamiltonian function and use canonical transformation theory or Hamilton-Jacobi theory.

Of course, these techniques all require that we know the Lagrangian of a system, not just
the equations of motion. Consequently, if we hope to apply them to problems in which we
begin with the equations of motion, we must first look back and seek out a Lagrangian that
could have generated them. This problem of going backwards to find a Lagrangian associated
with known equations of motion is termed the Inverse Problem of Newtonian Mechanics (9]
or the Inverse Problem of the Calculus of Variations (2, 7).

Along with the practical gains associated with finding the Lagrangian function of a sys-
tem, there is another, more fundamental, reason to study the Inverse Problem. Quantum
mechanics begins with classical Hamiltonian dynamics. In order to canonically quantize a
system, we need to know its Lagrangian function first. To find this function, we may require
the techniques of the Inverse Problem.

Now that we are convinced of the need to study the Inverse Problem, a difficulty presents
itself. It is clear that we will never be able to find a unique Lagrangian suitable for given
equations of motion. For instance, if two Lagrangians differ by a total time derivative, then
they will be associated with the same equations of motion (in more modern treatments of
Lagrangian dynamics, the Lagrangians differ by a closed one-form on the coordinate manifold
[1]). And this is just one aspect of the essential nonuniqueness of the Lagrangian.

In this paper, we investigate this nonuniqueness of the Lagrangian. We begin with a

description of the major results of the Inverse Problem. These results provide necessary



and sufficient conditions that given Newtonian equations of motion possess an associated
Lagrangian function. The results also supply a means of explicitly constructing such an
associated Lagrangian. Much of our discussion of this subject follows Santilli’s book [9].
Santilli himself follows an approach originated by Helmholtz (3], then developed by later
researchers (e.g. [2]). After laying out the results of the Inverse Problem, we study the
nonuniqueness of the Lagrangian. We discuss the causes of this nonuniqueness and its ram-
ifications. In particular, we consider some of the dramatic consequences that nonuniqueness

has for canonical quantization.

2 The Inverse Problem of Newtonian Mechanics
Suppose that coordinates g € R" evolve according to given equations of motion

Ai(t,9,9)¢ + Bi(t,q,4) =0 i,7=1,...,n (1)

where we adopt the summation convention on repeated indices. Our goal in the Inverse
Problem is to represent these Newtonian equations as Euler-Lagrange equations

dor o _ ,
dtd¢ dq¢ (2)

Let us therefore seek a Lagrangian function L(t,q,q) satisfying
doL 4L

__—_=‘l”1a.“j i’s.-
didg ~ og Aij(t,9,9)¢ + Bi(t,q,9) (3)
When we expand the total time derivative, this equation becomes
oL .. &L .. &L 9L A
: ‘MJ - ..J n ——.=Ai'tg,."1 Bitas..
5705 % T agagt T ogar g = Au(tb 09 + Bi(tg.4) (4)

If this relation is to hold true for all ¢,g, and § then it follows that L(¢,q,¢) must be a
solution of the partial differential equations

oL

250 i ®)
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and
*L ., &L 8L _
3¢9¢ 1 " dgot  ag

These are n? + n partial differential equations in one unknown, L(t,q.4). They are

B.. (6)

overdetermined and therefore need not possess a solution. However, it is possible to describe

when a solution L will exist and, when it does exist, to construct it explicitly.

2.1 Construction of Lagrangian Function

It is not difficult to see that we cannot solve equations (5) and (6) for arbitrary Newtonian
equations (1). For example, relation (5) can never be solved unless we have Ai; = A, It
turns out that the integrability conditions of equations (5) and (6) - necessary and sufficient
conditions for the existence of a solution L - depend on a property of the Newtonian equations

called self-adjointness.

2.1.1 Self-Adjointness

Consider a system of differential equations Fj(t,q,4¢,§) = 0, where 7 = 1,....n and g € R".
Suppose that we choose some particular path ¢(t) = go(t), not necessarily satisfying these

equations, and evaluate the functions F; along ¢:

Fi(t) = Fi(t, q(2), 4(t), §(2))- (7)

Now we introduce small variations upon the path by setting g(t,€) = go(t) + en(t), where
n(t) is some fixed function of ¢ and where ¢ € R. To measure the resulting change in the

Fi(t), we define the variational forms M; by

AF, AF(t,qlt, ), 4(t, €), §(2, €
M) = o = (¢, q( )a‘i( ), @( ))|<=o
OF; . OF, .. OF, .
= @lt:OUJ + a—djlmo'l’ + 'C:,—qujlmofl’- (8)



Note that the variational forms are always linear in the variation 5. The coefficients that

appear in equation (8) are known functions of time. To emphasize this fact, we write

Ali(r’) = a‘j(t)nj + b.‘j(t)ﬁj + C,'j(t)ﬁj (9)
where
a;;(t) = g'_f'}(t.qo(t).do(t).tio(t)) bi;(t) = _g%(t.%(l).do(!).io(l)) cij(t) = g;,f:}(‘-q°(')"fo(')"ib(!l)_ (10)

So far, we have computed a system of variational forms that describes how F; changes when
we alter the path ¢(t) away from g,(?).
Now, we associate with the system of variational forms an edjoint system. The adjoint

system is another system of variational forms, M;, satisfying

i Mi(n) - ' Mii(5) = T2 ) (1)

for some fixed function Q(#,7) and for all variations 1 and 7. Let us calculate the adjoint

system of AM; using the notation of equation (9):

TMin) = Fain’ + b + 7'
= [7'(ai; = bi; + &;) + 7 (=bi; + 26i;) + 7' cyj]

d . . . . .d .
L 5bmd L il —pd S (i
+ [0’ + 7'’ — 0’ (i'e;)] (12)
so that the adjoint system takes the form
Mi(7) = (azi ~ bji + i)’ + (=bji + 265)7 + sl (13)
and the function @ is given by
QU ) = S b’ + et — wIom (e (14)
’ datt’ v ’ "’ ™

The adjoint system M; is unique [9].



A system of variational forms is called self-adjoint if Mi(n) = Mi(n), i = 1,...,n, for

all variations n(t). Inspecting our expressions (9) and (13), we see that the system M; is

self-adjoint if

Ci; = Cji
bij +bii = 2¢

a;; — aj,» = CJ’,‘ - bj,'.

Referring back to the definitions of the coefficients (10), these conditions imply

OF, _ dF
T
oF | oF;, _ ,d9F
3y " 9 dt o
- 4(5.2)
dt \ 8§ * 3§
8F, O8F; _ d[d (9F;\ OF,
%o - ala() 5]
_ 1d (9F, OF,
- 37 (55~ 7)

(15)
(16)
(17)

(18)

(19)

(20)

We say that a system of ordinary differential equations Fi(t,q,¢9,4) = 0, i = 1,...,n, is

self-adjoint if it satisfies these equations.

2.1.2 Self-Adjointness of Newtonian Equations

If we apply the self-adjointness conditions to Newtonian differential equations (1),
Aij(t'; Q»‘i)ﬁj + Bt’(t’ Qa‘j) =0,
then the functions F; take the form

Filt, 9.4, 4) = Aii(t, ¢, 9@ + Bilt, 4, 9)-

(21)



Equations (18) - (20) become

A,‘,‘ = Aji
6A.-k ke BA,-,, wk aB,' aB, _ d . .
250 T op d ton T oy = @\t AN)

6A,-‘kék _ aA,:kék + 6B,~ _ 6B‘j 1d (6A.-k ke OAjk . + % _ 33,’) '

gl g’ 3¢ 9¢ 2at\9g ? " o ! Ty~ By
Expanding out the total time derivatives and requiring that equalities hold for all choices

of ¢ and §, we arrive the equations:

Aij = Aji (22)
6;;.; - 38‘:;1 (23)
B el@w) e

These are the conditions of self-adjointness for Newtonian equations. It turns out that these

conditions are precisely the integrability conditions of equations (5) and (6).

2.1.3 Explicit Construction of Lagrangian Function

We are now prepared to state a key theorem of the Inverse Problem. We will show that self-
adjointness is a necessary and sufficient condition for a Newtonian system (1), with invertible

matrix A;j, to possess a Lagrangian L satisfying

d dL AL :

—— - — = Aji(t,q,9)¢ i(t,q,9).

4dg  Bg ii(t¢,9)¢’ + Bi(t, ¢, 9) (26)
The proof goes as follows. We showed earlier that equation (26) is leads to the relations (5)
and (6). So, first let us suppose that a Lagrangian satisfying equation (26) exists. Then,

using identifications (5) and (6), it is straightforward to show that the Newtonian system



satisfies the conditions of self-adjointness (22) - (25). This demonstrates that self-adjointness
1s a necessary condition.
Now suppose that the Newtonian system satisfies the conditions of self-adjointness (22) -

(25). Then we explicitly construct the following solution to equations (5) and (6):

L(t,q,4) = K(t,q,9) + Di(t,9)¢" + C(t,q) (27)
where
- . .p 1 ] .q 1 . 3
K(t,q,9) = q'/o dr {q’/o dTAu(t,q,Tq)}(t,q,Tq) (28)
e
Dift,q) = ¢ [ drZiit.rq)r (29)
.1
Clt,g) = o [ drwit,rg) (30)
1 (8B, 8B, PK K
Zitha) = 5(6—41“8_&)*(6«.:"841'%16&*) 1)
aD; oK &K [ ek 1(aB; 0B;\] .,
7 = —L_B;,- = - — —2 1| ¢
Wiltha) = 5 = Bi= 55+ a5a [8q‘3c_}j+2 (aq: aq')] (32)

For the derivation of this rather involved solution from equations (5) and (6), we refer the
reader to Santilli’s book [9]. For the purposes of this proof, it is enough simply to verify that
the solution (27) does indeed satisfy equation (26). We leave this relatively straightforward
calculation to the interested reader and now give some illustrations of the theorem. Because

the notation in formulae (28) - (32) can be somewhat confusing, our examples include detailed

calculations.

2.2 Examples

2.2.1 Particles in External Potential

Consider the case of n particles of mass m in an external potential V(g)." The Newtonian

equations of motion are

m + g—;: =0 i=1,..,3n. (33)



Comparing this expression to the form (1), we identify

A,'J‘ = 171(5,'.)' B,’ = -g—;l, (34)
It is easy to verify that A;; and B; satisfy the self-adjointness conditions (22) - (25). So, a
Lagrangian exists, and we construct it by calculating

. .y 1 Y] .y 1 . 7.
K(t,q,9) q‘/o dr {q’/o dTAij(t,QaTQ)}(tsq,T‘I)

. .
= 4'/ dr'{cj’/ dr(mé.,,)}(i,q,‘f"i)
0 1}
p :
= q'/ dr'{mq'}(t,q,7'¢)
o
G f ., 1 1
= q/ dr'mr'¢' = -mg'¢' = -mq (35)
0 2 2
o
Di(t,q) = ‘1’/0 drZi;(t.7q)T =0 e

X 1
C(tq) = q'fo drWi(t,7q)

= q‘/] dr {-—-a—::} (t,7q)

_ av( Tq)
- /d “orq

d
= - [T _y) (37)

Inserting these calculations into equation (27), we recover the familiar result

W1,
L(t,q,q) = 5171(12 - V(g). (38)

2.2.2 Relativistic Particle

Consider a free relativistic particle obeying the equation of motion
d mg
1-(%)
Carrying out the time differentiation, we obtain

m. mg' ¢

Aiar Tao et T
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which gives

§i;+—md & B =0, (41)

Aij = (1—(2)2); c

m
V1-(2)?
These functions clearly satisfy the self-adjointness conditions (22) - (25), so we proceed to

compute the Lagrangian.
. .y ! 1 . 1
K(t,q,4) = ¢ /0 dr’ / dTAsj(t,q,Tq)} (t,q,7'4)

{a
= éi/old.,- {QJ/ d‘r( (_g)zai'j ﬁ%’j)}(t,q,r'é)

oldrdir( mrq )}(t q,7'q)
= q/ dr’ ( lnir((i‘ ):—mc \/ (42)

.l
Di{t,q) = ¢ [ drZy(t,r)r =0 (43)

C(t,q) = ¢ /OldTPV,-(t,-rq)=0. (44)

0

Assembling these formulae, we arrive at the usual relativistic Lagrangian

L=-mcf1- (%)2 (45)

2.2.3 Particle Experiencing Drag Force

Although it is conventional to introduce a Rayleigh dissipation function when applying the
Lagrangian formalism to nonconservative systems [5, 6], our theorem shows that this may be
unnecessary in many circumstances. As long as Newtonian equations are self-adjoint, they
will admit a Lagrangian formalism regardless of whether or not they are conservative. To

illustrate this point, we consider the case of a particle experiencing a drag force according to

d'+7¢ =0. (46)

11



This Newtonian equation has

Aij=6; Bi=1d"

(47)

It turns out that these functions violate condition (24), so equation (46) is not self-adjoint.

However, if we rewrite the equation in the physically equivalent form
e'yt(']'i + e-yt,yéi = 0’
so that
A,’j = 6‘”6,“1 B,‘ = 67‘7(‘}‘.,
then the equation is self-adjoint. We calculate
. o ! 1) 3 ! : Ly
K(t,q,q) = q'/o dr {q’/o dr Aij(t, 9, T?)} (t,q,7'q)
s o
r}'/ dr' {d’/ d‘r(e"'ég',-)} (t,q,7'q)
0 0
1 1

- falpi PI| 7r=_-2 -t
2qqe 296

s
Di(t,q) = q’/o drZij(t,7q)r =0

.
Citq) = ¢ [ drWilt,r) =0

i

so that the Lagrangian takes the form

L= %e"‘cf.

(48)

(49)

(53)

This example exhibits two important features of our theorem. First, it shows that it

may be possible to put a nonconservative system in Lagrangian form without the use of

a dissipation function. Second, it shows that the property of self-adjointness is somewhat

superficial from a physical standpoint. Although equation (46) is not self-adjoint, equation

(48), which is clearly physically equivalent, is self-adjoint. This situation forces us to ask

how seemingly trivial changes in an equation of motion influence the Lagrangian formalism.

This question is one aspect of the problem of the nonuniqueness of the Lagrangian function.

12



3 Nonuniqueness of Lagrangian Function

It is a familiar fact that some changes in the Lagrangian function do not significantly change
the Euler-Lagrange equations. Physics textbooks typically emphasize our freedom to mul-
tiply the Lagrangian by a constant or to add a total time derivative to the Lagrangian [5].
Here, we study the nonuniqueness of the Lagrangian more generally. We discuss the causes

of this nonuniqueness and some of its consequences.

3.1 Nonuniqueness in Construction of Lagrangian

Assume that we are given self-adjoint Newtonian equations of motion (1). In our previous

discussion, we provided a recipe to calculate a Lagrangian L that satisfies the identity (26)

doL 9L

dtog  o¢ Aij(t.q,9)¢’ + Bi(t,q,q).

Suppose that another Lagrangian L’ satisfies the same identity,
PP grang )

d oL 9L ;
—_——— = A.. 1)g’ - i
dt aq.' aq, = Al](t1 ‘], ‘J)q + B!(t7 QyQ)~

Then we can show that the two must differ by a total time derivative:

, _ df(t,q)
L-L'==2= (54)

for some function f(t,q). This follows because the difference of the Lagrangians satisfies

daL—L"_BL—L'_BzL—L'..j ?L-L ., &L-L o8L-L

- - — = —— — . - — = 0. 5
& o7 afF ooy ¢ T agog L T Tager | og (55)
Since this must hold for arbitrary paths, we conclude that
&L-L
e = © (56)
eL-L' .. &L-L oL-L
5 _ . -
a0 ¢ T Togon 37 (57)

13



Equation (56) implies that
L - L' = Fi(t,q)¢" + G(t,9), (8)

for some functions F(t,q) and G(¢, g). Inserting this into equation (57), we find the relations

OF, OF;
op "og = )
oF; oG
E T i (©0)

Expression (59) implies that the one-form F = Fidg' is closed, so by the Poincaré Lemma

[1], it is exact on some region:

F, = M (51)
Oq'
for some function H(t,q). Inserting this result into (60), we see that
. oH .
G(t,q) — 5 = J(1) (62)
for some function J(t). So, we obtain
9H(t,q) .;  0H(t,q) d :
. - L —_—— 4 +

L-L = =5+ =2 4 0(0) = glH ) + [ eI, (63)

which proves our claim. So, we see that the Lagrangian function is specified up to a total
time derivative by equation (26). This ambiguity is familiar, and we will not discuss it

further. There are more profound ambiguities to consider.

3.2 Nonuniqueness in Equations of Motion

We have seen that identity (26) completely pins down the Lagrangian except for a total
time derivative term. With some thought, however, we discover that this identity does not
capture the Inverse Problem in complete generality. Instead, the Inverse Problem should

involve the search for any Lagrangian satisfying

ddL 9L

&35 8 < A;¢’ + B (64)

14



The significance of this change is reflected in the following example. Suppose the Lagrangian
L satisfies identity (26) for some system of Newtonian equations. Then the Lagrangian
L' = cL, c € R, will not satisfy the identity unless ¢ = 1. However, provided ¢ # 0, L’ will
clearly produce an equivalent set of equations and will therefore satisfy (64).

Practically speaking, it is essential that we take this more general perspective on the
Inverse Problem. This is because, as we saw in the case of a particle experiencing a drag
force, sometimes an equation is not self-adjoint until it gets massaged a bit. So, for equation
(46), while no Lagrangian satisfies identity (26) we found a Lagrangian that satisfies (64).

These examples show that the more general version of the Inverse Problem, expressed in
relation (64), is the appropriate one for most purposes. On the other hand, although we
would like work with the more general Inverse Problem, a complete solution to this problem
seems unmanageable. To achieve such a solution directly, we would have to be able to list
all the equations equivalent to a given Newtonian system and then find a Lagrangian for
each one that happened to be self-adjoint. Such a list of equations would have to include
the given system itself, the given system with each equation multiplied by any nonvanishing
function, the given system with each equation cubed, and so on. Confronted with the
difficulty of assembling such a list, we abandon the pursuit of a complete solution to the
more general Inverse Problem (64). Instead, we present several noteworthy examples to
convey an impression of the great variety of Lagrangians that can satisfy (64). This variety

makes the nonuniqueness of the Lagrangian quite vast for most Newtonian systems.

3.3 Examples

3.3.1 Particles in Harmonic Oscillator Potential

Consider two particles in a harmonic oscillator potential, with equations of motion given by
gi+wiq = 0
fHtw'qy = 0, (65)

15



where ¢ = 1,...3. In these equations, g, refers to the position of particle 1, g» refers to
the position of particle 2, and w is the harmonic oscillator frequency. Now, if we seek a

Lagrangian satisfying the usual identities

doL oL _ . ,;
aa—qi-—a—qi = ¢ +tw'q (66)
doL oL _ . ,;
diog g = @ +w gy, (67)
then we obtain the familiar Lagrangian
1. 1 . 1 1
L=35(a) +3(6) - swi(@)’ - 5w*(e)’. (68)

Suppose instead that we seek a Lagrangian yielding the equations of motion, exchanged in

position:
doL dL _ . .
il g +wqy (69)
doL AL _ . .
aa—qi—a—qz = ¢ tuwiq. (70)

It turns out that a Lagrangian satisfving these relations is

L = 4i¢; + 5. (71)
(This Lagrangian is a simplification of the so called Morse-Feshbach Lagrangian [8]). Cer-
tainly, it yields the equations of motion (65) just as well as the usual Lagrangian .(68) does.
So here we have a striking example of an unusual Lagrangian associated with very mundane
Newtonian equations.

This example also shows how the nonuniqueness of the Lagrangian can have dramatic
ramifications. Suppose that we canonically quantize a system of two harmonic oscillators
using the alternate Lagrangian (71). According to canonical quantization, the canonical

= 9L

momentum p, = 5 = g2 does not commute with the coordinate ¢;. So, this alternate

Lagrangian suggests that it is impossible simultaneously to measure the velocity of particle

16



2 and the position of particle 1. And according to the alternate Lagrangian, there is no
obstacle to making a simultaneous measurement p, = ¢1 and ¢;. Hence, although the
usual Lagrangian (68) and the alternate Lagrangian (71) have essentially equivalent Euler-
Lagrange equations, the Lagrangians are radically different from a quantum mechanical
perspective. This situation, wherein classically equivalent Lagrangians give rise to non-

equivalent quantum mechanical theories, has been studied in several contexts (4].

3.3.2 Free Particle in One Dimension

As another example of a bizarre Lagrangian, let us consider the motion of a free particle
in one dimension. The equation of motion is simply § = 0, where g € R. Multiplying the

equation through by a nonvanishing function of the energy, we obtain the equivalent equation

flé)i=0 f#0 (72)
It is straightforward to verify that this equation is self-adjoint (in one-dimension the first
two conditions of self-adjointness, (22) and (23), are satisfied identically). The constructed
Lagrangian is
L= / lard / " s, (73)
o T1'Jo
For the choice f(z) = 1, we regain the usual Lagrangian L = 34° For another choice, say
f(z) = 1+ 522, we obtain
L= %q‘* + ¢5. (74)
Clearly, L can be made arbitrarily complicated by obnoxious choices of f(z). The quantum

theories arising from these various Lagrangians differ fundamentally.

4 Conclusion

In this paper, we have explored the nonuniqueness of the Lagrangian, some of its sources

and some of its ramifications. From a mathematical standpoint, basic questions remain
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about the solution to the general Inverse Problem (64). From a physical standpoint, issues
of nonuniqueness raise basic concerns about the canonical quantization procedure. At this
point, physics can only offer an experimental justification for selecting one Lagrangian for
quantization out of the many classically viable choices. It is hoped that further research into
this question may provide insight into the mysterious efficacy of the canonical quantization

procedure itself.
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