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1. Introduction

This project explores the use of a special type of generating function for deriving
conserving integrators. The basic idea follows Zhong and Marsden[1], that is, find an
approximate solution to Hamilton-Jacobi equation and generate a symplectic
transformation,
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This produces a one-step integration algorithm. First note that the ensuing integrator, by
design, is symplectic, hence it preserves the symplectic two-form in phase space, see
Marsden[2]. In addition, as is pointed out in [1], if the generating function is invariant
under certain group action, then the integrator also preserves corresponding momentum
map.

Attention here will be concentrated on a special type of generating function, namely the
"action integral". Recall the action integral integrated along the extremal path exactly
satisfies the Hamilton-Jacobi equation, thus by (1) recovers the exact Hamiltonian flow.
The question then is how to judiciously construct appropriate approximation, and also to
satisfy invariant requirement that may apply. In what follows a way to construct the
approximation will be described, and the process will first be applied to Hamiltonian
system in linear (flat) configuration space, and later, application to rigid body dynamics,
in which the configuration space is the rotation group, will be outlined. It will be shown
that in linear configuration case this approach leads to the symplectic momentum
conserving integrators derived by Simo[4] in a different setting.

Before closing, it may be remarked that, this procedure may bring into connection with
the so-called "temporal finite element" (or "space-time finite element" in some literature),
in which the time-stepping relations are derived from a weak form formulation, e.g., see
Zienkiewicz[8]. The viewpoint here is different, however, the procedure is analogous and



the results indict that one can expect more out of these approaches than the tradition time
integration, namely, the conserving properties.
2. Hamiltonian System in Linear Space

2.1 Time Stepping Integrator
As stated before, attention is focus on a special type of generating function,
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and construct discretized action integral
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A Taylor series expansion shows that, S given above is a first order approximation to (2).

This ensures the consistency of approximation. In what follows it is assumed that the
Lagrangian is of the form,

L(q.q)=K(4)-Ulq) (5)

where K: 7Q — R is the kinetic energy, and U: Q — R is the potential energy. Assume
further that X is positive definite quadratic form in canonical momentum,

K(p)=%p-M"p, M=M' (6)

Then the discretized action integral may be worked out as,



1
S(qn-H ’qn M At) = E(qnﬂ - qn ) : M(qn+l - qn ) - AtU(qn+u ) (7)

In view of (1), the time stepping integrator is derived as,
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2.2 Invariance Under Group Action, Conserving Properties

As an example, assume the generating function is invariant under the left action of
rotation group, in sense that S(q,,+‘,qn,t)=S(gqn*,,gqn,t) for g € SO(3). A simple case

could be that both kinetic and potential energy are invariant. Following the argument of
Marsden[1], algorithm (8) should conserve the angular momentum map J: P — R*. This
can be verified by the following calculation. From (8),
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Recall the algorithmic invariance condition given by Simo[4, Equation (2.18,)], namely
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It is clear that J,,, — J, = 0. Another way to see is to recast (7) into the following form,
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Which can be readily identified as the momentum conserving algorithm by Simo[4,
Equation(2.19)] with x, = x, = 1. ( Parameter ks are introduced to enforce conservation



of energy, which may be regarded as algorithmic representation of "reparameterization in

time". This will be addressed briefly in next sub-section). Noted also if the Lagrangian
does depend on g, then, by (10,), p,,, = p,. the conservation of linear momentum map

is trivially satisfied.

A few remarks may be included here. First, equation(10) actually furnishes a first order

discretization to Hamilton equation, and is second order as a = 0.5. Second, generation
functions in term of pairs (q,,,.p.). (4,,P,,) may also be used, with a proper

approximation analogous to (3) (4) and the following rules
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2.3 Conservation of Energy

It seems that the difficulty associated with the conservation of energy may be attributed to
the fact that the potential energy function lacks a unified mathematical structure. (The
kinetic energy, on the other hand, always induces a Riemannian metric in configuration
space). Hence there may not exist a general way for constructing energy conserving
algorithm. Conservation of energy may only be enforced, say, numerically, and on a case-
to-case basis. The general issue will not be discussed herein, rather, a special example
will be examined, with emphasis on "reparameterization of time".

Recall that middle point rule conserves the total energy in linear Hamiltonian system, we
then set a = 0.5, and apply it to linear oscillation of a one degree of freedom system, the
mass of which is unite. (Or, one may regard this as modal coordinates of general linear
Hamiltonian system). First check that the energy is indeed conserved. Recall
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The difference in energy between time steps is worked out to be

En+| - En = (a— 0'5)0‘)2 (qn+lpn - qnpn+l ) (14)

Then the conservation of energy is obvious. Recall we have the integrator i) symplectic,
ii) conserve angular momentum, iii) conserve energy. For this particular problem, which
has two integral invariance and thus is completely integrable, the integrator should
integrates the exact trajectory to within a reparameterization of time. Recall Hamilton's
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the solution of which gives a time-stepping relation,
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And the integrator yields the following,
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Comparing (16), (17), it's clear that if one relates Ar and AT by
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then integrator essentially integrate the exact solution.

The above discussion leads to the following observation, that one may introduce other
parameters, put them as function of time in (4), to represent the reparameterization. First



order accuracy could be ensured by imposing consistency condition on these parameters.
This may provided an explanation for the parameter k’s in Simo [4][5].

3. Rigid Body Dynamics

There seems to be a number of ways to apply the method to rigid body dynamics. The
first is to use coordinate at the onset, for example, the Euler angles. By a proper choice of
coordinates, the coordinates may be globally canonical, so the procedure above can be
applied directly. However, these coordinate may have singularities as in the case of Euler
angles, hence caution should be exercised. Another drawback is the loss of "intrinsic"
feature that the theory originally possesses.

Another way is to use the reduction (symmetry) theory[l, 2]. This theory provides a
systematic way to transform the dynamics from symplectic cotangent space to the reduced
symplectic space and vice versa, as well as transformation form the configuration to its
Lie algebra. With these transformation in hand, one may write the dynamic in the induced
space and/or Lie algebra, formulate the updating there and transform back[1,5]. This is an
elegant approach. The author needs time to digest this theory and understand the details.

Without going to reduction theory, the above procedure may be also be applied to rigid
bodies, as outlined below. Recall the configuration space is the rotation group SO(3), one

may use the following discretization,
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which is the counterpart of (3) in nonlinear case. Qe so(3) is the (body) angular velocity
and Q,, Q,., the configurations. Equation (19,) may be used when potential is involved.

Make the connection between skew symmetric matrix and vector by the usual way, one
may define vectorial form of angular velocity and momentum. Follow the notation in
Zhong & Marsden [1], one may write the Lagrangian for a free rigid body as,
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And the generating function, from the integration of the Lagrangian over time step, is,
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The "momentum”, i.e., the matrix form of body angular momentum, may be derived as,
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Equation (22) may provide a time integration scheme. Conservation properties will not be
discussed.

4. Conclusion

A process of constructing symplectic conserving integrators is briefly discussed. The
method falls into the category of using generating function. Use is made of a discretized
action integral as a generating function. Conservation properties in linear configuration
space is discussed, and is shown lead to algorithms by Simo. Possible application to rigid
body dynamics is suggested.

Reference

1. Ge Zhong, J Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson
integrators, Physics Letters A, 133(1988),134-139.

2. J. Marsden and T.S. Ratiu , Introduction to Mechanics and Symmetry, Springer Verlag,
1994,

3. V. 1. Arnold, Mathematical Methods in Classical Mechanics, Springer Verlag, 1994.



4.]. Simo, N. Tarnow and K.K. Wong, Exact energy-momentum conserving algorithms
and symplectic schemes for nonlinear dynamics, Computer Method in Applied
Mechanics and Engineering, 100(1992), 63-116.

5.D. Lewis and J. Simo, Conserving algorithms for the dynamics of Hamiltonian system
on Lie group, Journal of Nonlinear Science, 4(1994), 253-299.

6. K. Feng, Difference scheme for Hamiltonian formalism and symplectic geometry,
Journal of Computational Mathematics, 4(1986), 279-289.

7. P, J. Channel and C. Scovel, Symplectic integration of Hamiltonian system,
Nonlinearity, 3(1990), 231-259.

8. O. C. Zienkiewicz, A new look at the Newmark, Houbolt and other time stepping
formulas: A weight residual approach", Earthquake Engineering & Structural Dynamics.
5(1977), 413-418.



