A Review of Geometry in Robotic Locomotion

By Yonggiang Liang as the final report of CDS205
June 6, 2003

Abstract

This report presents a limited review on using geometric methods to
analysis problems in robotic locomotion. In robotic locomtion, the net dis-
placement of the whole body is usually obtained through cyclic changes in
the shape of the robotic mechanism. A robot’s motion is constrianed by
its environment. By moving its joints in a periodic way, a robot can ex-
ploit the interaction with the environment to generate net motion. There
are different kinds of locomotion in the nature, but from a differential
geometry point of view, something intrinsic lies beneath. Namely, many
locomotion problems can be modeled as a connection on a princiPal fiber
bundle. The associated geometric phase describes the net motion' a robot
gets by changing its shape. Examples are provided to demonstrate how
to construct a connection.

1 Background

When studying the locomotion of a robot, the robot’s configuration space can
be divided into two parts. One part describes the position of the robot. A
coordinate frame is attached to the moving robot, which is usually called the
body frame. The displacement of the body frame with respect to a fixed ref-
erence frame is used to describe the position of the robot. The set of frame
displacement is SE(m), m < 3, or a subgroup of SE(m), which is a Lie group,
denoted by G. The second part defines the internal configuration of the robot,
namely, the shape of the mechanism. Usually the set of all possible shape vari-
ables can be described by a manifold, M, which is called the shape space. Then
the total configuration space of the robot is @ = G x M. The shape and po-
sition variables are coupled by the constraints which act on the robot. So, by
appropriately changing the shape, we can get desired changes in the position
variables. This relationship between the shape and position variables, as we
shall see later, can be described by the concept of connection on a principal
bundle.

Having set up the configuration space of a mechanical system, the dynam-
ical equations can be derived via calculus of variation. Assume there exist a
Lagrangian function, L(q, ¢), on the tangent space 77Q, then the motion of the



mechanical system is governed by the Euler-Lagrange equations:
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where 7 is the forcing funciton.

However, in most cases that we are interested in, there exist constraints on
the mechanical system. For example, when we drive a car, we prefer there is no
slip between the wheels and the ground and the car can only move along the
direction of its wheels. The constraints can take many forms. Let's consider
such constraints that are linear in the velocities. Given k such constraints, we
can write them in the following form:

wi(g)¢ =0, for i=1,...,k

This kind of constraints can be integrable(thus become holonomic constraints,
which depend only on the poistion variables) or not integrable(i.e. nonholo-
nomic).

When constarints are taken into account, the Lagrange’s equations are mod-
ified using the Lagrange multipliers. Then Eq. 1 becomes:
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where ), the Lagrange multipliers are solved for together with the configuration
variables ¢ and §. However, in this way, the physical intuiation, i.e. the effect
of shape changes on the motion of the robot, will not be so easy to see. So
reseachers rewrote the system in a more intrinsic way. Namely, there is an
inherent geometric structure in the locomotion problems. By making use of this
inherent structure, one can model the system in a way which shows the coupling
between the shape and position variables.

2 Connection on a principal fiber bundle, geo-
metric phase

In this section, we reiew the geometric concepts of a connection on a principal
fiber budle. From this point of view, we can model the locomoting system in a
intrinsic way clearly describing the physical intuition mentioned before.

Recall that the configuration space of a robot can be divided into two parts,
Q = G x M. G is a Lie group describing the positon of the robot, usually SE(2)
or SE(3), or a subgroup of them. M is a manifold describing the internal
configuration of the mechanical system. Such a congiguration space is in fact a
trivial principal fiber bundle.

A left action of a Lie group G on a manifold Q is a smoothmap & : GxQ —
Q@ which satisfies the following two properties:

(1) ®(e, q) = gfor allg € Q, whereeis the identity element of G;



(2) @(g1,®(g2,9)) = (9192, q) for everyg;,92 € Gandq € Q.

®(g,q) can also be viewed as a map from Q to Q with ¢ € G fixed. That
is, &, : @ — Q given by ®,(q) = ®(g,q). @ is said to be a free left action if
®(g,q) = q implies g = e. Let £ €ePf the Lie algebra of G, the infinitesimal
generator of & corresponding to £ 1§ the vector field defined by:

$ala) = 2 (®(expl(£t), a))lmo.

In the case of locomotion, let G denote the position group of a robot. If the
robot’s position is 2 and it is displaced by an amount g, then the final position is
gh. This is actually a left action of G, the position space of the robot, on itself.
For every g € G, the associated left action is Ly : G — G given by Lg(h) = gh.

Let G be a Lie group and M a manifold, then the manifold @ = G x M
together with a free left action of G on @ given by: ®,(g,z) = (hg,z), where
heG,geGandz € M, is called a trivial principal fiber bundle. M is
the base and G the structure group. Given (g,z) € @ = G x M, two natural
projections are defined on the bundle. They are m; : @ — G : (g,z) — g and
m:Q - M:(g,z) .

Given a particular point 2o in M, the set of point (g, z0) € Q, i.e. 75 1(:ro), is
called the fiber over zo. The vertical subspace of the principal fiber bundle
Q at a point ¢ is defined to be

Vi@ = {v, € T,Q : vy = €q(q) for someé e‘?.

From the definition we can see that a vector in V,Q is tangent to the orbit of
¢ under the action of G. It’s said to be vertical since it’s tangent to the fiber
direction, i.e. for a trivial principal bundle @ = G x M, the elements of V;Q
have the form (£c(g), 0), for some & e?

Now the concept of connection oit’a principal fiber bundle can be intro-
duced. A connection A on a principle bundle @ = G x M is a Lie algebra
valued one form on Q, i.e. A(g) : T,Q — where?a’s the Lie Algebra of G.
The connection has the following properties:

(1) A(q) - 6@ = & for§ €f

(2) A(q’g(‘I)) Dg®y(q) = AdgA(g) - 4.

A connection A on a principal fiber bundle assigns to each point g € Q a
subspace of T,Q, which is called a horizontal subspace:

H,Q = ker(A(q)) = {vg € TqQ : A(vg) =0}.

Then it follows that T,Q = H,Q & V,Q and Hg (q) = Tq®,H,Q, for g € G.
And conversely, if given a subspace H,Q of ToQ which depends smoothly on
g and it's true that T,Q = HyQ & V,Q, Hoe,(q) = Ty P;H,yQ, there in general
exists a connection A such that H,Q = ker(A(g)). In some sense, a connection
can be think of as a projection that splits the tangent space at a point ¢ into a



horizontal and vertical part. And the horizontal subspace can be alternatively
defined as the set of tangent vectors upon which the connection form vanishes.
Note that the vertial subspace at ¢ is just the tangent space to the vertical fiber
over q.

The intuition of a connection on a principal bundle is depicted in Figure 1.

Recall in the context of locomotion, we have constraints of the form w(g)-¢ =
0. In some cases, this actually defines a horizontal subspace of a connection, as
we will cover later.

Given & principal fiber bundle @ = G x M and assume we have defined a
connection on it. For a point ¢ € @, the tangent map associated to the natural
projection 72 : Q@ — M, Tymy : T,Q — Try(q)M, maps the horizontal subspace
at g isomorphically onto T, ()M . Or we can say, given a vector vz € T:M and
a point g in the fiber over z, there is a unique vector in H,Q whose image is v,
under the projection Tym2. We call this vector the horizontal lift of v.

Let c(t) be 2 curve in M which passes through ¢(0) = zo € M, we can
now define the horizontal lift of c. Given a point gp in the fiber over xo, the
horizontal lift of ¢ is a cuver ¢*(t) with the following properties:

(1) c*(0) = go;
(2) ma(c" () = e(t);
(3) %c‘(t) € H,.(yQ.i.e.c*(t)is everywhere horizontal.

Given two points z; = ¢(t1) and z2 = ¢(t2), the horizontal lift of ¢(t) defines a
map from 73 }(z;) to m; ! (2z2). Namely, given a point g; in the fiber over z1, the
horizontal lift ¢*(t) of ¢(¢) will map g, to a point gz = ¢*(t2) in the fiber over
z2. The map can be called a parellel displacement along the curve c(t) in
the sense that it’s the horizontal lift of ¢(¢). It should be noted that horizontal
lift and parellel displacement depend on the choice of the connection.

Now let ¢ : [0,1] — M be a closed curve such that ¢(0) = ¢(1) =« € M and
g € 75 '(z). If the parellel displacement along ¢ maps the point g to ¢/, then ¢
is also in the fber over x, which can be identified as G x {z}, where G is the
struture group of the pricinpal bundle Q.

The geometric phase or holonomy of the closed curve ¢ : [0,1) = M
is defined as the change in the group variable when g is mapped to ¢’ by the
horizontal lift of ¢. Again, the geometric phase is dependent upon the choice
of the connection A on the principal bundle. Futher more, one can define the
holonomy group of A with reference point g as the group components of all
the points in w5 (x) that can be reached via horizontal lifts of the loops in M
passing through z. The holonomy bundle of A with the reference point g is
then the set of points in Q that can be joined with g by horizontal lifts of loops
in M passing through z. The geometric phase is independent of the choice of the
initial point in the fiber since the parellel translation is always horizontal, i.e.
independent of the group variable. See Figure 2 for the intuition of horizontal
lift and geometric phase.
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Figure 1 A connection on a principle bundle

Figure 2 Horizontal lift and geometric phase




In locomotion problems, we have seen that the configuration space of the
mechanical system can be divided into two parts, @ = G x M, where G is a Lie
Group or Lie subgroup describing the poistion of the system and M a manifold
that identifies the possible internal configuration of the mechanism. Now we can
utilize the above geometric concepts to model the system in a way consistent
with the physical intuition.

The configuration space @ of a mechanical system has an inherent structure
of a principle fiber bundle. A connection A can be defined on it by appropriately
choosing the horizontal subspace since the connection vanishes on the horizontal
space. In fact the horizontal subspace is chosen so that it describes the con-
straints on the system and symmetries in the mechanism. Having established
the coonnection, by changing the shape variables in the base space in a cyclic
way, geometric phase, net changes in the group variables, can be obtained via
the horizontal lift. This is exactly the way how real systems, animals or robots,
gain their locomotion.

3 Kinematic constraints and connection

Consider a mechanical system on a configuration space Q@ = G x M with k
constraints '
w'(g)-¢=0, for i=1,...,k

where each w' is a one form.
Define
HQ = {v, € T,Q : w'(q)§ =0, fori = 1,...,k},
V,Q=1{taeTQ: ¢ <F.
If T,Q = HyQ ® V4Q and Hyp (g) = Ty®,H,Q, for g € G, then a connection A
can be defined on Q such that H,Q = ker(A(g)). The connection one form can
always be written in the local coodinates as

Alq) - ¢ = Ady(§ + A(2) - 2)
where £ = g~1g e‘?and A:TM -
Then we can write the constraint¥ as
g = —g(&(z) - ).

In this case, the locomotion of the system is fully determined by the one form
A.

Below is an example of a two wheeled kinematic car to demonstrated how
to construct a connection out of the kinematic constraints.

Consider the two wheeled car moving in the plane in Figure 3. The config-
uration space here is Q = SE(2) x (S! x 8'). Then the configuration of the
system is ¢ = (z,y, 8, Y1v¥2). Using the non-slip assumption between the wheels
and the ground, we can model the constraints as follows:

wh(q) - 4 = & cosf + ysind — £y +142) = 0
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w?(q) - §= —2sin@ + ycosd = 0;
wi(g) =0 - o-(hr — ¥2) = 0.

The Lagrangian for the system is given by
N 1 g . 1. .9 1 .2 .2
L{g,4) = '2‘"1(5102 +%) + §J92 + -2-Jw(1/)1 +2°),

where m is the mass of the car and J the moment of inertia, Ju, the intertia of
the wheels.

Here the group is G = SE(2), the base is M = (S x S!). Let ¢ = (¢1,%2)
be a point in the base, then g = (z,¥,6) is a point in the fiber over . The left
action of G on Q is given by

r1co50 —yysinf +x
T15in8+y cos@ +y
‘bg(zl,y1y01,¢1,¢2)= 91+9
1
12
and the tangent of the left action is
Zcosf — ysind
Zsinf + ycosd
qu’g(x.s ga0»¢l,¢2) = 9
¥
e
Let £ = (u,v,w) € se(2), then the corresponding infinitesimal generator is

£o = (u — wr, v + wz,w,0,0).
It can be verified that

pecos® 0

psingd 0

H,Q = span 0 £
1 1

1 -1

is just the set of velocities satisfying the 3 constraints mentioned above. And
the vertical subspace(tangent to the group orbit)

V,Q={fo € T,Q: ¢ #= se(2)}

can be identified with

Ve@Q = span

OO0 O
oo0oo~=O
OO~ OQ



Figure 3 Two wheeled kinematic car

Figure 4 A simplified model planar space robot
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Figure 5 A simplified model of snakeboard



Obviously, T,Q = H,Q @ V,Q and H,Q depends smoothly on ¢g. And it can be
verified that Hy (5)Q = T4®,(H,Q). Thus there exists a connection one form
as mentioned in the last section. Let

&~ & cosO(1 + ) + 46 ~ £ (W1 — 1))
Al@) 4= §- 8sinb(3 + ) —2(0 — £ (%1 — ¥2)
0 — £ (%1 — )
It can be checked that A(q) - g = £ and A(®y(q)) - De®4(d) = AdgA(q) - ¢.

Thus it's a well defined connection on Q. It's also easily checked that H,Q =
ker(A(q)). Rewrite the connection one form, we get:

cosf sind y & cos — sinf —-p 0 b1+
Alg)-¢= | —sind cosd -z sin@+gcosd | +| 0 0 ( 1‘51 ‘52
: 1— %2

0

0 0 1 0 -2

which is of the form ]
Ag) - ¢ = Adg(E+ A(Y) - ¥),

where
-p P
Aw=| 0 0
—£2 L
w w
, and

=(%)

It describes how the changes in the shape variable result in the net changes in
the group variables, i.e.

(1) _ ( 2(%1 + ) )
§=| 9 )=-AW)-¥= o).
6 (%1 — ¥2)

Note the above equation viewed in the body fixed frame. To view this relation-
ship in the fixed reference frame, we just need to make a coordiante transfor-
mation by multipying the above equation with Ad,.

In fact, when one derives the constrained equations of motion using the
Lagrange-d’Alembert principle, the curvature of the connection appears in
one side of the equation and the constrained Lagrangian on the other side. The
effect of the constraints is taken into account through the curvature term, which
gives a nice and intrinsic angle of view. In [1] there is a more detailed discussion
about curvature.

4 Symmetry and connection

In the previous section, we analyzed a system with a sufficient number of kine-
matic constraints, i.e. the number of constraints is exactly the dimension of the

)



position group G. The system’s motion is fully determined by the constraints.
We call the connection derived from such constraints a kinematic connection.

While there exist other cases in which there are no kinematic constraints. A
falling cat is a typical example. So is a satellite in the outer space. In these cases,
the connection arises from the conservation laws, which is called a mechanical
connection.

Conservation laws arise when there are cyclic variables in the system. We
assume that the variables 8%, i = 1,...,k, are cyclic, that is, they don't appear
explicitly in the Lagrangian, although their velocities do. Then the Lagrangian
for the system has the form(in local coordiantes)

L(g, ) = L(r,7,6) g=(r,0) e R®* xR¥,

The Euler-Lagrange equations of the system are given by

d oL 0oL ,
dtar'—'a?—o l=1,....ﬂ—-k;
d oL
Egé]‘— ]—I,...,k.

The second set of equations says that the corresponding conjugate momenta
pi = 2L are conserved quantities. In the case that the Lagrangian is given by
the dlfference between the kinetic and potential energies of the system, those
momenta are given by y

pi = gia™ + g6’
If the initial value of these momenta are zero, then they stay zero. We get

éj = -gijgiaf'nv
where [g*] is the inverse of [g;]. This actually gives a connection
AlgY g =6 + g giar®,

In this case, the shape space M = R™*, and the bundle is given by 7 : R® —
R™-*, with G = R¥ and addition as the group operation.

More generally speaking, conservation laws arise from the invariance of a
Lagrangian under the action of a Lie group. We have the following Neother’s
theorem:

Let L(g,q) be a Lagrangian which is invariant under the action of a Lie
group, G. That is, L(®,4(g), Dg®4(4)) = L(q.4), for g € G, g € Q, and ¢ € T,Q.
Then, for all curves ¢(t) : [a, b] — Q satisfying Lagrange’s equations,

iﬁ(cu)) £alc() =0,

for all ¢ G%Or p =0, where p = (& 53 9L £5) is the generalized momentum.
When G is SE(2) or SE(3), Neothers theorem is just the conservation of
linear and angular momentum.



One example is the planar space robot. A simplified model is shown in
Figure 4. Let M and I represents the mass and inertia of the central body and
let m represent the mass of the arms, which is lumped at the tips. The arms
are connected to the central body via revolute joints located at a distance r
from the center of mass of the body and have length I. Let 8 be the angle of
the central body w.r.t the horizontal, ¥, and t; the angles of the arms w.r.t
the central body. Assume the body is free floating in the space and there is no
friction. Let p be the positon of a point on the central body. The Lagrangian
of the systmes is given by

. T .
1 PR | h a;1 a1z 613 4]
L=5(M+ 2m)[IBlI° + 3| ¥ a12 a2 a3 Y2 |,
] a13 a3 Qa3 8
where
a1 = ag = mi?
a;z=0
813 = mi® + mrcosy,
asz = mi? + mr cos ¥
azs = I +2mi® + 2mr® 4 2mrl cos 9 4+ 2mrl cos ¢s.

Note L does not depend on 8. Therefore it follows that in the absence of external
forces,

Thus g = %ﬁé = a3y +agatf)2 + a33é is the conserved quantity, which is exactly
the angular momentum of the system. If the initial angular momentum is zero,
then the conservation of angular momentum gives the following constraints:

a3ty + azatfy + asad = 0.

Let (1,%2) € M = S! x 5! be the shape variables and § € G = S! be the
group variable, then the connection on this principal bundle is given by

. . 313 as
A(g)- G =0+ =24y + 2oy,
ass asa

and the horizontal lift of changes in shape varibles is given by

; a3 ;  axp;
0 =——9 — —1n.
as3 ass

This enables us to compute the geometric phase.



5 Mixed kinematic and dynamic case

In this section, we turn to the case in which there are kinematic constraints but
the number of the constraints is not sufficient to fully determine the motion of
the system. At the same time, conservation laws may not be preserved because
of the constraints.

Fortunately, there is still the quantity called generalized momentum evolving
under the governing of the generalized momentum equation. It will give us a
connection together with the constraints.

Below is an example called the snakeboard showing how to construct the
connection in this case.

The simplified model of a snake board is shown in Figure 5. Let (z,y,8) €
G = SE(2) denote the position of the main body, (¥, #s,¢7) € M = §* x §! x
S! denote the orientation angles of the rotor, back wheels, and front wheels
respectively. So the configuration space is @ = G x M. The Lagrangian is

L= 2m(s® +9%) + 200 + 20+ 07 + (s + 6 + By + ),

where J is the intertia of the main body, J,. the inertia of the rotor, and J,, the
inertia of the wheels about the vertical axis. m is the total mass of the snake

board.
The non-slip assumption at the wheels determines two constraints:

—sin(@; + 8) + cos(¢s + 8)y + L cos(d;)f = 0,

— sin(gs + 0)i + cos(¢s + 8)y — L cos(¢s)8 = 0.

There are only two constraints but the dimension of G is 3, i.e. the constraints
are not enough to determine the motion of the motion of the snakeboard.

Now let the constraint distribution Dy be the set of all velocities satisfying
the above constraints. It turns out that

8 9 8 8 8 @&
Dy = spon (a3 +b35 + 55 55 50 5

where
a = —l[cos ¢y cos(¢s + 8) + cos ¢y cos(¢y + 8)],
= —l[cos ¢p sin(@y + 6) + cos ¢y sin(ey + 0)],
¢ = sin{¢p — @y).

The vertial subspace, i.e. the tangent space of the group fiber, is given by

a 8 o
V,Q = span [5;'%' -55] .

We see D, and V,Q have a nonempty intersection. Recall that in the pure
kinematic case, T,Q = D, ® V,Q and hence we can choose D as the horizontal
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Figure 5 A simplified model of snakeboard



subspace and define a connection on the principal bindle. But things are differ-
ent in this case. Let §; = D, N V,Q be the constrained fiber distribution. We
have the following proposition:

If a constrained system on @ = G x M has a G-invariant Lagrangian L and
the constrained distribution D, and c(t) is a curve satisfying the Lagrange’s
equations, then the following generalized momnetum equation holds for
vector fields {5 € S=DNVQ:

7 = 58 (G E O + nECON

where p® = g—él‘,—(f"(c(t)))a is called the constrained momentum.
Here, for the snakeboard example, the constrained fiber distribution

(7] 7] a
Sq = span [a.% + ba_y + c%] .

The constrained momentum is

3L
pc = (%1 Eé)

= mat +mbj + Jcb + Jre($h + 8) + Jue(dy + 0) + Juc(dy + 6)
(mR? + Je)b + Joc + Juc(ds + dy)

which is the angular momentum of the snakeboard. J = J+J, +2J, is the sum
of the inertia and R is distance from the center of mass to the instantaneous
center of rotation.

Combining the kinematic constraints and constrained momentum, a connec-
tion can be constructed. Write the three equations in the matrix form

—sin(éy +0) cos(¢dy+6) lcosgy z 0
—sin(¢y +6) cos(gy +8) —lcosds v |+ ) 0 .
ma mb Je ) Jre + Juwe(ds + @5)
The first matrix can be writen as the product of two matrices
—singy cosdy lcos ¢y cosf
W(r)g = —sindy COSs ¢ . —lcosdy —siné
—2mlicosgscosdy —mlisin(ds + ¢y) Jsin(ds — ¢y) 0

where r = (1, ¢p, ¢5) denotes the shape variable. Finally, we can get the con-
nection as in the form

971G = A(r) - 7 + y(r)p".

More discussion about the snakeboard can be found in [4], [5], [6] and [7].
There are other interesting examples such as the roller racer[9], kinematic
snake [4].
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6 Summuray

This review focused on the geometric insight of locomotion problems. We saw
that a mechanical system has an inherent structure of a principal fiber bun-
dle. A connection can be determined by the kinematic constraints or dynamic
symmetries or both. The connection describes the essential mechanism of loco-
motion, coupling internal shape changes with external constraints which leads to
a net change in the group variables, namely, geometric phase. Using these tools,
we can parametrize the system with variables whose physical meanings can be
easily seen, e.g. momenta, angular momenta, internal shape, etc. Besides, these
geometric concepts are also very powerful in analysing the controllability of a
locomotion system. Basicly, the possible control inputs are constrained in the
tangent of the base space. By appropriately combination of inputs in different
directions, one can get a output in a direction that is diffent to those of the in-
puts, e.g. the Lie bracket of two inputs. The controllability can be analyzed by
investigating the controllability Lie algebra. Discussions about controllability
can be found in most of the references.
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