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Abstract

We review Lall and West’s work connecting primal-dual algorithms used in variational mechanics
with those used by TCP/AQM. We demonstrate that the algorithms follow the same basic structure.
It is hoped that these methods might provide a basis for systematic construction and analysis of large
and/or multi-scale systems.

Introduction As science moves toward tackling larger and more complex problems in both design
and analysis, we immediately run into two problems. First, attempting to perform all computations on a
single machine may be too slow for practicality. Second, and possibly more importantly, if we need large
scale robust computations, then distributing the load over many computers may be a sensible alternative
to relying on a single unit.

The following is primarily a review of work by Lall and West [2]. Their work developed the link
between variational integration schemes and TCP/AQM (Transmission Control Protocol/Active Queue
Management) protocols employed for internet congestion control. They found that both optimization
problems could be solved by distributed primal dual algorithms.

While not much original work is presented here, we do make a few clarifications. Propositions 1 and
2 have simple converses that to our knowlege have not been presented before. Further, a distributed
algorithm for solving the dual problem in discrete multisymplectic mechanics is presented. Both of these
results, especially the multisymplectic dual algorithm are hinted at in Lall and West’s work. In short,
everything presented here is probably already well understood.

Duality First we give a brief introduction to the main definitions and facts from optimization that we
will use in the finite dimensional problems.

Our finite dimensional treatment follows largely from Boyd and Vandenberge [1]. The common form
for optimization problems over Rn is as follows

minimize f0(x) s.t.
fi(x) ≤ 0 ∀i = 1, . . . , m
hi(x) = 0 ∀i = 1, . . . , p.

(1)

If x∗ solves the optimization problem, that is, x∗ minimizes f0 subject to the constraints, we call x∗ an
optimal solution. We often refer to f0 as the objective function. We call p∗ = f0(x

∗) the optimal value.
We call the primal problem convex if fi are all convex and hi(x) = aix− bi, (i.e. the equality constraints
are affine).

We construct the Lagrangian for the optimization problem as

L(x, λ, ν) = f0(x) +

mX
i=1

λifi(x) +

pX
j=1

νihi(x). (2)

This Lagrangian is related to the Lagrangian with constraints that we find in mechanics [6]. In mechanics
however, we are not interested in extremizing the Lagrangian itself, but rather we want to extremize the
action integral of the Lagrangian.
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The dual function is
g(λ, ν) = inf

x
L(x, λ, ν) (3)

where the infimum is taken over all x in the domain of the primal problem (i.e. x for which fi and hi

are defined). The dual problem is
maximize g(λ, ν) s.t.
λi ≥ 0 ∀i = 1, . . . , m.

(4)

Similar to the case of the primal problem, if (λ∗, ν∗) maximizes g with λi ≥ 0, we call (λ∗, ν∗) the optimal
solution. We call d∗ = g(λ∗, ν∗) the optimal value of the dual problem.

One should note that if x satisfies all the constraints (inequalities and equalities in (1)) and λi ≥ 0,
then the Lagrangian and hence the dual provide a lower bound on the value of f0(x).

We say an optimization problem has strong duality if the optimal value of the primal problem equals
the optimal value of the dual problem. That is p∗ = d∗.

The Karush-Kuhn-Tucker (KKT) conditions provide important conditions for when we have strong
duality.

Fact 1 Let x∗ be a primal optimal solution, and let (λ∗, ν∗) be a dual optimal solution. If we have strong
duality, f0(x

∗) = g(λ∗, ν∗), then

fi(x
∗) ≤ 0, i = 1, . . . , m

hi(x
∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . , m
λ∗i fi(x

∗) = 0, i = 1, . . . , m
∇f0(x

∗) +
Pm

i=1∇fi(x
∗)λ∗i +

Pp
i=1∇hi(x

∗)ν∗i = 0.

(5)

Further, if the primal problem is convex (fi convex and hi affine), then any (x, λ, ν) satisfying the KKT
conditions (5) are primal-dual optimal with strong duality.

The dual algorithms detailed below share the basic scheme:

• 1. Given dual variables (λ, ν), compute x to minimize the Lagrangian.

• 2. Now given x, perform gradient ascent on the dual function. In all cases, the gradient will just
be the vector of constraints.

Discrete Mechanics We detail some basic notions in discrete mechanics and present a distributed
variational integration scheme which can be implemented in a manner similar to the methods used in
internet congestion control. The results here largely follow Lall and West’s work [2].

In continuous mechanics, we study Lagrangians over the tangent bundle of some manifold, L : TQ →
R. In discrete variational mechanics, we look at Lagrangians of the form Ld : Q × Q → R. Instead of
extremizing the action integral, in discrete mechanics, we extremize the action sum

Sd =

N−1X
i=0

Ld(q(i), q(i + 1)) (6)

with endpoints fixed as q(0) = q0 and q(N) = qN . We can derive the discrete Euler-Lagrange (DEL)
equations by setting the differential of the action sum equal to zero for all variations [5].

dSd · δq =

N−1X
i=1

[D2Ld(q(i− 1), q(i)) + D1Ld(q(i), q(i + 1))] · δq(i) = 0. (7)

Since this must be true for all variations we get the discrete Euler-Lagrange equations

D2Ld(q(i− 1), q(i)) + D1Ld(q(i), q(i + 1)) = 0 (8)

for i = 1, · · · , N − 1.
We call a set of points on Q, {q(i)} a trajectory. We say a trajectory satisfies the DEL equations

if the trajectory has N + 1 points, the DEL equations hold for i = 1, . . . , N − 1 and the endpoints the
trajectory are fixed at q(0) = q0 and q(N) = qN .
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We define the conjugate momenta [5] as

p−k,k+1 = −D1Ld(qk, rk+1)

p+
k−1,k = D2Ld(qk−1, rk).

(9)

Note that the first and second arguments come from different trajectories in general.
Now we prove the simple result that makes the allows us to make distributed duality based algorithms

for mechanical integration.

Proposition 1 A trajectory {q(i)}N
i=0 with endpoints q0 and qN satisfies the DEL equations iff p+

k−1,k =

p−k,k+1 for k = 1, . . . , N − 1.

Proof:(⇒) Let {q(i)}N
i=0 satisfy the DEL equations.Then for k = 1, . . . , N − 1

0 = D2Ld(q(k − 1), q(k)) + D1Ld(q(k), q(k + 1))
= p+

k−1,k − p−k,k+1.
(10)

Therefore, p+
k−1,k = p−k,k+1 for k = 1, . . . , N − 1.

(⇐) Let p+
k−1,k = p−k,k+1 for k = 1, . . . , N − 1. Then define

pk := p+
k−1,k = p−k,k+1. (11)

Then the derivative with respect to q and r is given by

0 =

2666666664

D1Ld(q(0), r(1)) + p0

...
D1Ld(q(N − 1), r(N)) + pN−1

D2Ld(q(0), r(1))− p1

...
D2Ld(q(N − 1), r(N))− pN

3777777775
= D(q,r)

hPN−1
i=0 Ld(q(i), r(i + 1)) +

PN−1
i=1 pi(q(i)− r(i))+

p0(q(0)− q0) + pn(r(N)− qN )]

(12)

Thus, by the Lagrange Multiplier Theorem [6], {q(i)} and {r(i)} make a critcal point of

N−1X
i=0

Ld(q(i), r(i + 1)) (13)

subject to the constraints
q(i) = r(i), i = 1, . . . , N − 1
q(0) = q0

r(N) = qN .
(14)

We define q(N) := r(N). To see that the DEL equations are satisfied for i = 1, . . . , N − 1, add the terms
in the matrix from (12) and substitute q(i) for r(i) to get D1Ld(q(i), q(i + 1)) + D2Ld(q(i− 1), q(i)) = 0.
Exactly the DEL equations. Thus {q(i)}N

i=1 is a trajectory satisfying the DEL equations �
One immediate result of Proposition 1 is that if Ld is convex in both entries and p is defined as in

the proof, we have shown that the KKT conditions hold and thus we have strong duality.
We can perform the variational integration using both “primal” and “dual” methods. This is really an

abuse of terminology, since our primal method and dual method are actually based on different (though
mathematically equivalent) optimization problems.

In the following algorithms, we assume that Ld : Rn × Rn is convex in both of its arguments. The
optimization problem for the primal scheme is

minimize
PN−1

i=0 Ld(q(i), q(i + 1)) s.t.
q(0) = q0

q(N) = qN .

(15)
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Figure 1: Example nodes in the primal scheme graph

The distributed algorithm is really nothing more than gradient descent on the objective function, which
is the action integral. That is, for i = 1, . . . , N − 1, we update q(i) as

q(i) := q(i)− γ(D2Ld(q(i− 1), q(i)) + D1Ld(q(i), q(i + 1))). (16)

Here γ > 0 is some rate constant controlling how fast we perform the gradient descent.
We solve this as a distributed algorithm by setting up a graph of primal nodes and dual nodes (see

Figure 1).

• 1. At the dual node i, given q(i− 1) and q(i), we compute

p+
i−1,i = D2Ld(q(i− 1), q(i))

p−i−1,i = −D1Ld(q(i− 1), q(i)).
(17)

Then dual node i + 1 passes p−i,i+1 to primal node i and dual node i passes p+
i−1,i to primal node i.

• 2. Primal node i computes
q(i) := q(i)− γ(p+

i−1,i − p−i,i+1). (18)

The primal node then passes q(i) to dual nodes i and i− 1.

The dual scheme solves the problem

minimize
PN−1

i=0 L(q(i), r(i + 1)) s.t.
q(i) = r(i), i = 1, . . . , N − 1

q(0) = q0

r(N) = qN .

(19)

As mentioned in the Duality section, the dual algorithm involves finding q and r to minimize the La-
grangian

K(q, r, p) =
PN−1

i=0 Ld(q(i), r(i + 1))+PN−1
i=1 pi(q(i)− r(i)) + p0(q(0)− q0) + pn(r(N)− qN ).

(20)

Then use q and r to compute the gradient of the dual function. Note that if q(i) and r(i) are points
in trajectories minimizing the Lagrangian, then the partial derivatives of the dual function (g(p) =
inf(q,r) K(q, r, p)) are given as

∂g

∂pi
= q(i)− r(i). (21)

We can solve the dual scheme on a graph as follows.

• 1. At primal node i, given pi−1 and pi, find q(i− 1) and r(i) satisfying

pi−1 = −D1Ld(q(i− 1), r(i))
pi = D2Ld(q(i− 1), r(i)).

(22)

Then pass r(i) to dual node i and pass q(i− 1) to dual node i− 1.
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Figure 2: Nodes of the graph for the dual scheme.

• 2. At dual node i perform gradient ascent as

pi := pi + γ(q(i)− r(i)). (23)

Solving the dual problem in this manner gives us q, r and p that satisfy the KKT conditions. By
convexity of Ld, this implies that we find both the primal and dual optimal solutions.

Discrete Multisymplectic Mechanics The generalization of Proposition 1 and the two algo-
rithms for integration are straightforward but notationally cumbersome. The main difference is that in
the original case, the momenta were Lagrange multipliers associated with the constraint of holding the
line elements of a trajectory together. In the multisymplectic case, the momenta correspond to Lagrange
multipliers enforcing the constraint of holding the mesh elements of a spacetime discretization together
(see Figures 3 and 4). Much of this section also follows from Lall and West’s work [2]. Our treatment
sacrafices precision for easier notation.

Figure 3: Line Elements of finite dimensional discrete mechanics. Momenta correspond to constraint q(i) =
r(i)

We descretize a continuum problem with a space-time mesh (we use a simplified version of notation
presented [7]). We let Ed be the set of elements of the space-time mesh and let Xd be the set of nodes in
the space-time mesh. We let Ed(X) be the set of elements E such that node X ∈ E. The action sum we
intend to minimize (assuming convexity of the discrete Lagrangian) is

Sd =
X

E∈Ed

Ld(E). (24)
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Figure 4: Nodes in space-time mesh for multi-symplectic mechanics. Momenta correspond to the constraint
Xi

j = Xi
k.

We enumerate all the nodes as Xi for i = 0, . . . , Ntot. We enumerate the elements in Ed(Xi) as Ei
j

for j = 0, . . . , Ni. Then the discrete Euler-Lagrange equations for multisymplectic mechanics are

NiX
j=0

∂Ld(Ei
j)

∂Xi
= 0. (25)

We define the conjugate momenta as

pi
j =

∂Ld(Ei
j)

∂Xi
j

. (26)

Note that in general, as in the finite dimensional case, we allow a single node break apart and have
multiple representations (see Figure 4).

Now we generalize Proposition 1 to the multisymplectic case.

Proposition 2 For 0 ≤ i ≤ Ntot, there exists a node Xi that satisfies the corresponding DEL equation
iff
PNi

j=0 pi
j = 0.

Proof: (⇒) Let Xi satisfy the corresponding DEL equation. Then using definition of the conjugate
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momenta

0 =
PNi

j=0

∂Ld(Ei
j)

∂Xi

=
PNi

j=0 pi
j .

(27)

(⇐) Let
PNi

j=0 pi
j = 0. Then first note

pi
Ni

= −
Ni−1X
j=0

pi
j . (28)

Therefore we have PNi
j=0 pi

jX
i
j =

“PNi−1
j=0 pi

jX
i
j

”
−
“PNi−1

j=0 pi
jX

i
Ni

”
=

PNi−1
j=0 pi

j

“
Xi

j −Xj
Ni

”
.

(29)

Now we plug the result in to the definition of p, to get

0 =

266664
∂Ld(Ei

0)

∂Xi
0

− pi
0

...
∂Ld(Ei

Ni
)

∂Xi
Ni

− pi
Ni

377775
= ∂

∂Xi
j

hPNi
j=0

`
Ld(Ei

j)− pi
jX

i
j

´i
= ∂

∂Xi
j

h“PNi
j=0 Ld(Ei

j)
”
−
PNi−1

j=0 pi
j

`
Xi

j −Xi
Ni

´i
.

(30)

Therefore, by the Lagrange Multiplier Theorem [6], we have that the Xi
j minimize the sum

PNi
j=0 Ld(Ei

j)

with Xi
j constrained to Xi

j = Xi
Ni

. That, is all the different representations of Xi reduce to a single node
Xi

Ni
. Plugging in the constraint gives us a single node that satisfies the DEL equation �

Having the momenta sum to zero enforces the constraint that all representations of a single node
are the same. That implies that our mesh does not break apart. Assuming we have a convex discrete
Lagrangian Ld : Rn × Rn → R, if our momenta sum to zero, then X and p satisfy the KKT conditions
and strong duality holds.

The primal algorithm can be solved in a decentralized manner by once again just doing a simple
gradient descent over the action sum. The algorithm works as follows:

• 1. At the elements Ei
j ∈ Ed(Xi), given Ei

j compute the momenta

pi
j =

∂Ld(Ei
j)

∂Xi
. (31)

Then pass the momenta to node Xi.

• 2. At the node perform gradient descent

Xi := Xi − γ

NiX
j=0

pi
j . (32)

The dual algorithm solves the optimization problem

minimize
PNtot

i=0

PNi
j=0 Ld(Ei

j) s.t.

Xi
j = Xi

k.
(33)

We must note that Ei
j has implicit dependence on Xi.

This problem has a Lagrangian function given by

K(X, p) =

NtotX
i=0

"
NiX
j=0

Ld(Ei
j)−

Ni−1X
j=0

pi
j

“
Xi

j −Xi
Ni

”#
(34)

We compute the dual algorithm is computed as:
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• 1. At each element, given pi
j , compute the element that is the solution to

pi
j =

∂Ld(Ei
j)

∂Xi
. (35)

Note that this the same as minimizing the Lagrangian function (34), by convexity.

• 2. At each node representation, we perform gradient ascent on the dual function by

pi
j := pi

j − γ
“
Xi

j −Xi
Ni

”
. (36)

For a convex discrete Lagrangian, as noted above, we get strong duality so the dual algorithm con-
verges to a primal-dual optimal solution.

Network Congestion Control This section provides a brief sketch of the similarities between
the internet congestion control algorithm and the distributed algorithms presented above. For a more
detailed treatment on the congestion control problem see [3].

Figure 5: An example of a small internet.

We model the internet as sources that transmit information with rate xs over a set of links. Each
link has a measure of congestion pl. We can represent the network as a graph as seen in Figure 5. In
turn we can represent the topology of this graph with the routing matrix

Rls =


1 source s uses link l
0 otherwise.

(37)

We assume that each source knows the total congestion of the links connected to it. That is, at each
s, we know X

l

Rlspl. (38)
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Likewise, each link has information about the total flow into itX
s

Rlsxs. (39)

Network congestion control is solved by the optimization problem

maximize
P

s Us(xs) s.t.P
s Rlsxs ≤ cl.

(40)

Here Us is a concave non-decreasing utility function for each source s. This is a concave maximization,
which is equivalent to the convex minimization of the negative objective function. An implicit constraint
on the system is that xs ≥ 0.

Notice that the coupling of the source rates through the constraint prevents the primal problem from
being solved in a distributed fashion.

The Lagrangian of the system is

L(x, p) =
X

s

"
Us(xs)−

X
l

(Rlsxspl − plcl)

#
. (41)

One should note that since each source has access to the total congestion at the source
P

l Rlspl, the
term Us(xs)− xs

P
l Rlspl can be maximized at each source separately. Thus our dual problem becomes

min
p≥0

X
s

max
xs≥0

 
Us(xs)− xs

X
l

Rlspl

!
+
X

l

plcl. (42)

One should note the partial derivatives of the dual function are given by

∂g

∂pl
= cl −

X
s

Rlsxs. (43)

We note that active queue management (AQM) at the links is designed to enforce the KKT conditions
and thus give strong duality, since this is concave maximization.

One possible distributed algorithm is as follows:

• 1. At the sources, given
P

l Rlspl compute

x∗s = arg max
xs≥0

Us(xs)− xs

X
l

Rlspl (44)

Pass xs to the corresponding links.

• 2. At the links, given
P

s Rlsx
∗
s , perform gradient descent on the dual problem as

pl := pl + γ

 X
s

Rlsx
∗
s − cl

!
. (45)

Conclusion As stated many times throughout the paper, it is clear that variational integrators have a
similar mathematical structure to the congestion control problem. One could see this work as a starting
point to designing large scale systems around this mathematical structure. Notably, one might use this
methodology to for large scale mechanical control design using asynchronous variational integration.
Future work could also include generalizing the mathematical structure to account for changes in graph
topology such as verteces appearing or being removed. [4].
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